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Abstract: Seagrass meadows and mussel reefs provide favorable habitats for many fish species, but
few studies have compared the associated fish assemblages directly and examined the influence
of environmental variables. Knowledge of fish assemblages associated with disparate habitats is
needed for the conservation of coastal fisheries and marine spatial planning. Catch per unit effort
data derived from fyke nets showed similar species richness and diversity in seagrass meadows and
mussel reefs, suggesting that both habitats support elevated marine biodiversity of mobile fauna.
However, it was shown that fish assemblage structure differed between those habitats, and also fish
abundance in seagrass meadows was significantly higher than in mussel reefs by comparing the
data with a multivariate extension of Generalized Linear Models (GLM). Furthermore, employing
underwater video recordings to compare fish abundances in high and low water current speed
mussel reefs with a Generalized Linear Mixed Model with negative binomial distribution, data
revealed similar fish abundances (in terms of the MaxN metric) despite the variation in current
speed, probably because the mussel formations provide sufficient shelter, even from high water
currents. The commercially important species Atlantic cod (G. morhua), however, was significantly
more abundant in the low water current mussel reef. Therefore, restoration efforts targeting G. morhua
could benefit from restoring low current mussel reefs. Our study provides input for the conservation
of coastal recreational and commercial fisheries, habitat restoration and marine spatial planning
where certain habitats may be prioritized.

Keywords: Atlantic cod (Gadus morhua); Baltic Sea; biogenic reef; eelgrass; fish abundance; fish
assemblage; fisheries management; flow velocity; restoration

1. Introduction

During recent decades, intensified human activities in coastal areas have degraded
many marine habitats and caused subsequent declines in numerous organisms. Impacted
organisms include seagrass and bivalves, which are considered significant habitat modifiers
in coastal areas [1–6]. Importantly, seagrass meadows and bivalve reefs often support
several important ecosystem services (ES), partly because the habitats act as nurseries for
many marine species by providing nesting grounds, refuge from predators and habitats for
foraging [7–13].

Bivalve reefs are often the target of restoration and management plans in coastal
areas because of the associated ES; however, most restoration projects have targeted oyster
species (e.g., European flat oyster; Ostrea edulis [14], Pacific oyster; Crassostrea gigas [9,15]
and eastern oyster; Crassostrea virginica [8,16]). Fewer studies have targeted blue mussel
(Mytilus edulis) [17], although M. edulis reefs often form biodiversity hotspots, including
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habitats for many infaunal and epifaunal species [18,19]. For example, M. edulis reefs may
augment seagrass growth [20] and fish production in the Baltic Sea [15,17,18].

In the Baltic Sea, seagrass meadows mainly consist of Zostera marina and provide
several ES [3,4,21,22], and the meadows contribute to significant ecosystem functions, in-
cluding carbon sequestration, nutrient cycling and alterations of water flows [3,7,21,23,24].
Moreover, Z. marina provides habitats for many organisms, including foraging habi-
tats for several fish species [3,7,25] that may be exploited commercially and recreation-
ally [10,26–28].

The important roles of Z. marina meadows and M. edulis reefs for coastal fishes have
been documented by many studies suggesting that fish production is positively affected
by the two habitats [2,3,7,9,10,17,29,30]. Importantly, both habitats may provide spatial
refuges for predation and alleviate food limitations [2,31–33]. Few studies, however, have
compared the fish assemblages associated with Z. marina meadows and M. edulis reefs to
understand the relative significance of these habitats for a broad range of fish species.

Fish abundance and assemblage composition is often affected by the degree of struc-
tural complexity of the habitat [33–38]. For example, a previous study [37] showed that
complex habitats, including seagrass and oyster habitats, are more diverse in terms of
fish and invertebrate communities compared to mudflats. In addition to habitat complex-
ity, environmental variables may affect fish assemblages. Recent studies have suggested
that water currents may affect fish abundances and assemblage composition in fresh-
water [39,40] and marine ecosystems [41,42] and should be considered for integrated
management plans [41]. Despite these findings in aquatic systems, the influence of con-
trasting water currents on fish assemblages associated with bivalve reefs remains largely
unknown. This may be particularly relevant for reef restoration projects targeting bivalves
to enhance fisheries production.

The ES provided by seagrass meadows and bivalve reefs may play a critical role for
spatial management and coastal restoration plans [9,28]. Current challenges for manage-
ment plans include gaining an integrated understanding of the processes that are taking
place in marine habitats, and their threats, to design efficient plans [9,16,43]. Indeed, a
thorough understanding of the relationships between seagrass meadows, bivalve reefs
and fish assemblages can provide guidance for marine management and help to mitigate
habitat degradation [16,30,44], as well as evaluate and protect the ES and ecosystem goods
(EG) that the habitats provide [45,46].

The objective of this study was to investigate habitat use of marine fishes to improve
ecosystem-based approaches for the management of marine resources and fisheries [47,48].
To this end, we compared fish assemblages in Z. marina meadows and M. edulis reefs in
the Western Baltic Sea (i.e., Øresund between Denmark and Sweden). In addition, we
contrasted fish assemblages representing two different M. edulis reefs with high and low
water currents. Specifically, we tested the hypotheses that (1) Z. marina meadows support
higher fish diversity and abundance than M. edulis reefs, and (2) fish abundance differs
between M. edulis reefs exposed to high and low water currents.

2. Materials and Methods
2.1. Study Area

This study was carried out in the Sound (Øresund; ICES subdivision 23) between
Denmark and Sweden (Figure 1). The Øresund represents transient waters between the
Baltic Sea and Kattegat. Seagrass meadows (Z. marina) occur on sandy sediments at depths
ranging between 1–6 m. In total, 162 km2 are covered by seagrass meadows in Øresund [49],
whereas blue mussel reefs (M. edulis) cover 46 km2 [50].

Fish abundance and diversity were measured on three field sites near the island of
Saltholm in Øresund. Southeast of the island (55◦35′12.21′′ N; 12◦48′04.42′′ E), field sites 1
and 2 had high water currents (range: 0.007–1.81 m s−1) (Figure 2a,b). Field site 1 (0.22 km2)
provided dense Z. marina meadows, whereas field site 2 (0.28 km2) provided extensive
M. edulis reefs.
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Figure 1. Map of the sampling area and sites. The red color dots indicate the seagrass meadows (field site 1), while the 
blue color dots indicate the mussel reefs. For the mussel reefs, circles refer to high water currents (field site 2) and squares 
refer to low water currents (field site 3). 
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developed M. edulis reefs. Comparing additional environmental parameters derived from 
a numerical operational model, which estimates hourly the hydrographic conditions in 
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were characterized by similar water temperature (°C) (Figure 2c,d) and salinity (ppt) (Fig-
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Figure 1. Map of the sampling area and sites. The red color dots indicate the seagrass meadows (field site 1), while the blue
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to low water currents (field site 3).

In contrast, field site 3 (0.17 km2) northwest of the island (55◦41′32.63′′ N; 12◦41′31.68′′ E)
had low water currents (range: 0.003–0.88 m s−1) (Figure 2a,b) combined with widely
developed M. edulis reefs. Comparing additional environmental parameters derived from
a numerical operational model, which estimates hourly the hydrographic conditions in
the surface water column of Øresund basin (Western Baltic Sea), both sites (site 2 and
3) were characterized by similar water temperature (◦C) (Figure 2c,d) and salinity (ppt)
(Figure 2e,f). All data were collected during autumn and winter of 2014.

2.2. Fish Assemblages in Z. marina Meadows and M. edulis Reefs

A total of 60 double fyke nets were deployed in Z. marina meadows (field site 1) and
M. edulis reefs (field site 2) (high water currents). The lead lengths of fyke nets were 8 m,
heights were 0.6 m and mesh sizes were 18 mm. Diameters of the seven sequential hoops
were 60, 55, 50, 45, 40, 35 and 35 cm, similar to earlier studies [51]. All fyke nets were
deployed identically and with the same orientation to current direction in random positions
at field sites 1 and 2 in the afternoon and fished for about 24 h. Deployment and retrieval of
the fyke nets followed standard procedures [51,52]. After retrieval, fishes were identified
to species or family levels. Catch per unit effort (CPUE) data were derived as the total
catch (in numbers) of each taxon for each deployment (i.e., per 24 h). CPUE data were
considered proxies of the relative fish abundance following previous studies [53–55].

2.3. Fish Assemblages in M. edulis Reefs with High and Low Water Currents

A total of 50 underwater cameras were deployed from 11 September 2014 to 8 December
2014 in contrasting mussel reefs with high currents (HC) and low currents (LC) (i.e., field
sites 2 and 3), similar to previous studies using remote underwater video systems to
describe fish assemblages in different habitats [56]. Each camera (Hero 3+ Black Edition;
GoPro Inc., San Mateo, CA, USA) was mounted with a scheduler (TL-004A Intervalometer;
CamDo Solutions Inc, Vancouver, BC, Canada). The scheduler ensured that each camera
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recorded one 30 s video sequence every hour. Videos were recorded in HDTV resolution
(1080 p) with a 30 Hz frame rate and were stored on 32 GB micro-SD cards.
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cus.eu/, accessed on 16 November 2021). 
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Figure 2. Environmental variables across the study period (September to December 2014) in the mussel reef areas with high
currents (HC) (red color) (field site 2) and with low currents (LC) (green color) (field site 3): (a) water current speeds (m s−1);
(c), water temperature (◦C); (e) water salinity (ppt); (b,d,f) boxplots representing the mean values of the environmental
parameters (a,c,e, respectively) for each site with 95% confidence intervals. The environmental data are derived from a
numerical operational model, which estimates the hydrographic conditions in the Øresund basin (Western Baltic Sea). The
database Baltic Sea Analyses Forecast was used, accessible via COPERNICUS (https://marine.copernicus.eu/, accessed on
16 November 2021).

Each camera was mounted for horizontal recording on a vertical pole attached to a
concrete tile (40 × 40 × 5 cm). A 10 m line connected the tile to an anchor and surface
float. The camera tile was deployed from a boat and lowered to the seafloor with a rope
temporarily attached to the tile. After positioning the tile on the seafloor, the rope was
retrieved and the anchor line and surface float were deployed.

Similar to previous studies [57,58], video analyses included identifications of fish
species or families (when identification to the species level was unreliable) and measure-
ments of the maximum number of each taxon that appeared within the video sequence
at one time, know as the MaxN metric. MaxN is a conservative metric of relative abun-
dance and it is used in order to avoid multiple counts of the same individuals appearing
in the videos [59,60]. Only daylight recordings were analyzed because no artificial light
source was deployed. This approach assumed that recordings between dawn and dusk are
sufficient to describe fish assemblages [61,62].

2.4. Statistical Analysis
2.4.1. Statistical Analysis of Fyke Nets Data

Hypothesis 1 stated that fish diversity (i.e., species) and abundance would be higher
in seagrass meadows compared to mussel reefs because of higher structural complexities
in seagrass meadows [63]. To compare species diversity between Z. marina meadows (field

https://marine.copernicus.eu/


Water 2021, 13, 3268 5 of 14

site 1) and M. edulis reefs (field site 2), species richness, Shannon and Pielou’s evenness
indices were estimated (R package: vegan, functions: specnumber, diversity [64]). Next,
the diversity metrics for each habitat (Z. marina meadow and M. edulis reef) were compared
using non-parametric Mann–Whitney tests [65,66] because data were incompatible with a
normal distribution, even after transformations.

To contrast fish abundances and composition between Z. marina meadows and
M. edulis reefs, a multivariate extension of Generalized Linear Models (GLM), suitable to
model abundances of community data (R package: mvabund, function: manyglm [67])
was applied. Due to many zero abundances, leading to overdispersion, a negative bino-
mial regression version of the model was fitted with two levels (mussel reef and seagrass
meadow) of habitat as predictor. Multivariate extensions of GLM are considered to in-
crease the statistical power, in comparison to conventional distance-based multivariate
analyses, by taking into account the endogenous mean–variance relationship of count type
data [68]. To test for significant effects of habitat on fish abundance, univariate analyses
of deviance with 999 resampling iterations for each species separately were applied (R
package: mvabund, function: anova.manylm [67]). In addition, for the inspection and
visualization of the influence of habitat on fish assemblages, a distance-based redundancy
analysis (db-RDA) (R package: vegan, function: capscale [64]), using habitat as predictor
and Bray–Curtis dissimilarity coefficient, was applied. Finally, a Permutational multivari-
ate analysis of variance (PERMANOVA) [69] (R package: vegan, function: adonis [64]) with
Bray–Curtis dissimilarity matrix, was run to test the importance of habitat in explaining
the assemblage composition.

2.4.2. Statistical Analysis of Video Cameras’ Data

Hypothesis 2 stated that fish abundance would differ between M. edulis reefs exposed
to high (HC) and low (LC) water currents. To address the hypothesis, underwater record-
ings were analyzed to detect differences between the two habitats. Therefore, differences
in the maximum numbers of fish (MaxN) between the two habitats (HC M. edulis reef and
LC M. edulis reef) were tested for each species or family separately using a Generalized
Linear Mixed Model with negative binomial distribution to avoid pseudoreplication and
to account for overdispersion (GLMM, R package: lm4, function: glmer.nb [70]), similar
to previous studies [71,72]. The model selection followed [73] and integrated the Akaike
Information Criterion (AIC). In addition to the fixed variables of habitat and environmental
parameters (salinity, temperature and current), random variables of camera id, hour and
month were also included in the model to account for random effects. The species Aphia
minuta and sand lances (Ammodytidae) were registered rarely and, thus, were excluded
from the analysis. Due to uncertainty in the video identification of gobies (Gobiidae),
other than Gobiusculus flavescens and Gobius niger, flatfish (Pleuronectidae) and wrasses
(Labridae), other than Ctenolabrus rupestris, they were identified to the family level, while
the rest of the fishes were identified to species level.

All statistical analysis and plotting were conducted in R statistical and programming
environment (version 3.6.3) [74].

3. Results
3.1. Using Fyke Nets to Estimate Fish Assemblage in Seagrass Meadows and Mussel Reefs

A total of 380 individual fish, covering 14 different species, were caught by the 60 fyke
nets deployed in this study. Eelpout (Zoarces viviparus) was the most abundant species in
both surveyed habitats (i.e., seagrass meadow and mussel reef). The eelpout was followed
by the two-spotted goby (Gobiusculus flavescens) and the European eel (Anguilla anguilla) in
the seagrass meadow and the two-spotted (Gobiusculus flavescens) and black goby (Gobius
niger) in the mussel reef habitat. According to the Mann–Whitney test, the habitats provided
similar species richness (W = 422, p = 1), the Shannon index (W = 380, p = 0.5) and Pielou’s
evenness index (W = 285, p = 0.5) suggested comparative fish species diversities in the
two habitats.
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The five species broadnosed pipefish (Syngnathus typhle), Atlantic cod (Gadus morhua),
corkwing wrasse (Symphodus melops), goldsinny wrasse (Ctenolabrus rupestris) and ninespine
stickleback (Pungitius pungitius) were only observed in the mussel habitat, while shorthorn
sculpin (Myoxocephalus scorpius) was only found in the seagrass meadows. The total CPUE
(i.e., abundance) for all species together was, however, significantly higher in the seagrass
meadow (p < 0.001).

The univariate tests comparing the species abundances between the two habitats
showed that the CPUE for A. anguilla (p < 0.001) and Z. viviparus (p = 0.02) was significantly
higher in the seagrass compared to mussel reef, while the abundance of G. niger was
significantly higher (p = 0.01) in the mussel reefs compared to seagrass. All the other
species exhibited similar CPUE numbers in both habitats (Table 1).

Table 1. Comparison of fish species abundances estimated using catch per unit effort (CPUE) data from seagrass meadows
and mussel reefs in the Øresund between Denmark and Sweden. The p values were derived from the univariate analyses
of deviance with 999 resampling iterations, comparing the number of each species separately in each habitat. The bold
cells indicate the statistically significant differences and the asterisks show the level of significance, where *** p < 0.001 and
* p < 0.05.

Family Fish Species Latin Name Common Name CPUE
Mussel

CPUE
Seagrass p Dev

Anguillidae Anguilla anguilla European eel 0.3 2.429 <0.001 *** 12.15
Labridae Ctenolabrus rupestris Goldsinny wrasse 0.067 0 0.18 2.64
Gadidae Gadus morhua Atlantic cod 0.067 0 0.14 2.64
Gobiidae Gobius niger Black goby 1.2 0.429 0.01 * 6.45
Gobiidae Gobiusculus flavescens Two-spotted goby 1.333 1.714 0.61 0.28
Cottidae Myoxocephalus scorpius Shorthorn sculpin 0 0.071 0.13 2.91

Pleuronectidae Platichthys flesus European flounder 0.067 0.036 0.68 0.27
Pleuronectidae Pleuronectes platessa European plaice 0.033 0.036 0.86 0
Gasterosteidae Pungitius pungitius Ninespine stickleback 0.033 0 0.47 1.32
Gasterosteidae Spinachia spinachia Sea stickleback 0.133 0.607 0.11 2.96

Labridae Symphodus melops Corkwing wrasse 0.033 0.286 0.06 4.1
Syngnathidae Syngnathus typhle Broadnosed pipefish 0.033 0 0.44 1.32

Cottidae Taurulus bubalis Longspined bullhead 0.067 0.036 0.65 0.27
Zoarcidae Zoarces viviparus Eelpout 1.6 2.607 0.02 * 5.79

Based on the distance-based redundancy analysis, the axis of the constrained com-
ponent (CAP) explained a minor proportion (6.15%) of the variance and the axis of the
unconstrained component (MDS1) explained 25% of the residual variation (Figure 3). Even
though the proportion of variance explained by habitat in db-RDA was relatively low, the
PERMANOVA analysis showed a significant effect of habitat (PERMANOVA, p = 0.003) in
distinguishing the assemblages in the two habitats (seagrass meadows and mussel reefs).
These findings supported the belief that fish assemblages between seagrass meadows and
mussel reefs differ.

3.2. Using Stationary Underwater Cameras to Estimate Fish Assemblage in Two Different Mussel
Reef Habitats

For each underwater camera, recordings lasted for 6–7 days (i.e., 300–350 camera
days were recorded in total). A total number of 28,535 fish were registered during the
video analyses covering the high current (HC) and low current (LC) mussel reefs. The total
maximum number of fish was similar (GLMM, p = 0.14) in both habitats. However, the
univariate analysis of the maximum number of fish representing each family or species
in the two habitats indicated that four species differed significantly. More specifically,
G. morhua and C. rupestris exhibited significantly higher abundances in LC mussel reefs,
while abundances of G. niger and S. spinachia were higher in HC mussel reefs (Table 2). In
addition, flatfish (Pleuronectidae) abundance was higher in LC compared to HC mussel reef,
but the statistical test was marginally insignificant (p = 0.0745). Except for habitat, water
temperature and salinity demonstrated significant effects on some species. Specifically,
temperature had a negative effect on G. morhua abundance (GLMM, p < 0.001), whereas
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salinity showed a positive effect (GLMM, p = 0.004). Thus, G. morhua abundance appeared
to decrease in warmer water and increase at elevated salinities. Concerning the G. flavescens,
both water temperature and salinity affected abundance positively (GLMM, p = 0.003 for
temperature and p < 0.001 for salinity). Finally, the abundance of C. rupestris was positively
affected only by salinity (GLMM, p < 0.001), while the rest of the species and families
remained unaffected by environmental variables.
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Table 2. Comparison of mean fish abundances (in terms of MaxN) with associated confidence intervals (CI), recorded by
underwater cameras in mussel reefs with high and low water currents in Øresund. The p values were derived from tests
using a GLMM model with negative binomial distribution comparing the maximum number of fish between mussel reefs
with high and low current speeds. The asterisks show the level of significance, where *** p < 0.001 and * p < 0.05.

Family Fish Species Common Name

Mean
Abundance in
High Current
Mussel Reef

CI for High
Current

Mean
Abundance in
Low Current
Mussel Reef

CI for Low
Current p

Gadidae Gadus morhua Atlantic cod 0.000 0 0.621 0.446–0.864 <0.001 ***

Gasterosteidae Gasterosteus
aculeatus

Three-spined
stickleback 0.000 0–0.038 0.000 0–0.004 0.485

Gobiidae Gobius niger Black goby 0.379 0.154–0.931 0.023 0.006–0.087 <0.001 ***

Gobiidae Gobiusculus
flavescens Two-spotted goby 10.135 3.112–33.002 21.221 6.107–73.736 0.3876

Gobiidae Other gobies 0.084 0.012–0.609 0.283 0.022–3.607 0.2511
Labridae Ctenolabrus rupestris Goldsinny wrasse 0.017 0.003–0.086 0.515 0.157–1.694 <0.001 ***
Labridae Other wrasses 0.000 0–0.006 0.000 0–0.005 0.7568

Pleuronectidae Flatfish 0.010 0.001–0.166 0.041 0.002–0.945 0.0745
Gasterosteidae Spinachia spinachia Sea stickleback 0.058 0.022–0.149 0.006 0.001–0.048 0.043 *
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4. Discussion

This study investigated the fish assemblages associated with seagrass meadows and
mussel reefs. The study highlights that fish abundance in seagrass meadows is signif-
icantly higher compared to mussel reefs. Although the habitats examined supported
similar species diversity and richness, the fish assemblages differed slightly in structure.
In addition, mussel reef habitats with different water current speeds exhibited similar
fish abundances, regardless of the water current regime, revealing minor differences in
assemblage composition. However, commercially important species, such as G. morhua
and Pleuronectidae, were more abundant in low current mussel reefs. The findings suggest
that mussel reef restoration projects should target low current areas if the goal is to sup-
port G. morhua and flatfish. Our comparative analysis provides fundamental knowledge
for marine habitats and the associated fish assemblages, and plays an important role in
the implementation of policies to protect and enhance marine resources, such as coastal
fisheries [28,46]. Furthermore, the information combined with species distribution models
could be used to define the “essential habitats” for fish life cycles, which should be taken
into account in marine spatial planning [75].

Species selectivity of our two sampling methods (fyke nets and underwater cameras)
in the same HC mussel bed habitat seemed to differ. More specifically, the two methods
presented consistent differences in fish abundance and species composition probably
due to different sampling designs, gear selectivity and the sampled area covered by the
methods [76,77]. Some species were more effectively targeted by fyke nets (A. anguilla and
Z. viviparus), others by the underwater cameras (Labridae and G. morhua), while sampling
for other fishes appeared to be unaffected by the gear type (Gobiidae and Pleuronectidae),
although the overall fish species spectrum was consistent with previous studies in coastal
habitats in the Baltic Sea [17,78–80].

The results of this study suggest that species composition may differ between mussel
reef and seagrass habitats, highlighting the different ecological value of each habitat. For
example, C. rupestris, G. morhua, P. pungitius and S. typhle were only observed at the
mussel reefs. The two habitats were, however, characterized by similar species richness
(total number of species), e.g., Shannon and Pielou’s evenness indices. These findings
are contrary to a previous study [37] that sampled fish with fyke nets in seagrass, oyster
and mudflats habitats, and suggested that species composition is more related to location
within the estuary than to different habitats. Moreover, in the same study, the authors
documented similar fish species richness but marginally higher Shannon diversity in oyster
habitats compared to seagrass meadows.

In contrast to the diversity metrics, the overall fish abundance as indexed by CPUE
was higher in seagrass meadows, which is in accordance with previous studies [63,81],
endorsing that seagrasses support higher fish densities and provide more complex habitats
compared to oyster reefs. Additionally, Tomas and Waldbusse [77], comparing seagrass,
long-line and on-bottom oyster aquaculture habitats, found higher fish densities in seagrass
and long-line oyster habitats compared to on-bottom oyster aquaculture habitats. In
contrast, a comparison of fish assemblages in mudflats, oyster reefs and seagrass meadows
in North Humboldt Bay, California, showed significantly higher fish CPUE in oyster
reefs [44]. To summarize, the majority of previous studies support higher fish abundance
in seagrass meadows compared to oyster reefs, a habitat which is similar to mussel reefs
as both organisms (oyster and mussel) are bivalves, form biogenic reefs and may offer
similar ES.

The relative species composition and fish abundance in both examined habitats
(Z. marina meadows and M. edulis reefs) were in agreement with previous studies [4,78,79].
The higher abundance of Z. viviparus in seagrass habitats supports the findings of Thormar
et al. [80], reporting that Z. viviparus account for the largest proportion of the fish species in
another seagrass area in the western Baltic Sea. Moreover, seagrass meadows exhibited
a significantly higher abundance of adult A. anguilla compared to the mussel reefs. In
contrast, mussel reefs, as well as medium size gravel habitats, are often favored by juvenile
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eels [82,83]. A. anguilla is a critically endangered species as stated in the HELCOM Red
list [84], as well as in the Danish Red list [85], while Z. viviparous is a near threatened
species [84]. A. anguilla is targeted by both commercial and recreational fisheries, although
this is highly regulated due to the vulnerable status of the species. On the other hand,
Z. viviparous is only occasionally taken for consumption in recreational fisheries. The
high abundance of these species in the seagrass habitat and the status of their stocks, as
mentioned above, underlines the significant role of seagrass in the ecosystem structure
and demonstrates the value of the specific habitats when considering spatial management
plans. On the other hand, the only species with significantly higher abundance in mussel
reefs compared to seagrass was G. niger, which is a species of “least concern” [86].

The outcomes from the comparison of the two mussel habitats exposed to different
current regimes indicated similar total abundance (MaxN) of species in the low and high
current habitats, which is consistent with a previous study [41], indicating that the relative
fish abundance and fish assemblages of benthic fish species are not strongly structured
by current regimes. This finding supports that benthic structures, including biogenic
reefs, may act as flow refuges for fish. Other studies have, however, shown increased
fish assemblages in high current habitats [39]. In any case, although the outcomes of our
research are in accordance with previous studies, conclusions here should be drawn with
caution, since the distance between sampling stations was limited, potentially raising issues
concerning pseudo-replication.

The distribution of dominant fish species in our study was similar to the distribution
of species found in a previous study [17]. Differences in species composition between the
mussel reefs with disparate water current regimes may be explained by the absence or
presence of the dominant species [87,88]. Specifically, the higher abundance of G. niger in
the in HC mussel habitat may be driven by the lower abundance of G. morhua compared to
LC mussel reefs, as G. morhua is a major predator of G. niger and the presence of G. morhua
alters the behavior of G. niger [89]. Additionally, assemblage structure differences could be
explained by the ability of the species to minimize the energy costs in the water current
and increase the foraging rates [90]. According to Hamner et al. [91], high current areas
could be favored by planktivorous species as the concentration of zooplankton is high in
those areas. Thus, the higher abundance of S. spinachia in HC mussel reefs compared to LC
could be explained by its slender and elongated body shape, a characteristic which allows
for efficient and elevated swimming speeds [92], as well as by its diet preference of small
invertebrates including copepods [93].

On the other hand, higher densities of G. morhua and C. rupestris in LC mussel reefs
could be attributed to the relatively large body sizes of the fishes with limited opportunity
to find shelter against current speeds in the mussel reefs. The negative effect of increasing
temperature on G. morhua abundance could be explained by its preference for cooler wa-
ters [94]. In addition, the Pleuronectidae family including European flounder (Platichthys
flesus), which is a keystone species for the specific area [86], was marginally more abun-
dant in LC mussel reefs than in HC mussel reefs. Therefore, the higher abundances of
Pleuronectidae, as well as G. morhua, which is a vulnerable keystone species [84] with
high commercial value [95], in the low current mussel reefs compared to the high current
mussel reef enforce the importance of protecting low current mussel reefs when spatial
management actions are implemented. Thus, it could be most favorable to protect and
restore low current mussel reef habitats in management plans to support Pleuronectidae
and G. morhua stocks and the economy of various coastal fisheries.

Further research comparing fish assemblages in seagrass and mussel habitats is war-
ranted as it could contribute to a better understanding of habitat use by marine species. In
addition, to adequately describe fish assemblages, the selection of the sampling method(s)
should be made with caution, especially when management decisions are considered.
For example, equipment improvements in cameras, including the use of infrared light
(IR), which allows filming in darkness, would allow recordings of the abundance and
behavior of nocturnal species. Including sampling of the full diel cycle is important for
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the evaluation of habitat use, because fish metabolism and behavior may be affected by
circadian rhythms [96], potentially resulting in an underestimation of the fish abundances
and, subsequently, the importance of the habitat [78,87,94].

5. Conclusions

In this study, we showed that seagrass meadows and mussel reefs in Øresund have a
similar fish species diversity and species richness. On the other hand, fish abundance was
higher in seagrass meadows as compared to mussel reefs and fish assemblages differed,
suggesting that specific habitats may have different ecological and economic value. Con-
cerning the effect of current speeds in mussel reef habitats, fish appeared largely unaffected
by the observed variation in current speeds, exhibiting few differences in assemblage
structure, although some commercially important species revealed higher abundances in
low current mussel reefs. The information should be taken into account by policy makers
when management and restoration actions are planned to protect coastal habitats and
fisheries [28,45,46,75].
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