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Abstract: Water Resource Sustainability Management plays a vitally important role in ensuring
sustainable development, especially in water-stressed arid regions throughout the world. In order
to achieve sustainable development, it is necessary to study and monitor the water quality in the
arid region of Central Asia, an area that is increasingly affected by climate change. In recent decades,
the rapid deterioration of water quality in the Ebinur Lake basin in Xinjiang (China) has severely
threatened sustainable economic development. This study selected the Ebinur Lake basin as the
study target, with the purpose of revealing the response between the water quality index and
water body reflectivity, and to describe the relationship between the water quality index and water
reflectivity. The methodology employed remote sensing techniques that establish a water quality
index monitoring model to monitor water quality. The results of our study include: (1) the Water
Quality Index (WQI) that was used to evaluate the water environment in Ebinur Lake indicates a
lower water quality of Ebinur Lake, with a WQI value as high as 4000; (2) an introduction of the
spectral derivative method that realizes the extraction of spectral information from a water body to
better mine the information of spectral data through remote sensing, and the results also prove that
the spectral derivative method can improve the relationship between the water body spectral and
WQI, whereby R2 is 0.6 at the most sensitive wavelengths; (3) the correlation between the spectral
sensitivity index and WQI was greater than 0.6 at the significance level of 0.01 when multi-source
spectral data were integrated with the spectral index (DI, RI and NDI) and fluorescence baseline;
and (4) the distribution map of WQI in Ebinur Lake was obtained by the optimal model, which was
constructed based on the third derivative data of Sentinel 2 data. We concluded that the water quality
in the northwest of Ebinur Lake was the lowest in the region. In conclusion, we found that remote
sensing techniques were highly effective and laid a foundation for water quality detection in arid areas.

Keywords: Water Quality Index (WQI); Ebinur Lake; remote sensing

1. Introduction

Water problems can be a great barrier to economic development in any corner of the
world [1–3], especially in such arid regions as Xinjiang, China, where water shortages (and
other water issues) aggravate ecological environment deterioration. Therefore, studying
and monitoring water quality is very important to reduce the potential negative impacts
on the ecological environment in Xinjiang. However, traditional water quality monitoring
methods are time-consuming, cumbersome, and limited to a small scale. Therefore, they
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can no longer meet the needs of water quality monitoring in terms of speed, large areas,
or a long time series. In order to have more accurate estimates, new data sources and
new methods need to be introduced in the monitoring of comprehensive water quality
indicators [4,5]. The development of multi-source observation and the monitoring of remote
sensing technology increasingly brings huge opportunities for speedy, high-precision water
environment monitoring and evaluation over large areas.

Satellite remote sensing technology has developed very quickly since 1970. Conse-
quently, more water resource researchers started to apply remote sensing technology in
their research, and the water quality within remote sensing monitoring mechanisms has
also gradually improved. In recent years, remote sensing satellites have been widely used
to observe pollutants in rivers and lakes. As a result, the detectable types of pollutants
retrieved from satellite images have greatly increased, and the inversion accuracy has been
further improved, as well [6].

Remote sensing applied to water quality monitoring is mainly used to map the water
quality indexes of rivers and lakes through the relationship between water quality indexes
and spectral data with satellite image data such as Landsat, MODIS, ENVISAT, and SPOT
data [6–8]. However, the spatial resolution of the above remote sensing data is greater than
10 m, which makes it difficult to meet monitoring requirements. Only a few water quality
parameters can be monitored by these remote sensing data, such as Chlorophy ll, SS, NTU,
and CDOM. [4,9,10]. Other chemical indicators of water quality, such as COD, BOD5,
TN, TP, NH3-N, DO, etc., cannot be directly monitored by remote sensing. The indirect
monitoring accuracy is low, and the mechanism is unclear. Hence, introducing a new
technology that makes up for the deficiency of remote sensing water quality monitoring is
essential.

In fact, the process of water pollution follows a nonlinear regression that fluctuates
with many factors, and the accuracy of the water quality inversion result is limited by the
traditional linear inversion model [11]. However, machine learning has a good nonlinear
approximation ability, and the application of machine learning in water quality monitoring
provides a new idea to improve the accuracy of water quality monitoring. Alves simplified
the input variables of the feed forward neural network through principal component
analysis, thus accurately inverting the water quality index (WQI) [12]. Gogu proved that
there is a good potential in using a neural network to invert the salt content of river
water through experiments [13]. Wang [11] estimated the WQI of water quality in the
Ebinur Lake basin based on the support vector machine (SVR) model by using near-surface
spectroscopy technology, and found that the nonlinear model has great potential in water
quality observation.

Although the water quality parameter estimation model provides relatively highly
accurate data, the result is uncertain due to the complex and changeable water environment.
The reason is that the water spectrum shows the entire water environment rather than
a single water quality parameter. Many scholars have developed a single water quality
parameter estimation model based on water spectral data [14–16]. Therefore, the estimation
model of individual water parameters introduces a certain degree of uncertainty. At this
point, the establishment of the water quality index reflecting the whole water environment
to evaluate the whole water environment is necessary. Moreover, a good water quality
evaluation method should not only accurately reflect the spatial change of the water
quality but also conveniently monitor the water quality level. Data on the Water Quality
Index (WQI) is compiled by the Ministry of Water Resources and the Water Environment
Monitoring and Evaluation Center to evaluate the quality of drinking water [17,18]. The
WQI was originally proposed by Horton and Brown [19,20]. Scholars have devised various
methods to calculate the water quality Index (WQI) [21,22], which is a mathematical tool of
converting large amounts of water quality data into a single value that represents the water
environment and reflects the overall water quality level [23]. However, it is impossible
to identify the temporal and spatial variation of water quality, which is crucial for the
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comprehensive evaluation and management of water quality, even though the WQI method
can provide reasonable accuracy of the water quality of a single sample.

In this paper, the relationship between the water quality index, water optical charac-
teristics, and water reflectance is quantitatively analyzed. The specific research objectives
in this paper include: (1) to better mine the information of remote sensing data by using
a series of technologies, such as the remote sensing image differential algorithm, which
are introduced to realize the extraction of water remote sensing information; (2) to con-
struct a remote sensing spectral index (DI, RI and NDI) and fluorescence baseline height
for monitoring water quality in arid areas; and (3) to establish a WQI model based on
machine learning technology (particle swarm optimization algorithm) to achieve water
quality monitoring. This study will provide an effective method for rapid, quantitative,
and sustainable water quality management in arid areas, as well as a typical example for
ecological conservation in arid areas, and it will also effectively contribute to the health of
the ecological environment in arid areas.

2. Study Area

The Ebinur Lake watershed (43◦380–45◦520 N and 79◦530–85◦020 E) is located in
northwest Xinjiang, China (Figure 1). The study area is 50,621 km2, comprising Bortala
River Valley, Jinghe oasis, Wusu Oasis, Dandagai desert, and the Mutetaer desert zone of the
lower reaches of the Akeqisu-Kuitun River. The Ebinur Lake is in the lowest elevation of the
watershed and is the largest saltwater lake in Xinjiang. It has all the typical characteristics
that all other lakes do in the arid region of Central Asia. The area experiences a typical
arid continental climate in the middle temperate zone and is characterized by drought,
low rainfall, drastic temperature variations, and severe soil salinization. The average
lake depth is merely 1.4–1.6 m, with a water density of about 1.079 g/cm3, pH 8.49, and
mineralization of 112.4 g/L. The watershed is one of the key areas of China’s Silk Road
Economic Belt, and can be divided into three sub-basins, namely, the Jinghe River basin,
Boltala River basin, and Kuitun River basin. The Ebinur Lake basin consists of a varied
landscape of mountain, desert, and oasis, where land is mainly use for agricultural. The
annual average temperature is 7.2 ◦C, with the highest 9.1 ◦C and the lowest 5.3 ◦C. The
annual extreme high and low temperature is 41 °C and −34.7 ◦C, respectively. The annual
average precipitation is only 149 mm, but the potential evapotranspiration reaches up to
2281 mm.
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unique visual effect of Ebinur Lake. 

3. Data and Methods 

3.1. Data Collection 

Water Quality Data Collection 

The field investigations and water quality sample collections for this study were con-

ducted in October 2015. They were integrated with the main body of the experiment, 

which included three parts of water sampling, including water surface spectral measure-

ment, GPS record location, and other auxiliary information. Spectroscopy was measured 

by a FieldSpec® ProFR (wavelength range: 350–2500 nm), a portable ASD spectrometer 

(Analytical Spectral Devices, Boulder, CO, USA). Water samples were sent to the labora-

tory for analysis within a specified time frame.  

The researchers collected a total of 16 water samples. For each sampling point, a wa-

ter sample collector was used to collect water samples at 0.5 cm depth, just below the 

water surface, with 1000 mL of water samples collected at each sampling point. Samples 

were stored in Teflon plastic bottles (for standard and easy transportation). Teflon plastic 

bottles were washed several times with collected water before each collection. After the 

samples were collected, they were immediately put into the benzene board incubator with 

ice and transported to the laboratory where the water quality index was determined as 

soon as possible.  

3.2. Remote Sensing Data Collection 

The European Space Agency (ESA) recently launched the Copernicus Project, which 

is expected to improve the monitoring of forest conditions and land use, as well as en-

hance disaster management through the launch of Sentinel satellites. The Sentinel-2 Sat-

ellite Multispectral Imager covers 13 spectral segments (443–2190 nm), a width of 290 km, 

a

b

c

d e f

Xinjiang, China

Ebinur Lake Watershed

Water body of Ebinur Lake

Water sample point

Figure 1. The study area: (a) The Xinjiang Uyghur Autonomous Region in northwestern China; (b) The Ebinur Lake
Watershed with elevation and drainage information; (c) The water body and 16 sampling points at Ebinur lake extracted on
October 2017; (d) A typical view of Ebinur Lake with sunny weather; (e) Ebinur Lake surface water landscape; and (f) The
unique visual effect of Ebinur Lake.

3. Data and Methods
3.1. Data Collection
Water Quality Data Collection

The field investigations and water quality sample collections for this study were
conducted in October 2015. They were integrated with the main body of the experiment,
which included three parts of water sampling, including water surface spectral measure-
ment, GPS record location, and other auxiliary information. Spectroscopy was measured
by a FieldSpec®ProFR (wavelength range: 350–2500 nm), a portable ASD spectrometer
(Analytical Spectral Devices, Boulder, CO, USA). Water samples were sent to the laboratory
for analysis within a specified time frame.

The researchers collected a total of 16 water samples. For each sampling point, a
water sample collector was used to collect water samples at 0.5 cm depth, just below the
water surface, with 1000 mL of water samples collected at each sampling point. Samples
were stored in Teflon plastic bottles (for standard and easy transportation). Teflon plastic
bottles were washed several times with collected water before each collection. After the
samples were collected, they were immediately put into the benzene board incubator with
ice and transported to the laboratory where the water quality index was determined as soon
as possible.

3.2. Remote Sensing Data Collection

The European Space Agency (ESA) recently launched the Copernicus Project, which
is expected to improve the monitoring of forest conditions and land use, as well as enhance
disaster management through the launch of Sentinel satellites. The Sentinel-2 Satellite
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Multispectral Imager covers 13 spectral segments (443–2190 nm), a width of 290 km, with a
spatial resolution of 10 m (4 visible spectral segments and 1 near infrared spectral segment),
20 m (6 red edge spectral segments and short-wave infrared spectral segments), and
60 m (3 atmospheric correction spectral segments). The Sentinel-3 was launched on 16
February 2016 [24]. The Sentinel-3-3 satellite has two payloads: one is the OLCI (Sea-Land
Colorimeter) and the other is the SLSTR (Sea-Land Surface Temperature Radiometer). The
OLCI is an optical instrument designed to provide data continuity for ENVISAT’s MERIS.
The OLCI is a push-sweep imaging spectrometer that measures solar radiation reflected
from the Earth in 21 spectral bands with a ground-based spatial resolution of 300 m [25].
Multispectral remote-sensing data of the Sentinel-2 MSI and Sentinel-3 OLCI data were
obtained from the ESA (2 October 2021, https://Sentinel.esa.int/web/Sentinel/home).
In this study, only ENVI (ENVI5.4.1) soft data were used for preprocessing, including
radiometric calibration and FLAASH atmospheric correction.

3.3. Methods
3.3.1. Construction of Spectral Index

The information from the ground objects observed by remote sensing data is mainly
displayed by the difference and change of the spectral characteristics of the ground ob-
jects [26]. The ground features obtained by the different spectral channels have different cor-
relations with different elements or some characteristic states of ground features. However,
complex remote sensing data can only be represented by a single channel or multi-channel
spectral combination [11]. Therefore, further mining with very limited remote sensing
signals is necessary to represent ground object information through remote sensing data. In
this study, the combination of multi-spectral remote sensing data (such as linear and non-
linear combination, subtraction, multiplication, and division) was selected to achieve the
effective expression of spectral information and to lay a foundation for the qualitative and
quantitative evaluation of water body information. The optimal remote sensing indices (RI,
DI, and NDI) were selected for the estimation of WQI, in which multiband remote sensing
data were used as variable factors. Subsequently, a combined operation was conducted for
various bands and the sensitivity of WQI information, which was obviously better than
that of the single-band models, highlighting the advantages of using band combinations.
The remote sensing index of water quality in arid area was constructed by Formulas (1)–(3):

RI(i, j) =
Ri

Rji
(1)

RI(i, j) =

(
Ri − Rj

)
(Ri + Rj)

(2)

DI(i, j) = Ri − Rj (3)

where RI (i, j) is the ratio remote sensing index, NDI (i, j) is the water body normalized
remote sensing index, DI (i, j) is the water body difference remote sensing index, and i, j is
any band of the data of any two bands of the 350–2500 nm band.

3.3.2. Fluorescence Line Height

The statistical algorithm, based on the correlation between fluorescence line height
(FLH) and chlorophyll concentration, is called the fluorescence baseline height method. The
general algorithm is derived based on three wavelengths, including the central wavelength
which is the maximum value of chlorophyll fluorescence (around 685 nm, which varies
with the concentration of water components), and the other two baseline bands which are
located on both sides of the fluorescence peak, as shown in Figure 2 [27]. The fluorescence
line height (FLH) was calculated as follows: where C was the concentration of chlorophyll

https://Sentinel.esa.int/web/Sentinel/home
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on the water surface (unit: mg/m3); and FLH is the fluorescence baseline height (unit:
mW/(cm2* Sr *nm)). a, b, and k are the coefficients.

FLH = K +
a × C

1 + b × C
(4)
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Figure 2. The principle of fluorescent line height.

The calculation formula of FLH is shown in Formula (4), where λ2 is the central
wavelength, and λ1 and λ3 are the selected baseline wavelengths. L1, L2, and L3 are the
radiance values of corresponding wavebands (unit: mW/(cm2* Sr *nm)). The fluorescence
channel designs are 665, 681.25, and 709 nm.

FLH = L2 −
[

L1 + (L1 − L3)× λ2 − λ1
λ1 − λ3

]
(5)

3.3.3. Water Quality Index (WQI)

The WQI is a comprehensive water environment index, which can reasonably quantify
the degree of water pollution [28–30]. The method was first proposed by Horton and
Brown [19,20], leading to the development of many water quality indices thereafter [21,22].
WQI can effectively reflect the water quality according to research objectives. Consequently,
the WQI has been widely used in water environment assessments [31,32]. The smaller the
WQI, the better the water quality. The researchers chose the water quality index constructed
by Wang [11] for calculation. The index is constructed by using the measured water quality
data of the Ebinur Lake basin, which meet the needs of water quality evaluation in arid
areas. The water quality index scale is shown in Table 1.

Table 1. Water Quality Index scale.

Class Threshold Value Water Quality

I ≥50 Excellent water
II (50–100) Good water
III [100–200) Poor water
IV [200–300) Very poor water
V ≥300 Unsuitable for drinking
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3.3.4. SVM Model

The Support Vector Machine (SVM) is a kind of machine learning technology based
on the principle of structural risk minimization. It can solve the problems of small sample,
nonlinear, high dimension, and local minimum well. It has an excellent prediction and
generalization ability. The penalty factor C and the kernel function parameter σ in a
support vector machine directly affect the prediction accuracy of the model. According to
previous studies, the following three optimization algorithms can improve the accuracy
of the SVM algorithm: Cross-validation selecting the optimal parameter (CV_cg); Genetic
Algorithm (GA); and Particle Swarm Optimization (PSO) [33,34]. In this study, particle
swarm optimization was selected for parameter optimization, as Wang proved that particle
swarm optimization was more suitable for Ebinur Lake [11].

3.3.5. Estimate the Evaluation Index of the Model

In the establishment of the estimation model and the evaluation of accuracy, the fitting
coefficient R2, standard deviation SD, and root mean square error RMSE were selected
in this study. R2 is the determination coefficient. RPD refers to relative analysis error.
RPD < 1.4 indicates that the model is unreliable; 1.4 < RPD < 2 indicates that the model has
a general accuracy; and RPD > 2 indicates that the model has a high prediction ability [11].

4. Results and Analysis
4.1. Analysis of Spatial Variation Trend of WQI

Figure 3 shows the spatial distribution pattern of the WQI in Ebinur Lake, whereby the
maximum value of WQI is 5678.35 and the minimum value is 1066.65. Overall, the degree
of water pollution of Ebinur Lake is very high, and the salt content in Ebinur Lake is at a
high level as well. However, different parts of Ebinur Lake are polluted at differing degrees.
Specifically, the northwestern part of Ebinur Lake is the most polluted area. Similarly, the
water environment and ecological environment safety of the Junggar Basin in northern
Xinjiang are threatened by water quality issues. Therefore, efficient digital management of
water quality is particularly important to ensure water sustainability in these areas.
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4.2. Study on Reflectance Spectral Characteristics of Water in Ebinur Lake
4.2.1. Spectral Characteristics of Water Based on Sentinel 3 Data

To obtain the most sensitive and effective water quality monitoring information,
Sentinel 3 images were processed with the 1st, 2nd, and 3rd derivatives. However, the
pixel reflectance value obtained by the 3rd derivative processing was the same due to the
coarse spatial scale resolution. Thus, the pixel reflectance value was not considered in this
study. The fluorescence baseline height (FHL) of the watercolor sensor was one of the main
parameters examined in this study. The FHL calculated values in this paper are shown in
Figure 4.
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To intuitively study the remote sensing data mining by image derivatives algorithm,
we demonstrate the images of the fourth band (Oa4) of Sentinel 3 data with a central
wavelength of 490 nm, shown in Figure 3. The raw data show that the lowest reflectance is
0.237 and the highest is 0.447. In the wetlands around the lake, salt spills out and forms
salt shells on the surface due to the high degree of salinization. Therefore, the maximum
reflectivity is in the salt crust around the lake, and the land-water boundary is very clear,
but the difference between the land-water boundary is not as clear in the shallow lake
depth. In the first derivative data, the lowest reflectance is −0.0318 and the highest is
0.0168. The boundary between land and water disappears. In terms of color, the reflectance
of the surrounding mountains is in the same range as that of the center of the lake, but for
the lake as a whole, the spectrum of the water body is different. In the second derivative
data, the lowest reflectance is −0.05 and the highest is 0.0386. In terms of reflectance
values, the second derivative amplifies the difference in reflectance values better than
the first derivative. Although the boundary between water and land is blurred, it is still
distinguishable. The reflectance of the surrounding mountains is in the same range as
that of the center of the lake, but the spectral of the water body is different for the whole
lake. In the fluorescence line height (FLH) image, the lowest value is −5.41128 and the
highest value is 2.01296, where the reflectance value increases several times, the land-water
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boundary is clear, the color difference in the lake is obvious, and the spectral difference of
water body is distinguishable. The results show that the derivative algorithm can amplify
the reflectivity difference, but it cannot separate the land-water boundary.

4.2.2. Spectral Characteristics of Water Based on Sentinel 2 Data

We also used the derivative method to process Sentinel 2 data and showed the data of
the fourth band (B2) with a central wavelength of 490 nm in Figure 5. The raw data show
the reflectivity ranged from 0.0003 to 0.6848. Furthermore, the maximum reflectivity is in
the salt crust around the lake. The land-water boundary is very clear, but the difference
is not distinguishable in the shallow water around the lake. In the first derivative data,
the lowest reflectance is 0.00605 and the highest reflectance is 0.1872. The land-water
boundary is clear, with the surrounding mountains and land almost distorted, but the
land-water boundary cannot be clearly distinguished. In the second derivative data, the
lowest reflectance is −0.3296 and the highest reflectance is 0.3591. The second derivative
over the first derivative and the original image data magnify the difference in reflectivity
values. The boundary between land and water is very clear, and the small lakes in the
southwest can also be distinguished. The spectral difference between the surrounding
plain land and vegetation cover area is clear, but the spectral difference between the water
body in the lake is not significant. The third derivative image data shows that the lowest
reflectivity is −0.209225 and the highest reflectivity is 0.1361. In the reflectance value, the
difference of the reflectance value can be reduced by the third-order derivative image data
compared with the first-order derivative and second-order derivative image data. The
boundary between water and land is very clear.
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4.3. Relationship between Spectral Parameters and WQI
4.3.1. Relationship between WQI and Spectral Parameters from Sentinel 3 Data

(1) Relationship between Single Band Reflectance and WQI

The correlation coefficients between the WQI and the spectral reflectance form the
raw image, and the first and second order derivative spectral values of the Sentinel-3 OLCI
image data were calculated in this study. The results are shown in Figure 6. These correla-
tion coefficients were tested at the 0.01 significance level. As the derivative order increases,
the number of bands passing the significance test also increases, and the correlation coeffi-
cient also increases. The bands Oa4, Oa5, and Oa21 in the first-order differential passed
the significance test, with the bands Oa3, Oa4, Oa5, Oa11, and Oa21 in the second-order
differential also passing the significance test. The results further show that the differential
method is helpful in remote sensing spectral data mining.
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(2) Relationship between spectral index from Sentinel 3 data and WQI

To enhance the spectral difference between a water body and other ground objects,
we have constructed the water spectral index. In this study, NDI, DI, and RI were selected
as the combination methods of spectral indexes, and the relationship between the WQI
and spectral indexes was studied through Sentinel 3 data, as shown in Figure 7, providing
a basis for the further construction of a water quality evaluation model. The correlation
coefficient between the WQI and spectrum index of water is shown in Table 2.

We found that DI and NDI chose the same band in the same derivative order, such
as the 0 derivative. For RI, the highest correlation coefficient between the raw spectral
reflectance, derivative spectral reflectance value, and WQI is 0.701 at the 0-order derivative.
The combined band is Oa13 and Oa17, the lowest correlation coefficient is 0.602, and
the combined band is Oa5 and Oa20 at the second order derivative. For DI, the highest
correlation coefficient between the raw spectral reflectance, derivative spectral reflectance
value, and WQI is 0.705 at the 0-order derivative. The combined band is Oa3 and Oa8,
with the lowest correlation coefficient 0.602, and the combined band is Oa5 and Oa21
at the second order derivative. For NDI, the highest correlation coefficient between the
raw spectral reflectance, derivative spectral reflectance value, and WQI is 0.701 at the
0-order derivative. The combined band is Oa4 and Oa5, the lowest correlation coefficient is
0.592, and the combined band is Oa5 and Oa21 at the second order derivative. The study
found that the derivative algorithm for Sentinel 3 data did not significantly improve the
relationship between the spectral index and WQI, because the relationship between the
spectral index and water quality index (WQI) constructed from Sentinel 3 raw data was
the best.
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Figure 7. Relationship between WQI and spectrum index from Sentinel 3.

Table 2. Correlation coefficient between WQI and spectrum index of water.

Derivative
Order

RI DI NDI

Band R Band R Band R

0 Oa13/Oa17 0.701 Oa4 − Oa5 0.705 (Oa4 − Oa5)/(Oa4 + Oa5) 0.701
1 Oa5/Oa20 0.695 Oa3 − Oa8 0.662 (Oa3 − Oa8)/(Oa3 + Oa8) 0.622
2 Oa1/Oa3 0.602 Oa5 − Oa21 0.602 (Oa5 − Oa21)/(Oa5 + Oa21) 0.592

4.3.2. Relationship between WQI and Spectral Parameters from Sentinel 2 Data

(1) Relationship between single band reflectance and WQI

The correlation coefficients between the WQI and the spectral reflectance form the raw
image, and the first and second order derivative spectral values of Sentinel-2 MSI image
data were calculated in this study. The results are shown in Figure 5, in which correlation
coefficients were tested at the 0.01 significance level. The correlation coefficient curves of
Sentinel-2 MSI original spectral reflectance, derivative spectral values of order 1, 2, and 3,
and water quality index WQI calculation are shown in Figure 8.
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The relationships between the raw reflectance of Sentinel-2 MSI image data and WQI
was significantly correlated in four bands: B3, B5, B7, and B8b. The number of bands
passing the significance test increased and the correlation coefficient also increased, with
the derivative order increasing as well. The first order derivative was significant in the
bands B3, B5, B7, and B8b, and the second order derivative was significant in the bands
B3, B4, B5, B7, and B8b. The Order 2 derivative was significant in the bands B3, B5, B6, B7,
and B8b. Although the bands’ number of significance tests passed varied, the trend of the
curves from the phase values in Figure 8 was consistent.

(2) Relationship between Spectral Index of Sentinel 2 Data and WQI

In this study, NDI, DI, and RI were selected as spectral indices, and the relationship
between the spectral index and WQI was explored, as shown in Figure 9 and Table 3. For
RI, the relationship between the RI spectral indices and the WQI was significant at the
first-order derivative, with a R value of 0.763. For DI, the relationship between the DI
spectral indices and the WQI was significant at the second-order derivative, with a R value
of 0.778. For NDI, the relationship between the NDI spectral indices and the WQI was
significant at the first-order derivative, with a R value of 0.776. We found that the derivative
algorithm of Sentinel 2 MSI data improves the relationship between the spectral index
and WQI.

4.4. Verification and Precision Analysis of Water Quality Estimation Model
4.4.1. Validation of WQI Estimation Model by Sentinel 2 Data

We used 15 groups of field sample data to train the SVR model, input images of
Ebinur Lake to calculate WQI, and then extract the WQI of sampling points as the predicted
WQI for model precision analysis. The predicted WQI is represented by WQIP, and the
measured WQI is represented by WQIM. The relationship between the two is shown in
Table 4. We found that the optimal model was Sentinel 2 MSI data based on the third
derivative data. The R2 and RPD of the model were 0.81 and 1.86, respectively. These
results indicate that the model has a strong stability.

Table 3. Correlation coefficient between WQI and spectrum index of water.

Derivative
Order

RI DI NDI

Band R Band R Band R

0 B2/B4 0.706 B5 − B6 0.741 (B2 − B4)/(B2 + B4) 0.704
1 B3/B5 0.763 B3 − B6 0.763 (B3 − B5)/(B3 + B5) 0.776
2 B3/B4 0.741 B4 − B11 0.778 (B3 − B4)/(B3 − B4) 0.731
3 B5 − B8 0.736 B5 − B7 0.741 (B4 − B5)/(B4 − B5) 0.735
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Table 4. Summary of relationship between the measured values and predicted values.

Order X Y
PSO-SVR

R2 RMSE SD RPD Slope N

0 WQIM WQIP 0.69 344.67 503.07 1.45 0.73 16
1 WQIM WQIP 0.73 302.18 492.36 1.62 0.77 16
2 WQIM WQIP 0.79 245.69 398.06 1.62 0.81 16
3 WQIM WQIP 0.81 213.41 398.72 1.86 0.84 16

4.4.2. Validation of WQI Estimation Model Supported by Sentinel 3 Data

Similarly, we used 15 groups of field sample data and corresponding Sentinel 3 OLCI
data for SVR model training, to input images of Ebinur Lake to calculate WQI, and then
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to extract the WQI of sampling points as the predicted WQI for precision analysis. The
predicted WQI is represented by WQIP, and the measured WQI is represented by WQIM.
The relationship between the two is shown in Table 5. The best model was the fluorescence
baseline data of Sentinel 3 OLCI data. The R2 and RPD of the model were 0.80 and 1.79,
respectively, showing that the model has a strong stability.

Table 5. Summary of relationship between the measured values and predicted values.

Order X Y
PSO-SVR

R2 RMSE SD RPD Slope N

0 WQIM WQIP 0.76 233.14 412.38 1.76 0.76 16
1 WQIM WQIP 0.73 342.72 521.09 1.52 0.72 16
2 WQIM WQIP 0.69 354.47 519.84 1.46 0.71 16

FLH WQIM WQIP 0.80 200.78 359.28 1.79 0.84 16

4.5. Spatial Distribution Map of WQI in Ebinur Lake

A spatial distribution map of WQI based on an optimal model constructed from
Sentinel 2–3 derivative data is presented, showing that the water quality in thenorthwest
of Ebinur Lake is the lowest in that region. The northwest of Ebinur Lake is eroded by the
Alashan Pass gale, and the water depth is less than 1 m. The water quality in the northeast
of Ebinur Lake was the second highest, but the water quality was deteriorated by the
salinization of large saline-alkali land and soil around the lake. The deterioration of water
quality in the northeast of Ebinur Lake is closely related to human activities in the north,
which is one of the largest halogen insect production bases in China. The distribution of
WQI in Ebinur Lake is shown in Figure 10.
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5. Discussion
5.1. Water Quality Index (WQI) as a Potential Proxy for Water Environment

Overall, the results of this study are very indicative, and in agreement with [11] our
prediction, proving that remote sensing is a very useful potential tool for water quality
monitoring. However, it should be noted that the uncertainty of the WQI remote sensing
monitoring model for lake water quality was analyzed from the perspective of time and
space. (1) In terms of time, this experiment was limited to the Ebinur Lake watershed during
the dry season, aiming to clarify the relationship between WQI and spectral. Although
WQI has seasonal variability, WQI also has great variability in the same period and within
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the same watershed. Therefore, the precision of the WQI model is not limited by season
and has its portability in time. (2) The spatial WQI is mainly affected by water in the
watershed, whereby spectral also reflects the integration of the whole water environment.
The WQI estimation model was established based on the relationship between the spectral
index and WQI. In the space under the influence of the study area, portability needs further
validation for the model. However, the Ebinur Lake watershed is a typical area of arid area
in Central Asia, and its model has certain portability in Central Asia. The extension of a
wider range needs further verification. In short, it should be noted that the WQI estimation
model is spatially uncertain.

5.2. Spectral Derivative Method and Spectral Indices as Useful Tools for Remote Sensing Modeling
of Water Quality

To better mine the information of spectral data from remote sensing, we introduced
the spectral derivative method to realize the extraction of spectral information of a water
body. The results show that the spectral derivative method can improve the relationship
between water body spectral and WQI, whereby the R2 value of 0.6 is at the most sensitive
wavelengths. The derivative technology is not only a powerful tool for analyzing spectra,
but also improves multiple collinearity problems considerably [35]. The derivative tech-
nology has a strong effect on the peak of the micro spectrum; therefore, it can be used to
improve the spectral resolution and sensitivity of the analysis. To some extent, it has the
function of removing noise. Fractional derivatives can reduce the intense peak deformation
and effectively retain the structure of the original curve, which is more advantageous than
other integer derivatives.

Spectral indices are useful for remote sensing modeling of water quality: the optimal
remote sensing indices (RI, DI and NDI) were selected for the estimation of WQI, in
which multiband remote sensing data were used as variable factors; a combined operation
was conducted for various bands, and the sensitivity of WQI information, which was
obviously better than that of the single-band models, highlights the advantages of using
band combinations. Fernández-Buces et al. used a combined spectral response index to
map the soil salinity of bare soil and vegetation. They found a correlation between the
normalized difference vegetation indices (NDVI) and electrical conductivity [36]. Therefore,
we applied this method, as well as a formula that uses the DI, RI, and NDI of the reflectance
values, to establish a new spectral index for estimating WQI.

6. Conclusions

In this paper, the Ebinur Lake basin was selected as the study area, with the aims of
revealing the response between water quality index and water body reflectivity, as well as
to describe the relationship between water quality index and water reflectivity. A remote
sensing monitoring model of WQI was further established, and the water quality of the
lake was evaluated by remote sensing. The results indicate:

(1) A Water Quality Index (WQI), based on remote sensing techniques, effectively evalu-
ated the water environment in Ebinur Lake. The Water quality of Ebinur Lake is the
lowest, with a WQI value as high as 4000;

(2) To better mine the information of spectral data from remote sensing, we introduced
the spectral derivative method to realize the extraction of spectral information from a
water body. The results show that the spectral derivative method can improve the
relationship between the water body spectral and WQI, whereby the R2 value of 0.6
is at the most sensitive wavelengths;

(3) When multi-source spectral data were integrated through the spectral index (DI, RI,
and NDI) and fluorescence baseline, the correlation between the spectral sensitivity
index and WQI was found to be greater than 0.6 at the significance level of 0.01;

(4) The distribution map of WQI in Ebinur Lake was obtained by the optimal model,
which was constructed based on the third derivative data of Sentinel 2 data. Results
indicate that the water quality in the northwest of Ebinur Lake was the lowest in the
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region. In conclusion, remote sensing techniques were found to be highly effective
and lay a foundation for water quality detection in arid areas.
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