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Abstract: River flood routing is one of the key components of hydrologic modeling and the topo-
graphic heterogeneity of rivers has great effects on it. It is beneficial to take into consideration
such spatial heterogeneity, especially for hydrologic routing models. The discrete generalized Nash
model (DGNM) based on the Nash cascade model has the potential to address spatial heterogeneity
by replacing the equal linear reservoirs into unequal ones. However, it seems impossible to ob-
tain the solution of this complex high order differential equation directly. Alternatively, the strict
mathematical derivation is combined with the deeper conceptual interpretation of the DGNM to
obtain the heterogeneous DGNM (HDGNM). In this work, the HDGNM is explicitly expressed as
a linear combination of the inflows and outflows, whose weight coefficients are calculated by the
heterogeneous S curve. Parameters in HDGNM can be obtained in two different ways: optimization
by intelligent algorithm or estimation based on physical characteristics, thus available to perform
well in both gauged and ungauged basins. The HDGNM expands the application scope, and becomes
more applicable, especially in river reaches where the river slopes and cross-sections change greatly.
Moreover, most traditional routing models are lumped, whereas the HDGNM can be developed
to be semidistributed. The middle Hanjiang River in China is selected as a case study to test the
model performance. The results show that the HDGNM outperforms the DGNM in terms of model
efficiency and smaller relative errors and can be used also for ungauged basins.

Keywords: river flood routing; semidistributed model; spatial heterogeneity; ungauged basins

1. Introduction

River flood routing is an important aspect in floodplain management, which was a
subject of active research for many years. The propagation of flood waves in a channel can
be represented by the Saint-Venant equations. However, no analytical solution is available
for the Saint-Venant equations, the numerical or simplified hydraulic and hydrologic
routing methods are usually used in practice. The detailed channel geometry information
about the cross-sectional shape and the bottom slope are often required in the hydraulic
models, which are difficult to obtain in some rivers [1]. Hence, the hydraulic methods may
show limitations in application in these rivers. In contrast, hydrologic methods seem more
appealing due to its simple calculation process and quick calculation times. Moreover,
similar results were shown in some cases using the different methods of hydraulic and
hydrologic [2,3]. As a result, the simplified hydrologic routing methods such as Muskingum
method [4] and IUH method [5] are used more often in the study. The Muskingum method
proposes the proportional relationship between the river storage and the weighted average
of inflow and outflow [6]. Cunge [7] then extended the Muskingum method to be a
physically based model, popularly known as the Muskingum-Cunge method, by using
physical-numerical principles to calculate the routing parameters. The Muskingum and
Muskingum-Cunge methods attracted extensive attention since they were proposed, and
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they were constantly improved and innovated in subsequent studies in some aspects,
including parameter optimization and method application [8,9].

Another widely used hydrologic method for flood routing is instantaneous unit
hydrograph (IUH) [5,10,11]. Although IUH proposed by Nash [12] was initially used in
rainfall-runoff modeling, it can also be employed for flood routing in rivers and channels,
which was done independently by Kalinin and Milyukov [13]. Since then, many models’
proposals also provided a broader idea for the application of IUH method on flood routing.
Nash’s IUH can be obtained by solving the nth order differential equation of a linear system
with the zero initial conditions [14]. However, zero initial conditions represent that the
linear reservoirs in the Nash cascade model are empty at the initial time, or equivalently
the initial river storages are empty when IUH is applied in river flow routing, which does
not match the fact. To account for the influence of the initial state, Szollosi-Nagy [15]
derived a discrete linear cascade model (DLCM) formulating a state-space description of
the Nash cascade model in a matrix form, whereby the initial storage of the river system
should be estimated separately via observability analysis [16]. Szilagyi [17] then extended
this model to a sample-data system framework and made some modifications to make it
more applicable [18,19]. Yan et al. [5] exactly solved the nth order differential equation
of the Nash cascade model with the same nonzero initial condition and obtained the
generalized Nash model (GNM) with a simpler expression, in which the initial state was
directly included and should not be estimated separately anymore. To make the GNM be
applied easily to the sample-data system, Yan et al. [20] further discretized its analytical
expression by introducing a variable Sn-curve and obtained the discrete generalized Nash
model (DGNM). The DGNM expresses the outflow as a linear combination of the old water
stored in the river reach and new water from the upstream inflow. Moreover, Rodriguez-
Iturbe and Rinaldo [21] developed the Geomorphological-IUH (GIUH), which provided a
theoretical framework to the wide application of IUH. In their review of the hydrological
theory of the hydrological response, Rinaldo and Rodriguez-Iturbe [22] showed that the
probability density function of travel time in flow paths of the hydrologic is similar to the
Hayami [23] solution of the Diffusive Wave Equation [24], which was an approximation of
Saint-Venant equations.

Hydrologic routing approach has made great contributions to the development of
conceptual hydrological models and is still a widely used approach in river flood rout-
ing. However, most hydrologic routing methods are lumped and fail to reflect the spatial
heterogeneity of the river reach. In fact, the hydrological processes usually exhibit sub-
stantial spatial heterogeneity. That might be due to the spatial heterogeneity of rainfall
and underlying surface. Spatial heterogeneity of a river basin increases the predicting
complexity of streamflow using hydrological models [25], and is the key factor restricting
but also promoting the development of hydrologic models. To better describe such spatial
heterogeneity, a novel approach combining conceptual interpretation of the DGNM into
mathematical derivation is proposed in this work to address the spatial heterogeneity
in DGNM. In particular, in Section 2, the heterogeneous IUH and S-curve are first intro-
duced, and then they are implemented in the DGNM based on its conceptual interpretation.
Section 3 illustrates the application of the proposed model to the middle Hanjiang River in
China. Section 4 is devoted to the results and discussion. Section 5 presents conclusions of
this paper.

2. Methodology
2.1. Heterogeneous IUH and S-Curve

In Nash’s IUH, the watershed storage is conceptualized as a cascade of equal linear
reservoirs. If the inflow I(t) = δ(t), where δ(t) is the Dirac delta function, then the down-
stream outflow O(t) is the instantaneous unit hydrograph un(t), and the outflow of each
reservoir is ui(t) (i = 1, 2, . . . , n). If the inflow I(t) = 1 all the time, then the downstream
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outflow O(t) is the corresponding S-curve Sn(t), and the outflow of each reservoir is Si(t),
which can be calculated as follows:

Si(t) = 1− exp
(
−t
K

)i−1

∑
j=0

1
j!

(
t
K

)j
(1)

The storage capacity of a basin is affected by geographical features, exhibits spatial
heterogeneity, and affects the flow routing process. To account for such spatial hetero-
geneity, Li et al. [26] deduced the IUH with different storage parameters, here we call it
heterogeneous IUH (HIUH) to distinguish with Nash’ IUH:

un(t) =
n

∑
j=1

Kn−2
j

n
∏

i=1,i 6=j

(
Kj − Ki

) e
− t

Kj (2)

where Ki is the storage parameter of the i-th reservoir. Correspondingly, the heterogeneous
S-curve formed by HIUH is [26]

Sn(t) =
t∫

0

un(t)dt =
n

∑
j=1

Kn−1
j

n
∏

i=1,i 6=j

(
Kj − Ki

)(1− e
− t

Kj

)
(3)

The HIUH is a more accurate conceptualization of the watershed storage routing
and is a theoretical expansion of the Nash’s IUH. With consideration of the spatial het-
erogeneity in the storage routing, HIUH is especially applicable to basins with large
topographic changes.

2.2. Conceptual Interpretation of the DGNM

The DGNM is developed on the basis of the Nash’s IUH, in which the river flow rout-
ing system is conceptualized as a cascade of n equal linear reservoirs, then the downstream
outflow is calculated by a weighting of inflows and outflows at certain times, as expressed
by the following DGNM [20]:

Ot+1 =
n−1

∑
j=0

j

∑
i=0

(−1)i

j!
Ci

j
(
1− Sn−j

)
Ot−i + Sn It +

(
1− K

∆t

n

∑
i=1

Si

)
∆It+1 (4)

where Ci
j is the combinatorial calculator, Ot±i represents the downstream outflow at time

t± i∆t; ∆t is the time interval; It represents the upstream inflow at time t; ∆It+1 represents
the inflow increment during the time interval [t, t + ∆t]; and Si is the abbreviation of Si(∆t)
which is defined by Equation (1).

Equation (4) shows that the downstream outflow calculated by the DGNM is com-
posed of three parts. The first part is the recession flow of the water stored in the channel,
which is the superposition of the flow formed by the current storage of each reservoir after
it is routed by the subsequent reservoirs. The second part is the outflow generated by the
current inflow It which is routed by river channel, or equivalently by a series of n cascade
linear reservoirs. According to the definition of S-curve as well as the storage-discharge
relation of the linear reservoir, KSi represents the water stored in each reservoir for a
continuous unit inflow, and ∑n

i=1 KSi/∆t represents the ratio of water stored in the channel
during the period ∆t. Then, 1−∑n

i=1 KSi/∆t represents the ratio of water released from the
channel. So, the third part (1−∑n

i=1 KSi/∆t)∆It+1 is the outflow generated by the inflow
increment during the time interval [t, t + ∆t] after the channel routing. In summary, the
downstream outflow is generated by the old water stored in the river channel and the new
water from upstream inflow. Part of the new water flows out of the downstream section
and becomes one part of the outflow, and the other part remains in the river channel to
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supplement the old water. The old water recedes and becomes the other component of the
outflow. In such circulation, the outflow process of a river reach is formed. Through the
conceptual interpretation of the DGNM, the downstream outflow is physically generated
by the old water stored in the river reach and new water from the upstream inflows, and
formally expressed as a linear combination of the inflows and outflows, whose weight
coefficients are calculated by the S-curve, which makes possible to address the spatial
heterogeneity in the DGNM by incorporating the heterogeneous S-curve.

2.3. Derivation of the Heterogeneous DGNM

To account for the spatial heterogeneity in river flow routing, the river system is
conceptualized as a cascade of unequal linear reservoirs, as shown in Figure 1. Structurally,
it is similar to that of HIUH in Li et al. [26]. The main difference is that as a river flow routing
approach, the heterogeneous DGNM (HDGNM) not only considers the contribution of the
new water from upstream but also considers the contribution of the old water stored in
river reach, which is a considerable component for river flow routing.
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Figure 1. Schematic of HDGNM.

As illustrated in Figure 1, there are two numbering systems, named as “up-numbering
system” and “down numbering system”, respectively. In the up-numbering system, reser-
voirs are numbered from upstream to downstream, denoted by superscript “u”. In the
down-numbering system, reservoirs are numbered from downstream to upstream, denoted
by superscript “d”. The outflow and storage of each reservoir are Ou

i or Od
n−i+1 and Wu

i or
Wd

n−i+1, respectively. The linear relationship between outflow and storage of each reservoir
is given in Figure 1.

The conceptual interpretation of the DGNM shows that the downstream outflow is
generated by the old water stored in the channel and the new water from upstream inflow,
denoted by Oold and Onew, respectively, as

Oold
t+1 =

n−1

∑
j=0

j

∑
i=0

(−1)i

j!
Ci

j

(
1− Su

n−j

)
Ot−i (5)

Onew
t+1 = Su

n It +

(
1− K

∆t

n

∑
i=1

Su
i

)
∆It+1 (6)

For the unequal linear cascade system, if the inflow I is a continuous unit inflow, then
the outflow of each reservoir is Ou

i = Su
i . The term KiSu

i , as interpreted in the DGNM,
represents the water stored in each reservoir, and 1−∑n

i=1 KiSu
i /∆t represents the ratio of

water released from the channel during the period ∆t. Then, (1−∑n
i=1 KiSi/∆t)∆It+1 is

the outflow generated by the inflow increment during the time interval [t, t + ∆t] after the
channel routing. According to the conceptual interpretation of the DGNM, the outflow
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generated by the new water (upstream inflow) is composed by the responses of constant
inflow It and its increment, i.e.,

Onew
t+1 = Su

n It +

(
1− 1

∆t

n

∑
i=1

KiSu
i

)
∆It+1 (7)

The comparison between Equations (6) and (7) indicates that Onew can be obtained
by replacing the storage parameter K and S-curve in Equation (6) with variable Ki and
heterogeneous S-curve, respectively, in the unequal linear reservoir system. Not like Onew,
K can be replaced by Ki directly. In the expression of Oold, K is not explicit in the equation,
but implicit in the calculation of coefficients of Sn-j. Hence, Oold cannot be obtained by
directly replacing K with Ki. For the sake of simplicity, down numbering system is used
in deriving the calculation of Oold. In the down numbering system, the storage routing
equation of the j-th reservoir can be obtained from the water balance equation:

Kd
j

dOd
j (t)

dt
= Od

j+1(t)−Od
j (t) (8)

Equation (8) demonstrates that the outflow of each reservoir at the current time is
as follows:

Od
1(t) = O(t)

Od
2(t) = O(t) + Kd

1O′(t)

Od
3(t) = O(t) +

(
Kd

1 + Kd
2

)
O′(t) + Kd

1Kd
2O′′ (t)

Od
j (t) = O(t) +

j−1

∑
p=1

j−1

∏
rp>···>r1=1

(
Kd

r1
· · ·Kd

rp

)
O(p)(t) (9)

Based on the physical interpretation of the GNM [5], the recession flow of the current
water storage in river channel is the superposition of the recession flow generated by the
current water storage in each reservoir. According to the conception of linear reservoir,
the current water storage of the j-th reservoir is Kd

j Od
j (t), which can be treated as an

instantaneous inflow into each reservoir, then the outflow at the end of the period generated
by each reservoir is Kd

j Od
j (t)u

d
j (∆t). Based on the principle of superposition, Oold is the

outflow generated by the current water storage of all reservoirs, hence

Oold
t+1 =

n

∑
j=1

Kd
j Od

j (t)u
d
j (∆t)=

n

∑
j=1

Kd
j ud

j (∆t)

O(t) +
j−1

∑
p=1

j−1

∏
rp>···>r1=1

(
Kd

r1
· · ·Kd

rp

)
O(p)(t)

 (10)

The formula shows that the recession process can finally be expressed as a linear
combination of 0~(n − 1) derivatives of the current time O(t), which is

Oold
t+1 =

n−1

∑
p=0

ApO(p)
t (11)

where Ap(p = 0, · · · , n− 1) is the coefficient of p-th order derivative of O(t), then we have
(detailed derivation is provided in Appendix A)

Ap =


1− Sd

n, p = 0
n−1
∑

rp>···>r1=1

(
Kd

r1
· · ·Kd

rp

)(
Sd

rp − Sd
n

)
, p > 0 (12)

The calculation of Ap is a n-Choose-p combination problem. Define a set A =(
Kd

1 , · · · , Kd
n

)
, select p elements and multiply them by

(
Sd

i − Sd
n

)
(i = p, . . . ,n), respec-
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tively. Then, the summation of all these combinations is Ap. Though Ap is derived in
the down numbering system, it still holds true for the up-numbering system because this
combination problem is irrelevant to the numbering order. Hence, Ap can also be calculated
by directly replacing the superscript “d” with “u” in the up-numbering system, ensuring
that Oold and Onew are calculated under the same numbering system. To further discretize
the term Oold in Equation (11), the derivatives of O(t) are approximated by the following
backward finite difference method.

O(p)
t =

1
∆tp

p

∑
i=0

(−1)iCi
pOt−i (13)

Substituting Equations (12) and (13) into Equation (11), we obtain

Oold
t+1 =

n−1

∑
p=0

p

∑
i=0

(−1)i

∆tp Ci
p ApOt−i (14)

Combined with the conceptual interpretation of the DGNM, we have

Ot+1 =
n−1

∑
j=0

j

∑
i=0

(−1)i

∆tj Ci
j AjOt−i + Sn It +

(
1− 1

∆t

n

∑
i=1

KiSi

)
∆It+1 (15)

Equation (15) is the calculation formula of HDGNM, and it is also the discrete solution
of linear cascade model with unequal reservoirs under nonzero initial conditions. Com-
bined conceptual interpretation of the DGNM into mathematical derivation, the HIUH
or heterogeneous S-curve with a consideration of the spatial heterogeneity in the storage
routing, was successfully incorporated in the DGNM. Hence, the HDGNM is applicable to
the river reach with large changes of cross-sections and slopes.

2.4. Parameter Estimation Method

Parameter n and Ki in HDGNM can be obtained in two different ways, one is optimized
by intelligent algorithm, another is estimated on the basis of the reliable relationships
between model parameters and physical characteristics.

The SCE-UA algorithm is a successfully proven method in global optimization that
was originally developed at the University of Arizona [27] and was extensively used in
hydrological model calibration over the past several decades. This algorithm combines
complex procedures with the concepts of competition evolution, complex shuffling, and
controlled random search to acquire a global optimal estimation. The main calculation steps
of SCE-UA algorithm can be seen in Duan et al. [27]. Comparisons with other algorithms
such as the Genetic Algorithms (GA) and Simulated Annealing (SA) suggest the SCE-UA
could obtain a more robust and reliable solution especially in terms of identification and
calibration problems [28]. This algorithm is thus used to optimize the model parameters.
Moreover, the root mean square error (RMSE) is a measure regularly used in model
performance evaluations [29], thus we selected it as the objective function.

Besides, both parameters n and Ki in HDGNM have clear physical interpretations, thus
possible to determine the model parameters under insufficient observed data. Parameter
n is the number of linear reservoirs or subreaches for simplicity. The storage coefficient
Ki has a physical meaning of travel time through a subreach, which can be estimated as
follows [30].

Ki =
Li
ci

(16)

where Li is the reach length, and ci is the celerity, which can be calculated by

ci = mvi (17)

where vi is the average velocity, and m is a factor relating average velocity and celerity.
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The value of m is 5/3 when applying Manning’s flow resistance formula to a rectan-
gular channel cross section. For a channel with a wide-shallow section as in a river, the
average velocity can be calculated approximately by the Manning equation [31]

vi =
1

nM
h

2
3
i J

1
2
i (18)

where nM is the roughness coefficient, h is the average depth, and J is the bed slope.

3. Application

To test the applicability of the HDGNM, the river reach between gauging stations
Huangjiagang and Xiangyang in the Hanjiang River of China is selected as a case study.
Hanjiang River is one of the most important tributaries of the Yangtze River of China. The
Danjiangkou reservoir, located on the upper Hanjiang River, is the water source of the
middle route of China’s south-to-north water transfer project. Since the opening of the first
phase of the middle route on 12 December 2014, the Danjiangkou reservoir has supplied
more than 40 billion cubic meters of water to drier north areas in China, thereby benefiting
79 million people in Beijing, Tianjin, Hebei province, and Henan province. The studied
river reach with a length of 105 km is located in the middle Hanjiang River, where the
Huangjiagang hydrological station is located at 6 kms downstream of the Danjiangkou dam
site and serves as the outflow control station of the Danjiangkou reservoir. The interval
basin area between Huangjiagang and Xiangyang is 8044 km2. The sketch map of the
middle-Hanjiang River and the studied river reach are shown in Figure 2. The studied
river reach is located in the hilly and plain areas, where hills, terraces, artificial narrows,
and wide valleys distribute alternatively, and showing obvious lotus root node shape
on the plane. The main channels in wide sections have large swings and many beaches,
but become single in narrow sections, which makes a large change of the shape in the
sections along the river reach, as shown in Figure 2. Based on the location of cities, the
river reach can be divided into four sub-reaches [32], namely, Huangjiagang-Guanghua
(H-G), Guanghua-Taipingdian (G-T), Taipingdian-Niushou (T-N), and Niushou-Xiangyang
(N-X). The mean slopes of these four sub-reaches are 1.76 × 10−4, 2.76 × 10−4, 2.21 × 10−4,
and 2.14 × 10−4, respectively. The channel slope of the studied river reach changes largely,
especially from subreach H-G to subreach G-T. In short, the topography of the studied river
reach varies greatly.

The runoff data in flood season of the Huangjiagang and Xiangyang hydrological sta-
tions from the year 1974 to 2011 were collected from the Bureau of Hydrology, Changjiang
Water Resources Commission in China. Almost all hydrologic routing methods are based
on the water balance equation of the river reach. A large lateral inflow would break this
balance and influence the accuracy, so low proportion (less than 10% in this study) of the
lateral inflows is required in selecting flood events, and the difference between the total
outflow and total inflow for each event is proportionately distributed to the upstream
inflow. Ten flood events fulfilling these criteria were selected to test the proposed model.
The time step of the HDGNM is fixed to 3 h, thus the flood records were interpolated into a
time interval of 3 h.

The selected 10 flood events were further partitioned into calibration data and valida-
tion data. The calibration data was used to calibrate the model parameters. The validation
data were used to assess the out-of-sample performance. We used 8 flood events observed
during the year 1975 to 2005 for calibration and the other 2 flood events happened in 2007
and 2011 for validation.
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Figure 2. Sketch map of middle-Hanjiang River and studied river reach.

The goodness-of-fit between the computed and observed hydrographs was quanti-
tatively and less subjectively tested using the model evaluation metrics. These metrics
were used to measure the deviations of different hydrograph components, such as the peak
flow rate and hydrograph. Percentage errors in computed and observed peak flow rates
were usually determined using the relative error of peak discharge (EP) which is defined as
follows [33]:

EP =

∣∣∣Op,est −Op.obs

∣∣∣
Op.obs

× 100% (19)

where Op,est and Op,obs are the estimated and observed peak discharge, respectively.
The EP statistic was used to assess the model performance in peak flow rates, ignoring

the shape of the computed and observed hydrographs. To overcome this, Nash and
Sutcliffe [34] proposed a dimensionless coefficient of model efficiency (ENS), given as:

ENS = 1−

T
∑

t=1
(Ot,est −Ot,obs)

2

T
∑

t=1
(Ot,obs −Ot)

2
(20)

where Ot,est and Ot,obs are estimated and observed discharge at time t, respectively. Ot
represents the mean of observed discharge. The ENS statistic provides a well-accepted
measure of fit between computed and observed hydrographs, its value increasing toward
unity as the fit of the simulated hydrograph progressively improves.

Moreover, Percent bias (PBIAS) is usually used in combination with Nash-Sutcliffe
efficiency to evaluate the robustness of simulated data. It quantified the deviations between
the simulated data and the observed data; low-magnitude values indicate an accurate
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model simulation, and 0.0 is the optimal value. A positive value indicates that the model
underestimates the bias, while a negative value indicates that the model overestimates the
bias [35]. It can be calculated as follows:

PBIAS =

T
∑

t=1
(Ot,obs −Ot,est)

T
∑

t=1
(Ot,obs)

× 100% (21)

where PBIAS is the bias of the evaluated data, expressed as a percentage.

4. Results and Discussion

The comparison between the DGNM and other models, including the widely used
Muskingum method and dynamic wave model (DWM), was made in Yan et al. [20]. The
results show that the DGNM can provide comparable (to DWM) or even better results (to
Muskingum), thus the DGNM was selected as a performance benchmark. The SCE-UA
algorithm was employed to obtain the parameters of these two models, and the results of
the optimization were that n = 3, K = 3.51 h for the DGNM and n = 3, K1 = 1.58 h, K2 = 8.80 h,
K3 = 1.59 h for the HDGNM. The numbers of the linear reservoirs are both expected to be
three in these two models. The difference lies in the storage parameter K. In the DGNM,
the three linear reservoirs are equivalent, which is essentially a homogenization of the
topographical differences of the subreaches. However, in the HDGNM, two of the three
linear reservoirs with K1 = 1.58 h and K3 = 1.59 h are approximately the same, and the other
one is quite different from the two with a value of 8.80 h. Therefore, the HDGNM can more
objectively reflect the influence of topographical differences on the storage routing of the
river channel, and thus can improve the accuracy of the flood routing.

To further test the validity of the parameter calculation from calibration, the verifica-
tion experiment has also been carried out. The other 2 observed flood events in the year
2007 and 2011 were adopted to verify the calibration results. The accuracy evaluation
results of these two models in calibration and validation periods were both shown in
Table 1.

Table 1. Accuracy evaluation results of DGNM and HDGNM.

Period Date
DGNM HDGNM (Optimized) HDGNM (Estimated)

EP (%) ENS PBIAS (%) EP (%) ENS PBIAS (%) EP (%) ENS PBIAS (%)

Calibration

Oct-1974 0.91 0.9930 0.30 4.27 0.9861 1.05 2.60 0.9905 −0.09
Sep-1975 3.69 0.9918 −0.91 2.87 0.9950 −0.03 3.01 0.9812 −0.92
Jul-1980 1.62 0.9043 −2.20 1.08 0.9284 −1.67 0.20 0.8406 −1.62

Aug-1981 5.26 0.9699 −0.77 3.47 0.9747 −0.38 6.14 0.9632 −0.44
Sep-1981 7.82 0.9655 −1.77 4.45 0.9806 −1.02 9.43 0.9363 −0.56
Sep-1984 0.99 0.9774 −2.15 1.78 0.9860 −1.52 2.29 0.9576 −1.31
Sep-2003 2.54 0.9655 1.45 0.77 0.9715 1.44 2.03 0.9476 1.69
Oct-2005 8.72 0.9845 0.14 0.63 0.9963 0.26 12.20 0.9666 0.51
Average 3.94 0.9690 −0.74 2.42 0.9773 −0.23 4.74 0.9480 −0.34

Validation
Jul-2007 0.62 0.9707 0.05 0.66 0.9775 0.06 5.11 0.9471 0.05
Sep-2011 2.48 0.9889 −1.53 0.32 0.9928 −1.42 2.32 0.9825 −1.31
Average 1.55 0.9798 −0.74 0.49 0.9852 −0.68 3.72 0.9648 −0.63

In calibration period, the average values of EP, ENS, and PBIAS were 3.94%, 0.9690,
and −0.74% for DGNM, respectively. Compared with that of the DGNM, the HDGNM
with optimized parameters made some improvements; the average value of EP reduced
to 2.42%, that of ENS increased to 0.9773, and the average magnitude value of PBIAS
was also reduced to −0.23%. The similar improvements can be found in the validation
period with values from 1.55–0.49% for EP, from 0.9798–0.9852 for ENS, and from −0.74
to −0.68% for PBIAS, respectively. Except for the October 1974 flood event, the other
9 flood events were improved in different levels. Visual comparisons of the computed and
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observed hydrographs can provide a quick and simple means of assessing the performance
of the proposed model, as shown in Figure 3. The HDGNM with a consideration of the
topographical heterogeneity of the river reach, makes the computed hydrographs much
closer to the measured hydrographs, especially near the flood peaks. The adaptability of
the DGNM was increased when the spatial heterogeneity is accounted for, and thus the
HDGNM is more applicable, especially in the river reaches where the river slopes and
cross-sections change greatly.

In the above comparison, parameters were optimized by intelligent algorithm, which
usually achieves the best accuracy. However, the optimization technique is more applicable
to flood routing in gauged basins due to its requirement of large amounts of observed
data [36]. In case where any measurements are not available, sufficiently long streamflow
time series for parameter calibration is typically not available, leading to difficulties to
predict flow characteristics [37]. One common way to deal with this problem is the re-
gionalization of model parameters according to the physical characteristics of basins [38].
The interpretation of HDGNM parameters in terms of the physical characteristics extends
the applicability of the model to ungauged basins. Both parameters n and Ki in HDGNM
have clear physical interpretations, and thus can be estimated in terms of the physical
characteristics including reach length, average depth, and bed slope, as shown in Equations
(18–20). The reach lengths and bed slopes of four sub-reaches in this study were found
in Gong [32]. Manning’s roughness coefficient of the middle-lower Hanjiang river was
suggested to have values of 0.027–0.030 by Wang et al. [39]. In this study, the Manning’s
roughness coefficient is set to 0.028 in each sub-reach for simplicty. Due to a lack of data
about the bottom elevation along the river reach, the average depths are calculated instead
by the difference between the maximum and minimum water levels. According to the
observed data, the average depths at Huangjiagang and Xiangyang sections are 7.54 m and
7.49 m, respectively. We set that h = 7.50 m for each subreach finally. The details of physical
characteristics as well as the parameter Ki of subreaches are listed in Table 2. Based on the
estimated parameters, the outflow of the selected floods was calculated by Equation (15).
The accuracy evaluation results were shown in Table 1 referred as HDGNM (estimated).
The average values of EP, EN and PBIAS were 4.74%, 0.9480, and −0.34% in calibration
period, and 3.72%, 0.9648, and −0.63% in validation period, respectively, meaning the
estimation method is acceptable.
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Table 2. Physical characteristics of river reaches in middle-Hanjiang River.

Parameter Interpretation
Sub-Reaches

H-G G-T T-N N-X

L Reach Length (km) 25.59 37.63 24.00 19.13
nM Roughness Coefficient 0.028 0.028 0.028 0.028

J Bed Slope (10−4) 1.76 2.76 2.21 2.14
h Average Depth (m) 7.50 7.50 7.50 7.50
K Storage Parameter (h) 2.33 2.74 1.95 1.58

On the other hand, traditional routing models, such as the Muskingum model and
DGNM, estimate the parameters using the basin characteristics representing the inlet and
outlet of the river reach [40], therefore the simulation is limited to the outflow. By adjusting
the parameter n, the HDGNM with variable parameters can estimate flood process of
any section between the inlet and outlet. From this perspective, most traditional routing
models are lumped whereas the HDGNM is semidistributed. Figure 4 shows an example
calculated by the flood event in Oct-1974. When n is set to 1, 2, 3, and 4 in Equation (15),
respectively, the flood hydrograph of each section from upstream to downstream can be
easily obtained. The sections from upstream to downstream are Guanghua, Taipingdian,
and Niushou in turn, and Xiangyang is the outlet section. Only the observed outflow
at the outlet section was shown due to a lack of the observed data for other sections in
Figure 4. In a nutshell, the HDGNM using the SCE-UA algorithm can achieve the best
simulation results in gauged basins, while the estimation method based on the physical
characteristics makes the HDGNM transfer well to the ungauged basins. What’s more, as a
semidistributed model, the HDGNM has a potential to estimate the flood process of any
section between the inlet and outlet.
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5. Conclusions

This paper proposed a conceptual hydrologic flood routing approach—HDGNM,
which takes into account the spatial heterogeneity in the modelling by incorporating the
HIUH or S-curve into the DGNM. The spatial heterogeneity of a river reach is reflected by
a series of unequal linear reservoirs. It is hard work to deduce the HDGNM under unequal
linear cascade system directly. The conceptual interpretation of the components of the
DGNM was employed in the process of derivation. The discharge produced by the up-
stream inflows was deduced by directly replacing the S-curve with heterogeneous S-curve,
and the recession produced by the channel storage was obtained by the superposition of
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the recession process of each linear reservoir, which was calculated by the impulse response
of the stored water with the help of HIUH. The outflow in the HDGNM was composed of
these two parts conceptually and was formally expressed as a weight of the inflows and
outflows, whose weight coefficients were calculated by the heterogeneous S-curve.

The proposed HDGNM was evaluated on a reach of the Hanjiang River in China from
Huangjiagang down to Xiangyang. The slopes and cross-sections of this reach changes
largely, and thus the capacity of the storage routing in each subreach is different too. Three
equivalent linear reservoirs were conceptualized in the DGNM, but a significantly different
linear reservoir with a much larger storage coefficient was detected from the other two
reservoirs in the HDGNM. Such difference partially reflected the spatial heterogeneity
of the river reach, making the HDGNM more adaptive than the DGNM. The simulation
results suggest that addressing the spatial heterogeneity, the HDGNM outperforms the
DGNM in terms of model efficiency and relative error. From a physical point of view, the
storage coefficient K is a reservoir detention characteristic and has a physical meaning of
travel time. Physically, the changes in slope and cross-sections are expected to influence
travel times and distortion of the flood wave. This influence can then be reflected by
the storage coefficient K. In the DGNM, all linear reservoirs have the same K, the abrupt
changes of the slope and cross-sections cannot be addressed. In contrast, with different
K, the HDGNM is more adaptive to these changes. Furthermore, the parameters have
specific physical meanings, extending the applicability of the model to ungauged basins.
By adjusting the parameter n, the HDGNM can be developed as a semidistributed model.
These outcomes indicate that the model is applicable even for ungauged case studies.

Author Contributions: Conceptualization, Y.-X.Z. and Y.L.; Data curation, Y.L.; Investigation, R.M.
and H.W.; Methodology, B.-W.Y.; Supervision, B.-W.Y.; Validation, B.-W.Y., H.W. and Y.-W.T.; Visual-
ization, Y.-W.T.; Writing—original draft, Y.-X.Z. and R.M.; Writing—review & editing, B.-W.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 52079054, and the project of Power Construction Corporation of China, grant number
DJ-ZDZX-2016-02.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data, models, and code that support the findings of this study are
available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Derivation of the Coefficient Ap

Define the storage curve Rn(t) based on the HIUH as follows:

Rn(t) =
+∞∫
t

un(t)dt =
n

∑
j=1

Kn−1
j e

− t
Kj

n
∏

i=1,i 6=j

(
Kj − Ki

) (A1)

The summation of Rn(t) and Sn(t) is one, or Rn(t) = 1− Sn(t). According to the
concept of Sn(t), we know that Rn(t) represents the detention storage of the nth reservoir
yielded by a continuous unit upstream inflow.

In the derivation of the coefficient Ap, the following identity holds for any integer
m ∈ (1, n] and any time t

Kmum(t) = Rm(t)− Rm−1(t) (A2)
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The proof is as follows

Rm(t)− Rm−1(t) =
m
∑

j=1

Km−1
j e

− t
Kj

m
∏

i=1,i 6=j
(Kj−Ki)

−
m−1
∑

j=1

Km−2
j e

− t
Kj

m−1
∏

i=1,i 6=j
(Kj−Ki)

=
Km−1

1 e
− t

K1

(K1−K2)···(K1−Km)
+ · · ·+ Km−1

m−1e
− t

Km−1

(Km−1−K1)···(Km−1−Km)
+ Km−1

m e
− t

Km

(Km−K1)···(Km−Km−1)

− Km−2
1 e

− t
K1

(K1−K2)···(K1−Km−1)
− · · · − Km−2

m−1e
− t

Km−1

(Km−1−K1)···(Km−1−Km−2)

=
KmKm−2

1 e
− t

K1

(K1−K2)···(K1−Km)
+ · · ·+ KmKm−2

m−1e
− t

Km−1

(Km−1−K1)···(Km−1−Km)
+ KmKm−2

m e
− t

Km

(Km−K2)···(Km−Km−1)

= Km
m
∑

j=1

Km−2
j e

− t
Kj

m
∏

i=1,i 6=j
(Kj−Ki)

= Kmum(t)

(A3)

According to Equations (10) and (A2), the coefficient of O(t) can be calculated as follows

A0 =
n

∑
j=1

Kjuj(∆t) = K1u1 + R2 − R1 + · · ·+ Rn − Rn−1 = Rn (A4)

where uj and Rj denote uj(∆t) and Rj(∆t), respectively. Then, the coefficient of first order
derivative of O(t) can be derived as

A1 =
n
∑

j=2
Kjuj(∆t)

j−1
∑

r=1
Kr

= K1
(

R2 − R1
)
+ (K1 + K2)(R3 − R2) · · ·+

n−1
∑

r=1
Kr
(

Rn − Rn−1
)

=
n−1
∑

r=1
Kr(Rn − Rr)

(A5)

and the coefficient of second order derivative of O(t) can be derived as

A2 =
n
∑

j=3
Kjuj(∆t)

j−1
∑

r2>r1=1
Kr1 Kr2

= K1K2(R3 − R2) + (K1K2 + K1K3 + K2K3)
(

R4 − R3
)
+ · · ·+

n−1
∑

r2>r1=1
Kr1 Kr2

(
Rn − Rn−1

)
=

n−1
∑

r2>r1=1
Kr1 Kr2

(
Rn − Rr2

)
(A6)

Similarly, we can obtain:

Ap =
n−1

∑
rp>···>r1=1

(
Kr1 · · ·Krp

)(
Rn − Rrp

)
(A7)

Further, if the relation between Sm and Rm, i.e., Sm + Rm = 1 is used, the coefficient Ap
can be calculated by Equation (12).
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