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Abstract: Predicting groundwater levels is critical for ensuring sustainable use of an aquifer’s limited
groundwater reserves and developing a useful groundwater abstraction management strategy. The
purpose of this study was to assess the predictive accuracy and estimation capability of various
models based on the Adaptive Neuro Fuzzy Inference System (ANFIS). These models included
Differential Evolution-ANFIS (DE-ANFIS), Particle Swarm Optimization-ANFIS (PSO-ANFIS), and
traditional Hybrid Algorithm tuned ANFIS (HA-ANFIS) for the one- and multi-week forward
forecast of groundwater levels at three observation wells. Model-independent partial autocorrelation
functions followed by frequentist lasso regression-based feature selection approaches were used to
recognize appropriate input variables for the prediction models. The performances of the ANFIS
models were evaluated using various statistical performance evaluation indexes. The results revealed
that the optimized ANFIS models performed equally well in predicting one-week-ahead groundwater
levels at the observation wells when a set of various performance evaluation indexes were used.
For improving prediction accuracy, a weighted-average ensemble of ANFIS models was proposed,
in which weights for the individual ANFIS models were calculated using a Multiple Objective
Genetic Algorithm (MOGA). The MOGA accounts for a set of benefits (higher values indicate better
model performance) and cost (smaller values indicate better model performance) performance
indexes calculated on the test dataset. Grey relational analysis was used to select the best solution
from a set of feasible solutions produced by a MOGA. A MOGA-based individual model ranking
revealed the superiority of DE-ANFIS (weight = 0.827), HA-ANFIS (weight = 0.524), and HA-
ANFIS (weight = 0.697) at observation wells GT8194046, GT8194048, and GT8194049, respectively.
Shannon’s entropy-based decision theory was utilized to rank the ensemble and individual ANFIS
models using a set of performance indexes. The ranking result indicated that the ensemble model
outperformed all individual models at all observation wells (ranking value = 0.987, 0.985, and 0.995
at observation wells GT8194046, GT8194048, and GT8194049, respectively). The worst performers
were PSO-ANFIS (ranking value = 0.845), PSO-ANFIS (ranking value = 0.819), and DE-ANFIS
(ranking value = 0.900) at observation wells GT8194046, GT8194048, and GT8194049, respectively.
The generalization capability of the proposed ensemble modelling approach was evaluated for
forecasting 2-, 4-, 6-, and 8-weeks ahead groundwater levels using data from GT8194046. The
evaluation results confirmed the useability of the ensemble modelling for forecasting groundwater
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levels at higher forecasting horizons. The study demonstrated that the ensemble approach may
be successfully used to predict multi-week-ahead groundwater levels, utilizing previous lagged
groundwater levels as inputs.

Keywords: groundwater level predictions; multiple objective genetic algorithm; evolutionary
algorithm optimized ANFIS; ensemble prediction; entropy

1. Introduction

Groundwater aquifers are considered as vital sources of the world’s potable water sup-
plies and take part in an essential role in the sustainability of irrigated agriculture; domestic
and industrial water supplies in areas where good quality surface water is inadequate.
Human pressure due to population growth, increasing water demand to different sectors,
and a changing climate have created an enhanced pressure on groundwater resources. As a
consequence, groundwater systems are experiencing rapid degradation. Although human
intervention, such as over-pumping, is considered as the prime indicator of groundwater
level declination, climate change, as evidenced by recent projections, has indicated that the
situation will become even worse earlier than was anticipated [1]. Excessive abstraction of
groundwater resources leads to continuous depletion and variable fluctuations of ground-
water level, causing a variety of problems such as lowering of the suction heads of pumps,
reduction of crop yields due to inadequate irrigation water supplies, decrease in potable
water supplies for domestic and industrial purposes, and degradation of water quality,
among others. As with many areas in the world, groundwater is the most important
usable form of water reserves in Bangladesh, where approximately 80% of the total popula-
tion depends primarily on the groundwater reserves for their water needs [2]. Therefore,
proper management and sustainable utilization of the scanty groundwater reserves in the
aquifer in an efficient manner are imperative to secure continuous supplies of groundwater
for future generations. Accurate prediction and forecasting of future groundwater level
fluctuations may aid in developing such a meaningful groundwater management strategy.

Numerical simulation models of groundwater flow processes have traditionally been
applied in groundwater hydrology to better understand the underlying system processes
while predicting the future scenarios of groundwater levels [3–5]. However, predicting
groundwater levels using these physically-based models require a detailed understanding
of the aquifer properties, as well as expertise and in-depth knowledge of the modeler
about the aquifer geometry and modelling techniques. It is often difficult to obtain relevant
and good quality data on aquifer properties and other appropriate prerequisites, i.e.,
model “initial and boundary conditions” required to develop physically-based models.
Sometimes, unavailable data are substituted by assumptions made on the data based on
the prior knowledge of the modeler regarding the model domain. These assumptions and
estimations may lead to difficulties in the calibration and validation processes, which are
very important in employing the developed model for prediction purposes. To overcome
these unavoidable complexities associated with physically-based numerical modelling
approaches, data-driven prediction modelling approaches relying on machine-learning and
artificial intelligence have been introduced and applied in hydrology [6–12]. Data-driven
modelling does not require an explicit definition of the parameters of the physical systems
being modelled. In data-driven modelling approaches, a direct mapping or correlation
between the predictors (inputs) and responses (outputs) of a model is established by way
of an iterative learning method of a machine-learning algorithm [13]. Artificial Neural
Networks (ANN)-based data-driven prediction models have been found to perform as good
as or even better than the physically-based simulation models in the field of prediction
of nonlinear time series data, e.g., groundwater table data [14,15]. As such, there has
been a growing appreciation that data-driven approaches can be utilized as an alternative
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modelling approach for capturing nonlinear dynamics of the aquifer responses quite
accurately [16–19].

Groundwater level prediction comes into play when it is an essential task to evaluate
the dynamics of the groundwater system, i.e., how much groundwater is being abstracted
from the aquifer system and how much is permitted to be abstracted. Adequately precise
short- to medium-term groundwater level prediction aids in developing a sustainable and
flexible management strategy in areas where climate change-induced droughts or human-
induced over-pumping is a major driving force [20–22]. Thus, groundwater level prediction
has been an interesting topic in the hydrological research area. Numerous data-driven mod-
elling methods are being increasingly used since they require less data and are easier to ap-
ply than conventional hydrogeological modelling methodologies [23]. Several approaches
have recently been utilized in the research domain of groundwater level predictions. These
include machine learning-based prediction modelling [21,22,24], ANNs [25–27], hybridized
wavelet transform—machine learning methods [16,28–30], hybridized ensemble empirical
mode decomposition and machine learning-based models [31], nonlinear autoregressive
with exogenous inputs (NARX) neural networks [21], ARIMA-particle swarm optimiza-
tion [32], ANN—whale algorithm [33], integrated linear polynomial and nonlinear system
identification models [34], ANFIS [30,35–38], wavelet—ANFIS [39], Support Vector Ma-
chine (SVM) [35,40], hybrid SVM-PSO [41], Gaussian Process Regression [30], Genetic
Programming [42], Facebook’s prophet approach of groundwater level forecasting [43],
physics-inspired coupled space-time artificial neural networks [44]. A detailed review of
artificial intelligence-based approaches to groundwater level modelling is given in [45]. It
is obvious that a variety of modelling methodologies have been used to anticipate ground-
water level fluctuations with differing degrees of prediction accuracies. It is also clear
that recommending a specific prediction model for a specific problem, such as predicting
groundwater level fluctuations, is difficult, if not impossible. Therefore, more advanced
approaches to groundwater level prediction are necessary for increasing the prediction
accuracy of groundwater level fluctuations.

A hybrid/coupled model or an ensemble of models is likely to perform better than an
individual prediction model [45]. Different types of prediction models may be developed
for groundwater level forecasting and the best-performing models may be selected to
combine them into an ensemble to have an optimum model performance. However, it is
often very difficult, if not impossible, to identify the best machine-learning algorithm-based
prediction models. In such cases, one of the most effective strategies for providing suffi-
ciently accurate predictions has been to integrate the predictions of known best prediction
models. Such integration of prediction models is generally referred to as an ensemble [46].
Ensemble predictions are believed to be more robust than a standalone prediction model
with respect to grabbing hold of the true relationships between the inputs and outputs of
a given prediction problem through incorporating the best features of the participating
prediction models. Ensemble approaches include boosting, bagging, ranking, voting, and
stacking [47]. In groundwater level forecasting, [28] utilized a least-square boosting algo-
rithm to integrate different wavelet-neural network models. The present study seeks to
employ a Multiple Objective Genetic Algorithm (MOGA) for integrating the prediction
power of the evolutionary algorithm tuned ANFIS models in the framework of an ensemble
prediction to predict one- and multi-week ahead groundwater levels.

An ensemble of data-driven prediction models can be created utilizing a simple
averaging approach [48,49], in which the prediction of the selected individual models is
combined by simply averaging the individual outputs. On the other hand, an ensemble
of individual models can be formed by assigning weights to individual models with
reference to their prediction precision [46,50]. Among them, the weighted average ensemble
approach has gained popularity as it assigns weights to single prediction models regarding
their prediction precision. Specific weights to single prediction models may be assigned
through the utilization of the concepts of entropy [51], set pair analysis [52], or Dempster–
Shafer evidence theory [53,54]. Another approach of assigning weights to individual
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models is the utilization of a population-based optimization algorithm such as Genetic
Algorithm (GA) [55], which is employed to find out the optimum weights with respect
to either minimizing a cost index (the lower, the better) or maximizing a benefit index
(the higher, the better). GA has previously been applied to allocate specific weights to
standalone models based on a single performance index, e.g., MAE or RMSE [56]. However,
the utilization of a single performance index in determining the weights is often not a
suitable choice due to the conflicting nature of performance indexes. For instance, a
model will possibly be regarded as the top performer among other models when a specific
performance evaluation index is considered. In contrast, a different model may well
be found as the worthiest model when another performance index is considered. This
conflicting characteristic demands the incorporation of a set of performance indexes in
determining the weights assigned to different individual prediction models for developing
an integrated prediction model. Previous studies have successfully utilized the concepts of
entropy weight [57] and Dempster–Shafer’s theory of evidence [58,59] for incorporating
different performance indexes of many prediction models to compute individual model
weights. In this study, a Multiple Objective GA (MOGA) [60] is utilized to develop a trade-
off between the benefits (the larger the values, the better will be the model predictions)
and the cost indexes (the smaller the values, the better will be the model predictions). The
conflicting objective functions considered are to maximize the sum of benefit indexes and
to minimize the sum of cost indexes. The variables are the associated weights of individual
models. The MOGA provides numerous alternate feasible solutions rather than a single
solution. The best solution from the set of feasible solutions is selected by applying the
concept of Grey Relational Analysis. To the best of the author’s understanding, this method
of weight assignment in the weighted average ensemble technique has not been applied
previously in predicting groundwater levels.

Although long-term groundwater level prediction is desirable in many applications,
including the development of groundwater management plans, short-term predictions
often provide valuable insights into groundwater level fluctuations to better understand the
underlying physical phenomena of an aquifer [15,25,61,62]. However, since the one-step-
ahead prediction is strongly conditioned by exogeneous variables containing the stochastic
component, the generalization capability of the proposed model needs to be investigated
for multi-step ahead prediction horizons. Because groundwater flow and levels typically
do not vary significantly over a short period [63], the present study aims at proposing
both short-term (one-week ahead) and medium-term (2–8-weeks ahead) groundwater level
forecasts using novel approaches.

The key motivation and focus of this study are to (1) delve into the potential of
optimized ANFIS models in predicting one- and multi-step ahead groundwater level in the
selected observation wells; (2) develop an ensemble of evolutionary algorithm optimized
ANFIS models through weights assigned by a MOGA by incorporating a set of different
performance indexes; and (3) provide a ranking of the ensemble and the individual ANFIS
models through Shannon’s entropy. To the best of the authors’ understanding, this is
the first time an ensemble of optimized ANFIS models (weighted average ensemble for
which a MOGA determines the associated weights) has been employed to forecast one-step
(one-week) and multi-step (multiple weeks) forward groundwater level fluctuations.

2. Methodology
2.1. Study Area and the Data

The study area, located between 24.46–24.73◦ N latitudes and between 88.40–88.65◦

E longitudes, is under the Tanore Upazila of Rajshahi district in the division of Rajshahi,
Bangladesh. It has an aerial extent of 295.40 km2. A river named Shiba flows across the
study area, which provides an inadequate amount of irrigation water for irrigating the
major crops. Barind Tract constitutes a major portion (81.8%) of the geologic formation. In
comparison, Old Gangetic Floodplain (3%) and Tista Floodplain (4.8%) cover only a small
portion of the geology. The remaining 10.4% of the entire area is occupied by homestead
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areas, ponds, wetlands, and rivers [64]. The land formation of Tanore Upazila is composed
mainly of clay loam (46%), loam (35%), and clay (8%) [65]. Pumped groundwater appears to
be the prime water resource for household usage and crop irrigation. Excessive abstraction
of groundwater from the aquifer has been increasing every year, resulting in the gradual
declination of groundwater levels. As the study area is categorized as a flood-free zone in
Bangladesh due to its high elevation with respect to the mean sea level, monsoon rainfall is
the only source of water that can be percolated to the water-bearing strata to recharge the
groundwater. However, the study area’s thick and sticky clay surface is not favourable for
the natural recharge of groundwater into the aquifer. The combined interaction of the low
recharge potential of the land formation, inadequate rainfall, and increased groundwater
abstraction result in a decline in groundwater level in the Tanore Upazila of Rajshahi
district (the study area).

Previous data on groundwater level fluctuations were used to model future scenarios
of groundwater table fluctuations in the selected observation wells of the study area,
especially to provide a one-step-ahead forecast of groundwater levels. For this, weekly
historical data on groundwater level fluctuations with a period from January 1980 to
September 2018 were collected from Bangladesh Water Development Board. Collected
data at different observation wells were carefully checked and three observation wells,
namely GT8194046, GT8194048, and GT8194049, were selected based on the criterion of the
least number of missing entries. The observation well GT8194046 is positioned between
24.68◦ N latitude and 88.53◦ E longitude. The position of the observation well GT8194048 is
between 24.57◦ N latitude and 88.55◦ E longitude, whereas the observation well GT8194049
is situated between 24.63◦ N latitude and 88.58◦ E longitude. The study area and the
positions of the observation wells inside the study area are shown in Figure 1.

However, there were some missing values in the groundwater level datasets in the
selected observation wells. The missing entries of weekly groundwater level data accounted
for 0.55% (11 missing entries out of 2021), 0.64% (13 missing entries out of 2021), and
0.70% (14 missing entries out of 2021) for the observation wells GT8194046, GT8194048,
and GT8194049, respectively. These missing entries were imputed using the “nearest-
neighbour” approach to data imputation. Missing entries in an input column were replaced
with equivalent entries from the nearest-neighbour column by computing the Euclidean
distance among the “nearest-neighbour” columns [66]. Table 1 presents a few descriptive
statistics of the datasets (after imputation of the missing entries) at the selected observation
wells. Table 1 reveals that the mean values of groundwater level data ranged between 8.80 m
(at GT8194049) and 11.62 m (at GT8194048), whereas the standard deviation values varied
between 4.29 m (at GT8194049) and 4.41 m (at GT8194046). The data at all observation
wells possessed a longer right tail than the left tail in their distribution, as evidenced by
the positive (right) skewness values (Table 1). On the other hand, the datasets showed
“light-tailed” distributions because the kurtosis values are negative at all observation wells.

Table 1. Measures of the statistical parameter values for the groundwater level data (m) at the
observation wells.

Obs. Wells Min Max Mean Median STD Skewness Kurtosis

GT8194046 0.91 20.05 9.49 9.25 4.41 0.25 −0.78
GT8194048 1.38 20.45 11.62 10.42 4.31 0.43 −0.82
GT8194049 0.86 20.05 8.80 7.90 4.29 0.50 −0.60
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Figure 1. Schematic representation of the study area.

2.1.1. Missing Value Imputation

The collected data at the observation wells have a few missing entries that were
imputed as a data pre-processing measure. There exist several approaches to fill the missing
entries. The authors in [67] conducted a comparison of three methods for estimating
missing entries for a dataset of gene microarray: Singular Value Decomposition (SVD)-
based method—SVD imputes, weighted K-nearest neighbours—KNN impute, and row
averaging method. They demonstrated the superiority of the KNN impute over the
SVD impute and row average methods with respect to robustness and sensitivity for the
estimation of missing entries. Therefore, this research adopted the KNN imputation method
to fill the missing values of groundwater level data at the selected three observation wells.
The algorithm for the K-nearest neighbour approach to impute missing entries presented
in [68] was adopted in this research. The weekly values of the groundwater table time series
data after imputation of the missing entries at the three observation wells are presented in
Figure 2.
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Figure 2. Time series of the groundwater level data.

It is observed from Figure 2 that the groundwater level data at all three observation
wells have some noisy data, especially at the later part of the time series. This noise in
the input data was intentionally kept to evaluate the prediction power of the suggested
machine-learning algorithms on the noisy input data. As such, no data smoothing operation
was performed on the input time series (weekly values) of the groundwater level data.

2.1.2. Selection of Input Variables

The most significant and pertinent aspect in creating machine-learning-based predic-
tion models should be the choice of suitable input variables from a list of candidate input
variables that may enhance the prediction capability of models. As there exists no explicit
approach to determining model inputs for data-driven modelling applications [69], several
methods were adopted and applied by various researchers. It is also noted that useful
input variable selection approaches are non-unique and different techniques may result
in different combinations of important input variables [44]. A two-step approach can be
adopted in selecting the most useful input variables [70]: utilization of Autocorrelation and
Partial Autocorrelation Functions (PACF) (to obtain time-lagged information), followed
by a “trial and error” approach, wherein several possible combinations of preselected
lags can be used as model inputs. However, evaluating each of the combinations using
several data-driven models to select the significant input variables is undoubtedly a time-
consuming and laborious task. As an improvement to this laborious and computationally
intensive input variable selection method, the present study adopts Frequentist Lasso
Regression (FLR) [71] performed on the preselected lags (using PACF) for determining
the most significant input variables. The proposed approach, utilizing the combination of
PACF and the FLR, is outlined below:

1. Partial autocorrelations (PACF)

The PACF approach was used to select significant inputs from the Groundwater
Level (GL) lags. PACF functions at the selected observation wells were determined to
acquire time-lagged statistics from the weekly time series data of GLs. This time-lagged
information was used to evaluate the temporal dependencies between GL for a current
week (GLt) and the GLs at a certain point in an earlier period (i.e., a time lag of GLt−1,
GLt−2, GLt−3, GLt−4, and GLt−5, etc.). This temporal reliance in the GL time series at
the observation wells was evaluated for 50 lags (i.e., from GLt−1 to GLt−50) as depicted
in Figure 3. In Figure 3, the 95% confidence band is indicated by the blue dashed lines.
According to Figure 3, the relevant inputs to the prediction models for the GL time series
at the three observation wells were initially determined.
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Thus, the input variables primarily determined based on the PACF criterion for the
observation well GT8194046 include:

GLt, GLt−1, GLt−2, GLt−3, GLt−4, GLt−5, GLt−6, GLt−7, GLt−8, GLt−16, GLt−17, GLt−18,
GLt−20, GLt−21, GLt−22, GLt−23, GLt−24, GLt−25, GLt−26, GLt−27, GLt−28, GLt−29, GLt−30,
GLt−33, GLt−34, GLt−35, GLt−36, GLt−37, GLt−39, GLt−40, GLt−41, and GLt−43.

Input variables identified by PACF criterion at GT8194048 are:
GLt, GLt−1, GLt−2, GLt−3, GLt−4, GLt−9, GLt−21, GLt−25, GLt−26, GLt−27, GLt−28,

GLt−29, GLt−31, GLt−32, GLt−35, and GLt−38.
Input variables identified by PACF criterion at GT8194049 are:
GLt, GLt−1, GLt−3, GLt−4, GLt−7, GLt−8, GLt−16, GLt−17, GLt−20, GLt−21, GLt−22,

GLt−23, GLt−24, GLt−25, GLt−26, GLt−27, GLt−28, GLt−29, GLt−30, GLt−33, GLt−34, GLt−35,
GLt−36, GLt−39, GLt−40, GLt−41, GLt−42, GLt−46, and GLt−47.

Obviously, a substantial number of input variables were identified as potential input
variables at the observation wells based on the PACF criterion. While using all of these
input variables may provide better or worse (some of them being either redundant or
misleading and may cause prediction inaccuracies) prediction accuracies, this inclusion
of more input variables will no doubt incur an additional computational burden. On the
other hand, evaluating various combinations of these input variables is computationally
intensive, tedious, and time-consuming. Therefore, the present study strives to propose an
approach named FLR to eliminate the redundant or less influential input variables from
the pre-selected input variables. According to the conscious knowledge of the authors, this
methodology of significant input variable selection has not been applied previously for
groundwater level forecasting.

2. Frequentist Lasso Regression (FLR)

The second phase of input variable selection was facilitated by FLR [71], categorized
as a member of the Bayesian lasso regression. Lasso regression is basically an approach
of performing a linear regression that integrates regularization and selection of variables.
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The regularization part aids in preventing model overfitting by reducing the extent of the
coefficients of regression. The FLR approach is different from other forms of regularization
methods (i.e., ridge regression) with respect to the way of assigning values to regression
coefficients. In the FLR technique, the regression coefficients corresponding to the redun-
dant or insignificant variables are assigned a value of exactly 0 by the frequentist lasso.
In this study, the FLR model was fit on the pre-selected (PACF selected) input variables
and the one-week ahead groundwater level (GLt+1) as the output variable for each of the
observation wells. At GT8194046, 32 input variables based on different time lags were used
as inputs, whereas 16 and 29 input variables were used at observation wells GT8194048 and
GT8194049, respectively. The inputs and outputs at each observation well were divided
into train and test datasets. On or about 80% of the entire data were used to train the
FLR model, whereas the remaining 20% were used to test the model. The Forecast Mean
Squared Error (FMSE) values were computed and the magnitude of regression coefficients
(with respect to the shrinkage value) are plotted as illustrated in Figure 4. It is observed
from Figure 4 that a model with 11 (df = 11), 5 (df = 5), and 9 (df = 9) input variables seemed
to balance minimal FMSE and model complexity well at the observation wells GT8194046,
GT8194048, and GT8194049, respectively. Then, the coefficients that correspond to the
models containing 11, 5, and 9 input variables were computed that provided minimal FMSE
at each case. The FLR suggests that the input variable combinations outlined in Table 2
were the most useful in determining the one-week ahead groundwater level predictions.
The variables other than those mentioned in Table 2 were either redundant or insignificant.
The input variables other than the above-mentioned ones had an exact value of 0 for the
regression coefficient. This study used statistical approaches for input variable selection,
which can also be performed by employing an evolutionary algorithm along with the
parameter tuning process of the prediction models.

To eliminate the adverse effect of the data’s dimensionality, standardization was
performed to scale the data to a mean of zero and a standard deviation of unity [72].
The standardized data hold the actual data shape features, including the skewness and
kurtosis values.
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Table 2. Input variables determined by the df of frequentist lasso regression.

Observation Wells Input Variables Combination

GT8194046 GLt, GLt−2, GLt−6, GLt−7, GLt−17, GLt−18, GLt−24, GLt−29, GLt−39, GLt−41, GLt−43
GT8194048 GLt, GLt−1, GLt−2, GLt−3, GLt−38
GT8194049 GLt, GLt−1, GLt−8, GLt−17, GLt−20, GLt−33, GLt−36, GLt−40, GLt−42

2.2. Prediction Model: Adaptive Neuro Fuzzy Inference System (ANFIS)

An ANFIS is a flexible and adaptive data-driven machine-learning tool that holds the
advantageous features of both a Fuzzy Inference System (FIS) developed from fuzzy logic
theory and an ANN system. It incorporates fuzziness, imprecision, or nebulousness of
input datasets in modelling complex and nonlinear mapping of input–output patterns of a
dataset [73]. For this capability, ANFIS-based prediction models are often referred to as
the universal approximators of a complex system [74,75]. Among various types of ANFIS
models, a Sugeno type can provide a comparatively better prediction through superior
learning ability despite having a rather simple model architecture [73]. For this reason, this
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research adopted a Sugeno-type ANFIS model. Sugeno-type ANFIS models are developed
from an initial FIS structure, the parameters of which needed to be tuned using a preferable
optimization algorithm. The number of tuneable or modifiable parameters (both linear
and nonlinear) depends on the number of input variables for a specific problem. The
higher the number of modifiable parameters, the more complex the ANFIS model will be,
and consequently, the higher the computational requirements. Therefore, an additional
step of reducing the dimensionality of the input space is generally adopted to develop
an ANFIS model. The present study employed a Fuzzy C-Mean Clustering (FCM) [76]
algorithm to reduce the training dataset’s dimensionality. This FCM approach significantly
reduces the computational requirements by minimizing the number of linear and nonlinear
modifiable parameters of an ANFIS model architecture. The modelling was performed
by utilizing input and output Membership Functions (MFs), which were Gaussian and
linear, respectively. The input Gaussian MF is expressed by two parameters (c, σ) and can
be denoted by [73]:

gaussian (x, c, σ) = e−
1
2 (

x−c
σ )

2
(1)

where c and σ represent the centre and width, respectively of the MFs. The building block
of an ANFIS architecture derived from a Sugeno-type FIS is graphically shown in Figure 5.
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The Sugeno FIS illustrated in Figure 5 has two inputs (α and β) and one output (f ), the
fuzzy if-then rule sets for them can be written as:

Rule 1 : I f α is A1 and β is B1 then f1 = p1α + q1β + r1 (2)

Rule 2 : I f α is A2 and β is B2 then f2 = p2α + q2β + r2 (3)

As can be seen from Figure 5, a Sugeno-type ANFIS is composed of five layers: (1)
fuzzy layer, (2) product layer, (3) normalized layer, (4) defuzzification layer, and (5) output
layer. Each layer is associated with a particular task as the model development progresses.
These layers are described in detail along with their functions in [77] and are not repeated
in this study. MATLAB commands and functions were used to develop the ANFIS-based
prediction models.

2.3. Algorithms to Tune ANFIS Parameters
2.3.1. Hybrid Algorithm (HA)

One of the major issues that arise when developing fuzzy logic-based models with
high-dimensional data is selecting the appropriate rule sets, which largely determine
the optimal model performance. This issue can be addressed adequately by adopting a
first-order Sugeno FIS (presented in Figure 5), which is capable of learning adaptively
through modifying the rule sets, thus providing an optimal parameter set for the FIS
model. The basic learning rules of a flexible and modifiable (adaptive) network are made
up of two components: gradient descent and chain rule [78]. A gradient method is
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usually exploited to tune parameters of the antecedent and consequent components of
the rule base. This gradient approach results in slow convergence of the tuning process
and is prone to become trapped in local optima instead of global optima. To overcome
these issues of slow convergence and infeasible solutions, a “hybrid learning rule” that
integrates Gradient Descent (GD) and Least Squares Estimates (LSE) is proposed to search
for optimal FIS parameters [77]. In a FIS rule base, the antecedent parameters are regarded
as nonlinear in nature, whereas the consequent parameters are linear. In the hybrid
algorithm proposed by [77], the antecedent parameters are computed by means of the GD
via error backpropagation, while the recursive LSE determines the consequent parameters.
This integration of GD and LSE in parameter tuning of ANFIS models is referred to as a
Hybrid Algorithm (HA), which employs a frontward and a rearward pass to perform the
hybrid learning method. In this study, the HA was employed to tune the parameters of a
traditional ANFIS model.

Various hybridized ANFIS models have been widely applied to various research
domains for improving the performance of the traditional ANFIS models. However, the use
of evolutionary algorithm tuned ANFIS models has not been observed in recent literature
to predict groundwater level fluctuations (daily or multiple steps ahead prediction). As a
pioneering effort, this research proposes the hybridized learning of ANFIS models using
Differential Evolution (DE) and Particle Swarm Optimization (PSO) to forecast one- and
multi-week-ahead groundwater levels at the selected observation wells. A brief description
of DE and PSO is provided in the following sub-sections.

2.3.2. Differential Evolution (DE)

The DE algorithm [79,80] is a stochastic and population-inspired optimization al-
gorithm that is ideally suited for providing solutions to numerous nonlinear optimiza-
tion formulations. The concept of DE is simple, with a fundamental configuration of
DE/rand/1/bin [81,82]. In DE, a preliminary set of the population is arbitrarily created
following a uniform distribution with the specified lower and higher bounds of xL

j and

xU
j , respectively. This randomly created initial population contains NP vectors such that

Xi, ∀i = 1, 2, 3, . . . , NP. Following this initialization, the created individuals are evolved
by mutation and crossover operators, resulting in the production of a trial vector. The
resulting trial vector is compared to the associated parent to determine which vector should
be passed on to the subsequent cohort of the population [83]. The basic steps of the DE
algorithm consist of initialization, mutation, crossover, and selection. The details of these
steps can be found in [83] and are not repeated here.

2.3.3. Particle Swarm Optimization (PSO)

The PSO [84], a population-inspired stochastic algorithm for solving optimization
problems, is stimulated by social and psychological principles. The PSO is derived from
swarm intelligence principles, which simulate the societal characteristics of bird flocking or
fish schooling predation. The algorithm has acquired popularity as a result of its numerous
advantageous properties, including its simple structure, robust manoeuvrability, and ease
of implementation [85], which makes it ideal for training various intelligent models. PSO
considers each particle as a possible solution inside the search domain of an optimization
problem. On the other hand, the flight behaviour of the particles is recognized as an
individual’s exploration phenomenon. In PSO, the dynamic update of a particle’s velocity
is determined by the particle’s previous optimal location and the swarm population.

PSO considers the values of the particle’s objective function to be the corresponding
fitness values. These fitness values are used to calculate the particles’ optimal position. The
fitness values are also utilized to update the particles’ past most advantageous location and
the swarm population’s optimum location. Thus, the PSO algorithm’s control parameters
determine the convergence of particles trajectories [85]. The PSO algorithm converges by
keeping records of each particle’s best fitness values, finding the global best particle, and
updating the locations and velocities of each particle. In the event that the convergence is
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not achieved, the iterative process continues until the optimization problem converges to
its optimal solution, or until the user-defined maximum number of iterations is satisfied.

2.4. Developed ANFIS Models

The parameters of the ANFIS model were tuned using the HA and two population-
based optimization algorithms, e.g., DE and PSO, to develop the optimized ANFIS models
(HA-ANFIS, DE-ANFIS, and PSO-ANFIS, respectively). Performances of the tuned ANFIS
models principally be subjected to the optimal tuning for the parameters of the algorithms.
These parameters were selected upon conducting several trials and the best parameters
were used for the developed models. The optimum parameter sets used to train the
hybridized ANFIS models are depicted in Table 3.

Table 3. Optimal parameter values for the selected optimization algorithms.

Algorithms Optimal Parameter Values

DE

Maximum number of iterations: 1000
Number of populations (colony size): 100

Lower bound of scaling factor: 0.2
Upper bound of scaling factor: 0.8

Crossover probability: 0.2

PSO

Maximum number of iterations: 200
Population size (Swarm size): 100

Inertia weight: 1
Inertia weight damping ratio: 0.99

Personal learning coefficient: 1
Global learning coefficient: 2

Maximum velocity: 1
Minimum velocity: −1

HA

FIS parameters
Fuzzy partition matrix exponent: 2.0
Maximum number of iterations: 1000

Minimum improvement: 1 × 10−5

ANFIS parameters
Maximum number of Epochs: 200

Error goal: 0
Initial step size: 0.01

Step size decrease rate: 0.9
Step size increase rate: 1.1

HA-ANFIS, DE-ANFIS and PSO-ANFIS models were developed at each observation
well to predict one-week-ahead groundwater levels. The input variables to the models
were the selected lagged groundwater level values and the outputs from the models were
the one-week ahead groundwater levels. Both parameters (antecedent and consequent) of
the initial FIS models were tuned using the HA, DE and PSO algorithms to find the ideal
HA-ANFIS, DE-ANFIS and PSO-ANFIS models. Different combinations of antecedent
and consequent parameters were evaluated by the HA, DE and PSO algorithm as the
training process progressed. The Mean Squared Error (MSE) reflecting the learning error
was employed as the cost function of the HA, DE, and PSO-based optimization approach.
The overall goal or aim was to minimalize the MSE values between the observed (actual)
and model-predicted groundwater levels on the training set of the data. The cost function
(objective function) can be represented mathematically as:

Minimize : f (GLMSE) =
∑n

i=1
(
GLi,a − GLi,p

)2

n
(4)

where, f (GLMSE) denotes the cost function (objective function) to be minimalized;
i = 1, 2, 3, . . . , n denotes the quantity of training dataset; GLi,a is the actual groundwa-
ter levels in the training set of the data; and GLi,p is the model-predicted groundwater level
values in the training set of data.
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The properly trained optimized models were then presented with the test dataset and
the testing errors were computed. The performances of the DE-ANFIS and PSO-ANFIS
were weighed against those of the traditional ANFIS model (HA-ANFIS).

2.5. Training of Optimized ANFIS Models

The performance of a classical ANFIS model (HA-ANFIS) whose parameters were
tuned with a HA (integration of LSE and GD) was used as a base model for settling on
the adequate number of clusters determined via the FCM algorithm. A clustering trial
was performed using a range of clusters between 2–10 for the HA-ANFIS models with
50% training data and 50% test data. Absolute differences between the training and test
RMSE, including the absolute difference between train and test R values, were used as the
selection criteria for the number of clusters. Based on the trial, two clusters produced the
best results for the HA-ANFIS models at observation wells GT8194046 and GT8194048,
respectively, whereas the number of clusters that have the best results at GT8194049 was
three. The same quantity of clusters (FCM) was used for the evolutionary algorithm-tuned
ANFIS models (DE-ANFIS and PSO-ANFIS). The resulting architectures for five inputs (as
in the case of GT8194048) and one output HA-ANFIS models are presented in Figure 6.
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Figure 6. Model architectures of the developed HA-ANFIS models.

Training and test errors (RMSE values) were calculated for each of the developed
optimized ANFIS models, and the training time was recorded. Training and test errors
are important criteria to ensure that the developed models are not over- or under-trained.
Model training time is another imperative criterion that needs to be observed and consid-
ered carefully. Models requiring longer training time may sometimes be infeasible when
dealing with complex problems with larger datasets. The training and test errors as well as
the time of training needed for the optimized ANFIS models at different observation wells
are presented in Table 4.

Table 4. Training RMSE, test RMSE, and training time required for training of the hybridized ANFIS models.

ANFIS
Models

GT8194046 GT8194048 GT8194049

Train
RMSE, m

Test
RMSE, m

Training
Time, min

Train
RMSE, m

Test
RMSE, m

Training
Time, min

Train
RMSE, m

Test
RMSE, m

Training
Time, min

DE-ANFIS 0.3565 0.4877 413 0.4485 0.7610 144 0.3453 0.5026 622
PSO-ANFIS 0.3382 0.5332 83 0.4389 0.8965 27 0.3109 0.4846 117
HA-ANFIS 0.3382 0.5089 0.60 0.4270 0.6761 0.36 0.3123 0.4578 0.45
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The results presented in Table 4 indicate that the DE-ANFIS performed better than
the PSO-ANFIS and the HA-ANFIS, with respect to test RMSE and the absolute difference
between the training and test RMSEs at GT8194046. On the other hand, the HA-ANFIS
was the best performing model followed by the DE-ANFIS and the PSO-ANFIS at the
observation wells GT8194048 and GT8194049 when the absolute difference between the
training and test RMSEs was considered. However, based on the test RMSE, the sequence
of models from the best to the worst at GT8194048 was the HA-ANFIS, the DE-ANFIS, and
the PSO-ANFIS, while this sequence at GT8194049 was the HA-ANFIS, the PSO-ANFIS,
and the DE-ANFIS. It is also obvious from Table 4 that the training times required to train
the HA-ANFIS models were almost negligible compared to those of the DE-ANFIS and
PSO-ANFIS models, and that the PSO-ANFIS required less training time than DE-ANFIS.
Therefore, it can be argued that the HA-ANFIS was the best model with respect to the
RMSE and training time criteria. Other performance evaluation indexes were calculated on
test results for the comparison purpose of the developed optimized ANFIS models. The
performance evaluation indexes employed to evaluate the prediction performances of all
standalone optimized ANFIS models, and their ensemble are given in Appendix A.

2.6. Weight Calculation

For developing a framework of ensemble prediction, weights of the individual pre-
diction models were calculated. Both the benefit and cost indexes were employed to
compute weights for the developed models, mainly to incorporate the conflicting nature of
performances by the prediction models for different performance indexes calculated on the
test dataset. The benefit indexes considered for the weight calculation were Coefficient of
Determination (R2), Willmott’s Index of Agreement (IOA), and Nash–Sutcliffe Efficiency
Coefficient (NS), whereas the cost indexes selected were Root Mean Squared Error (RMSE),
Maximum Absolute Error (MAE), and Median Absolute Deviation (MAD). An optimization
approach, MOGA was applied to determine the associated weights of individual prediction
models based on their performances, with respect to the selected performance indexes. For
the benefit and cost indexes, the weight coefficients X1–X3 were assigned for the prediction
models DE-ANFIS, PSO-ANFIS, and HA-ANFIS, respectively. Two conflicting objectives
were considered: (1) maximize the sum of benefit indexes for each of the prediction models,
and (2) minimalize the summation of the cost indexes for each of the prediction models.
The mathematical formulation of the proposed MOGA-based weight assignment scheme
can be represented as:

Maximize : f1(BI) =
N

∑
i=1

Xi
n ×

K

∑
j=1

BIk (5)

Minimize : f2(CI) =
N

∑
i=1

Xi
n ×

L

∑
l=1

CIl (6)

Subject to
BI(min) ≤ BIk ≤ BI(max) (7)

CI(min) ≤ CIl ≤ CI(max) (8)

Xi
n ≥ 0 (9)

N

∑
i=1

Xi
n = 1 (10)

where, f1(BI) is the objective function that represents the maximization of the sum of
benefit indexes; f2(CI) represents the objective function that describes the minimization
of the sum of cost indexes; Xi

n. is the ith eight coefficient of the nth model; BIk is the kth
benefit index (K = 3); CIl is the lth cost index (L = 3); Equations (7) and (8) represent the
lower and upper limits of the benefit and cost indexes, respectively; Equation (9) designates
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the non-negativity of the ith weight coefficient; Equation (10) indicates the sum of the ith
weight coefficient equals 1; N, K, and L stand for a total number of prediction models,
benefit indexes, and cost indexes, respectively. Equation (5) represents the maximization of
the sum of benefit indexes, whereas Equation (6) represents the minimization of the sum of
cost indexes.

The MOGAs provide a set of feasible solutions represented by a Pareto optimal front
instead of providing a single solution. Each of the solutions in the Pareto front is regarded
as a feasible solution. The single best possible solution from the Pareto front was selected
by applying the concept of Grey Relational Analysis (GRA), which is derived from the Grey
System Theory [86]. In this approach, Gray Relational Coefficient (GRC) [84] is computed
to obtain the best feasible optimum solution from a set of feasible solutions in the Pareto
front. The GRC approach finds the similarity between the objective values of the individual
optimal solutions and the ideal or best reference objective value. The computation of GRC
was performed following the steps used in [87]. Based on the GRA concept, the greater
the value of GRCi is, the more dependable the optimal solution will be. Therefore, the
largest value of GRCi was the recommended best optimal solution from the Pareto optimal
solution. The corresponding weight coefficients for the best optimal solution were assigned
to the standalone optimized ANFIS models to develop the ensemble.

2.7. Ensemble Prediction

An ensemble approach of prediction modelling is generally preferred because an
individual prediction model often fails to capture the associated input-output relationships
and map the true trends of these associations within the reasonable locations of the input
domain [88]. An ensemble prediction model improves prediction robustness by extracting
the true trends of the input-output relationships in the data and protecting against an
individual poor-performing model by minimizing the impact of poor predictions by that
prediction model [46]. Ensemble prediction models provide better accuracy than the
individual models because the ensembles utilize the distinctive characteristics of individual
models for capturing various patterns of the input-output relations or mappings from
the whole decision domain. Nevertheless, individual models for an ensemble need to be
sufficiently diverse and sensibly precise in their prediction abilities. The optimal number
of individual models in an ensemble is highly dependent on the trade-offs between model
complexity, prediction accuracy, and uncertainty reduction level. An ensemble prediction
is simply computed by:

OutputEN =
n

∑
i=1

OutputIM
i

n
(11)

where, OutputEN is the ensemble output; OutputIM
i represents the outputs of the ith single

model; n is the number of single models to be used for the ensemble formation.
This simple ensemble modelling approach generally assigns equal weights to all

individual models regardless of their prediction accuracies. A more precise ensemble
formation technique is the weighted average approach, which is likely to yield the best
correlation between the observed and model-predicted responses [46]. In this concept,
more accurate prediction models are given higher weightage and the less accurate models
receive lower weights. In contrast, the sum of weights assigned to all individual models
must be equal to 1. The weighted average ensemble approach may be mathematically
denoted by the following deterministic function:
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YWA(x) =
n

∑
i=1

ωi(x)×YIMi (x) (12)

where, x represents the input space; YWA is the prediction of the weighted average ensemble
with respect to x; ωi is the numeric value of weight allotted to ith individual model; YIMi is
the prediction of the ith single model; n is the number of single models to be used for the
ensemble formation. The ensemble thus obtained is adaptive in nature because the weights
are a function of x [50]. This adaptive weighted average ensemble approach was adopted
in this research wherein the assigned weights were calculated using a MOGA.

Once the ensemble prediction was obtained, the corresponding performance indexes
were calculated for the ensemble model for comparison purposes with the individual
models. Then, a decision theory was applied by incorporating the same benefit and cost
indexes as in the case of the MOGA-based weight assignment scheme. In this case, the
ensemble model’s performance indexes were also considered to provide a ranking of all
individual models and the ensemble. The decision theory employed in this study was the
Shannon’s entropy [51]. The phases or steps adopted in [89,90] were used to calculate the
entropy-based weights. The calculation steps are provided in Appendix A.

3. Results and Discussion

The study aims at providing a comparison of the three machine-learning algorithms,
DE-ANFIS, PSO-ANFIS, and HA-ANFIS for predicting one- and multi-week ahead ground-
water levels using the previous lags as the input variables. A weighted-average ensemble of
these prediction models is also developed, and precision in the prediction of the ensemble
model is weighed against the prediction accuracy of the individual prediction models.

3.1. Prediction of Individual Models

After satisfactory training of the proposed prediction models, results are evaluated
with respect to various performance evaluation indexes computed on the actual and
predicted test datasets. The model predictions at different observation wells are presented
in Figures 7–9 in the form of hydrographs and scatterplots.

It is observed from the hydrographs and scatterplots presented in Figure 7 that at
GT8194046, the DE-ANFIS predictions have better agreement with the actual groundwater
level values when compared to other models. The other models face difficulties capturing
the true trends in the groundwater level fluctuations, especially at the later parts of the time
series (higher values of groundwater level fluctuations), which are underestimated by the
PSO-ANFIS and HA-ANFIS models. The PSO-ANFIS appears to be the worst performing
model at this observation well.

The hydrograph of the HA-ANFIS (Figure 8) indicates the best matching between
the actual and predicted groundwater levels at GT8194048. The prediction results of
DE-ANFIS, for this instance, are the second-best, followed by the prediction outcomes of
the PSO-ANFIS. PSO-ANFIS overestimates the actual groundwater level fluctuations that
begin at the middle of the time series and continue until the end. In contrast, the DE-ANFIS
slightly overestimates the actual values.

At GT8194049 (Figure 9), the hydrographs indicate the similar prediction accuracies
of the DE-ANFIS, PSO-ANFIS, and HA-ANFIS with the slightly better accomplishment of
the HA-ANFIS model. The performance results for the one-week-ahead groundwater level
predictions on the test dataset are provided in Table 5.
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Figure 9. Actual and model predicted weekly groundwater level fluctuations and regression plots 

on the test dataset at the observation well GT8194049. 

Table 5. Performance evaluation indexes of the proposed prediction models on test data at the ob-

servation wells. 
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RMSE 0.488 0.533 0.509 0.761 0.897 0.676 0.503 0.485 0.458 

Figure 9. Actual and model predicted weekly groundwater level fluctuations and regression plots on the test dataset at the
observation well GT8194049.
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Table 5. Performance evaluation indexes of the proposed prediction models on test data at the
observation wells.

PEI
GT8194046 GT8194048 GT8194049

M1 M2 M3 M1 M2 M3 M1 M2 M3

RMSE 0.488 0.533 0.509 0.761 0.897 0.676 0.503 0.485 0.458
rRMSE 0.038 0.041 0.039 0.050 0.059 0.045 0.041 0.039 0.038

R2 0.976 0.976 0.977 0.950 0.953 0.955 0.981 0.981 0.982
MAE 6.148 5.675 5.736 12072 12.178 11.966 6.323 5.794 5.861
MAD 0.045 0.130 0.112 0.105 0.275 0.155 0.081 0.066 0.062
IOA 0.994 0.992 0.993 0.985 0.981 0.988 0.995 0.995 0.995
NS 0.976 0.971 0.973 0.940 0.917 0.953 0.978 0.979 0.981

a-10 index 0.980 0.985 0.984 0.978 0.973 0.979 0.981 0.981 0.981
PEI = Performance evaluation index, M1 = DE-ANFIS, M2 = PSO-ANFIS, M3 = HA-ANFIS.

The prediction outcomes presented in Table 5 indicate that all of the proposed pre-
diction models are effective at predicting groundwater levels at week t + 1 (GLt+1) as
indicated by the various performance evaluation indexes. While no individual model
performs the best at all observation wells, individual models approximate groundwater
levels better than others. In general, all prediction models at the observation wells have
satisfactory accuracy as all models have higher values R2, IOA, NS, and a-10 index and
lower RMSE, rRMSE, MAE, and MAD values. All models provide the worst prediction
for the dataset at the observation well GT8194048, while the models developed using the
datasets at the observation wells GT8194046 and GT8194049 provide better prediction
accuracies with the best results obtained for the models developed at GT8194046. This may
be because groundwater level datasets at GT8194046 have the lowest skewness value (0.25)
compared to the skewness values at GT8194048 and GT8194049.

The prediction outcomes of the proposed prediction models are also assessed with
reference to the Theil inequality statistics (U) and the global performance index (GPI). The
evaluation results are presented in Table 6.

Table 6. Components of the Theil inequality statistics and global performance index values for
prediction models on test data at the observation wells.

PEI
GT8194046 GT8194048 GT8194049

M1 M2 M3 M1 M2 M3 M1 M2 M3

U 0.018 0.020 0.019 0.024 0.028 0.022 0.020 0.019 0.018
UB 0.004 0.119 0.063 0.099 0.284 0.015 0.105 0.102 0.025
UV 0.001 0.112 0.106 0.012 0.085 0.003 0.025 0.015 0.018
UC 0.995 0.769 0.831 0.888 0.631 0.982 0.870 0.883 0.957

MBE 0.031 −0.184 −0.128 0.241 0.478 0.083 0.163 −0.155 −0.072
Tstat 1.971 11.521 8.143 10.473 19.772 3.862 10.754 10.585 5.029
U95 6.197 6.031 6.034 6.380 6.632 6.292 6.731 6.591 6.582
GPI 0.004 −0.162 −0.074 0.622 2.667 0.061 0.112 −0.098 −0.019

PEI = Performance evaluation index, M1 = DE-ANFIS, M2 = PSO-ANFIS, M3 = HA-ANFIS.

The U statistics and its components contain useful information on the relative accuracy
of each prediction model and the plausible sources of prediction imprecision. The first
element UB is a measure of errors relating to the bias, the second element UV quantifies
the skill of the prediction models to replicate the degree of inconsistency or variability, and
the third (last) element UC enumerates the amount of chaotic error generated by various
predictions. It is observed from Table 6 that UC component constitutes a major part of
errors produced by all the prediction models and at all the observation wells. Relatively
lower values of UB, UV and U produced by the prediction models at the observation wells
reveal that methodical error and bias is not a problem for the obtained predictions for the
developed models.
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To further appraise the performances of the developed models, the GPI criterion is
employed, which evaluates the model performance skill by combining the impacts of MBE,
RMSE, U95, t-stat, and R2 values in the prediction accuracy. The MBE index indicates
whether the developed prediction model over- or under-estimates the groundwater level
predictions at the observation wells. Positive values of MBE mean that the prediction model
under-estimates the observed groundwater level data, while the negative value indicates
an over-estimation of the observed groundwater level data. The t-stat [91] criterion and the
RMSE and MBE criteria measure the closeness of the actual and predicted groundwater
level values, thus offering a relatively more complicated evaluation of model performance.
The U95 criterion measures a models’ predictive deviations within the 95% confidence
band [92,93]. The U95 values produced by the prediction models are within acceptable
limits, varying only slightly at all the observation wells. The t-stat values differ substantially
among the prediction models and at the observation wells: at GT8194046, DE-ANFIS has
the lowest value of t-stat; at GT8194048, the HA-ANFIS has the lowest value of t-stat; and
at GT8194049, the HA-ANFIS has the lowest value of t-stat. The MBE, RMSE, U95, t-stat,
and R2 values are used to compute the values of the GPI index. The reliability of a model is
reversely proportionate to the absolute values of GPI (negative values of GPI originate from
the negative MBE values), i.e., the lower the numeric value of the GPI index, the higher the
accuracy of the prediction model and the other way around. Based on the GPI index, the
DE-ANFIS is the best performer among others at GT8194046, while the HA-ANFIS is the
best prediction model at both the observation wells GT8194048 and GT8194049.

It is perceived from Tables 5 and 6 that models show varying accuracies depending on
the performance evaluation matrix computed on the actual and predicted groundwater
level values. This means a contradiction in the prediction performance when different
performance evaluation indexes are used. For instance, at GT8194046, one can select
DE-ANFIS as the best model when RMSE, MAD, IOA, and NS are considered (Table 5).
However, the HA-ANFIS and the PSO-ANFIS perform better with respect to R2 and MAE
criteria, respectively. At GT8194048, the HA-ANFIS has the better performance based on
the RMSE, R2, MAE, IOA, and NS criteria, whereas the DE-ANFIS models’ performance is
the best when the MAD criterion is considered. The HA-ANFIS is the best model among
others at GT8194049 with reference to the RMSE, R2, and NS criteria, while the PSO-ANFIS
can be treated as the top-performing model in terms of the MAE and IOA criteria. On the
other hand, the DE-ANFIS is deemed to be superior when the MAD criterion is considered.
It is noted that the differences in numeric values among various performance evaluation
indexes are often very small. Nevertheless, decision making in this situation is very difficult
if not impossible. Decision-making can be facilitated either by selecting a prediction model
to be the best one when most of the performance evaluation indexes are better for that
particular model or by incorporating different performance evaluation indexes. The later
approach is promising because it incorporates various performance indexes to decide on
the best performing model. This is often performed by assigning weights to individual
models and ranking them according to the numeric values of the weights. The present
study employs a MOGA for this purpose by utilizing R2, IOA, and NS as the benefit indexes
and RMSE, MAE, and MAD as the cost indexes. The outcomes are shown in Table 7. The
weights presented in Table 7 are assigned to the respective prediction models to develop
the ensemble model.

Table 7. Weights of the individual prediction models calculated using a Multiple Objective Genetic
Algorithm at the observation wells.

Models
Weights

GT8194046 GT8194048 GT8194049

DE-ANFIS 0.827 0.345 0.191
PSO-ANFIS 0.157 0.133 0.112
HA-ANFIS 0.017 0.524 0.697

Sum of weights 1 1 1
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3.2. Ensemble Prediction

In this section, the outcomes are presented to show the usefulness of employing
an ensemble of the developed models to predict one-week ahead groundwater levels.
For this purpose, a weighted-average ensemble of three prediction models is proposed
in which the weights computed by the MOGA are employed to provide the ensemble
prediction. The performance of the weighted average ensemble is compared with that of
the individual models (DE-ANFIS, PSO-ANFIS, and HA-ANFIS) at each observation well.
The comparison results are given in Table 8.

Table 8. Performance evaluation indexes of the ensemble at different observation wells.

PEI
GT8194046 GT8194048 GT8194049

En DE-
ANFIS

PSO-
ANFIS

HA-
ANFIS En DE-

ANFIS
PSO-

ANFIS
HA-

ANFIS En DE-
ANFIS

PSO-
ANFIS

HA-
ANFIS

RMSE 0.482 0.488 0.533 0.509 0.714 0.761 0.897 0.676 0.453 0.503 0.485 0.458
rRMSE, % 3.721 3.800 4.100 3.900 4.700 5.000 5.900 4.500 3.717 4.100 3.900 3.800

R2 0.976 0.976 0.976 0.977 0.954 0.950 0.953 0.955 0.982 0.981 0.981 0.982
MAE 6.083 6.148 5.675 5.736 11.027 12.072 12.178 11.966 5.958 6.323 5.794 5.861
MAD 0.043 0.045 0.130 0.112 0.103 0.105 0.275 0.155 0.049 0.081 0.066 0.062
IOA 0.994 0.994 0.992 0.993 0.954 0.985 0.981 0.988 0.995 0.995 0.995 0.995
NS 0.994 0.976 0.971 0.973 0.948 0.940 0.917 0.953 0.982 0.978 0.979 0.981

a-10 index 0.980 0.980 0.985 0.984 0.980 0.978 0.973 0.979 0.980 0.981 0.981 0.981
U 0.018 0.018 0.020 0.019 0.023 0.024 0.028 0.022 0.018 0.020 0.019 0.018

UB 0.0002 0.004 0.119 0.063 0.082 0.099 0.284 0.015 0.003 0.105 0.102 0.025
UV 0.001 0.001 0.112 0.106 0.013 0.012 0.085 0.003 0.005 0.025 0.015 0.018
UC 0.998 0.995 0.769 0.831 0.905 0.888 0.631 0.982 0.992 0.870 0.883 0.957

MBE 0.007 0.031 −0.184 −0.128 0.205 0.241 0.478 0.083 −0.025 0.163 −0.155 −0.072
Tstat 0.471 1.971 11.521 8.143 9.396 10.473 19.772 3.862 1.711 10.754 10.585 5.029
U95 6.166 6.197 6.031 6.034 6.356 6.380 6.632 6.292 6.609 6.731 6.591 6.582
GPI 0.0002 0.004 −0.162 −0.074 0.398 0.622 2.667 0.061 −0.002 0.112 −0.098 −0.020

En = Ensemble.

It can be perceived from the results exhibited in Table 8 that the weighted average
ensemble achieves a performance that is superior to the worst model at all instances and
that the ensemble’s performance is superior to the best individual model for most of the
computed performance evaluation indexes. For instance, the MAD values of the ensemble
at all observation wells are lower than those of the individual models indicating that the
ensemble prediction for this instance is better than any individual model. On the other
hand, MAE values at the observation wells GT8194046 and GT8194049 are lower than the
DE-ANFIS but higher than both the PSO-ANFIS and HA-ANFIS. This indicates a better
and worse performance of the ensemble compared to individual prediction models at these
observation wells based on the MAE criterion. However, the MAD criterion indicates a
better performance of the ensemble model over the individual models at observation well
GT8194049. Decision-making in these situations is quite difficult. In such situations, if it is
known a priori that a given model performs the best for a particular dataset or problem,
it may be the best option to employ this model for the prediction. However, it may be
difficult to recognize the top-ranked single prediction model for most problems. In this
situation, an ensemble of prediction models (preferably a weighted average ensemble) may
be proved to be useful in obtaining a robust and accurate prediction result.

It is observed from Table 8 that when the errors produced by all the prediction models
are close to each other, as is the case of RMSE, rRMSE, R2, MAE, IOA, and NS, for example,
the prediction results of the weighted average ensemble are more accurate (smaller numeric
values of RMSE, rRMSE, MAE and higher values of R2, IOA, and NS) than any of the
individual prediction models. However, when few of the models are much more imprecise
than the others, the performance of the weighted average ensemble is only as accurate as
of the top-performing model within the ensemble (usually, the predictions are adequately
precise to those of the top prediction model). This is especially apparent in the case of
MAE values at the observation well GT8194046 (Table 8). Additionally, Table 8 shows that
the prediction errors of a weighted average ensemble are significantly lower than those
of the worst prediction model, implying that an ensemble approach can avoid the issues
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associated with picking a wrong individual model for a given situation. The findings of
this study are consistent with those of [46], who proved the potential benefit of an ensemble
approach on a variety of test problems of varying complexity and dimensions.

The absolute errors between actual and predicted groundwater levels produced by
each individual and the ensemble models are presented in box and violin plots (Figure 10).
Boxplots provide a comparative evaluation for the statistical distributions of the absolute
errors of the one-week ahead groundwater levels and aids in measuring the level of overall
spread of the errors made by each prediction model. The horizontal lines in each of the
boxplots designate the median of the absolute errors of prediction, while the black circles
mark the mean (average) of the absolute errors. The error boxplots in Figure 10 demonstrate
the superiority of the ensemble and DE-ANFIS models at the observation well GT8194046,
whereas HA-ANFIS appears to be the best model at GT8194048. Absolute errors produced
by the DE-ANFIS, HA-ANFIS, and PSO-ANFIS are almost the same at the observation well
GT8194049. Based on the error box plot, the ensemble appears to be the best performing
mode at GT8194049. Figure 10 also shows the corresponding violin plots that incorporate a
box plot with a kernel density plot (the kernel density plot shows the peaks in the error
data). The white dot represents the median of the absolute error, the thick grey bar in
the centre of a violin plot is the interquartile range, and the thin grey line denotes the
rest of the distribution. The coloured region on both sides of the grey line represents the
kernel density estimation for illustrating the distribution shaper of the absolute error. A
higher probability is represented by the wider sections of the violin plot, while the lower
probability is signified by the thinner sections (Figure 10).

The performance evaluation comparison for the ensemble and the individual pre-
diction models is executed by ranking the models through a decision theory, Shannon’s
entropy. This decision theory is applied by utilizing the computed R2, IOA, NS, RMSE,
MAE, and MAD values on the test dataset by ensemble and the individual prediction
models (previously calculated). The computed R2, IOA, and NS values serve as the benefit
indexes, while the RMSE, MAE, and MAD values are cost indexes. The ranking scheme for
Shannon’s entropy is associated with two major phases: first, the weights for the selected
performance indexes are calculated, and then these weights are translated into the weights
of models through the use of ideal values of the performance indexes.
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Figure 10. Box and violin plots of the absolute errors on test dataset at the observation wells GT8194046, GT8194048, and 

GT8194049. 

The performance evaluation comparison for the ensemble and the individual predic-

tion models is executed by ranking the models through a decision theory, Shannon’s en-

tropy. This decision theory is applied by utilizing the computed R2, IOA, NS, RMSE, MAE, 

and MAD values on the test dataset by ensemble and the individual prediction models 

(previously calculated). The computed R2, IOA, and NS values serve as the benefit in-

dexes, while the RMSE, MAE, and MAD values are cost indexes. The ranking scheme for 

Shannon’s entropy is associated with two major phases: first, the weights for the selected 

performance indexes are calculated, and then these weights are translated into the weights 

of models through the use of ideal values of the performance indexes. 

The ranking results are shown in Table 9. It is perceived from Table 9 that the 

weighted average ensemble receives the highest entropy weight, i.e., the ensemble pre-

diction is better than any of the individual prediction models. Therefore, it is demon-

strated that the proposed weighted average ensemble with the MOGA-based weight as-

signment scheme produces improved prediction results when weighed against the DE-

ANFIS, PSO-ANFIS, and HA-ANFIS models’ prediction outcomes. Therefore, the pro-

posed MOGA-based weighting tactic has the potential applicability in developing the en-

semble models to predict one-week ahead groundwater levels. 

Table 9. Ranking of the individual and ensemble prediction models using entropy weight-based 

decision theory at the observation wells. 

GT8194046 GT8194048 GT8194049 

Figure 10. Box and violin plots of the absolute errors on test dataset at the observation wells GT8194046, GT8194048,
and GT8194049.

The ranking results are shown in Table 9. It is perceived from Table 9 that the weighted
average ensemble receives the highest entropy weight, i.e., the ensemble prediction is
better than any of the individual prediction models. Therefore, it is demonstrated that the
proposed weighted average ensemble with the MOGA-based weight assignment scheme
produces improved prediction results when weighed against the DE-ANFIS, PSO-ANFIS,
and HA-ANFIS models’ prediction outcomes. Therefore, the proposed MOGA-based
weighting tactic has the potential applicability in developing the ensemble models to
predict one-week ahead groundwater levels.

Table 9. Ranking of the individual and ensemble prediction models using entropy weight-based decision theory at the
observation wells.

GT8194046 GT8194048 GT8194049

Ranks Models Ranking Value Ranks Models Ranking Value Ranks Models Ranking Value

1 Ensemble 0.989 1 Ensemble 0.985 1 Ensemble 0.995
2 DE-ANFIS 0.975 2 DE-ANFIS 0.960 2 HA-ANFIS 0.959
3 HA-ANFIS 0.862 3 HA-ANFIS 0.924 3 PSO-ANFIS 0.943
4 PSO-ANFIS 0.845 4 PSO-ANFIS 0.819 4 DE-ANFIS 0.900
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Overall, the study’s findings confirmed that although the ensemble model is suggested
due to its better performance, the DE-ANFIS, HA-ANFIS, and PSO-ANFIS can also be
successfully employed to predict one-week-ahead groundwater levels. If the emphasis is
placed on the high level of prediction accuracy and the reduced prediction uncertainty,
then the ensemble model undoubtedly is the best choice to be implemented. As far as
the individual prediction models are concerned, depending on whether the importance is
given to high precision or on computational efficiency but not as much of precision, the DE-
ANFIS or the HA-ANFIS models may be employed, respectively. The results obtained in
this effort are entirely based on the groundwater flow lags (at a given week and the lagged
periods) as inputs and the one-week ahead groundwater flow signals as outputs. The input
selection is facilitated by a careful analysis of the PACF functions followed by the FLR
approach of useful variable selection. Although long-term forecasting may be preferable in
many water resources management problems, a short-term prediction (one-week-ahead)
is adopted in the present study because of the inherent uncertainties associated with the
long-term predictions with only the historical groundwater level signals.

Depleting groundwater levels have been a pressing concern in the drought-prone
north-western parts of Bangladesh due to the overexploitation of the groundwater resources
to meet the demands for agricultural, domestic, and industrial requirements. In the
Tanore Upazila of Rajshahi district, excessive groundwater abstraction has reduced the
groundwater level to a considerable amount in recent years. Therefore, the development
of a precise and robust prediction tool using an ensemble of prediction models for the
groundwater level fluctuations in this region can help develop a sustainable regional
groundwater management strategy. Nevertheless, enhanced precision in the one-step-
ahead prediction of groundwater level signals is one of the most vital aspects of developing
such a robust regional or global groundwater management policy. The results obtained in
this research using a weighted average ensemble of various promising machine-learning
algorithms may be of great interest to the stakeholders and policymakers.

4. Performance Comparison of the Prediction Models for Forecasting 2-, 4-, 6-, and
8-Week Ahead Groundwater Level Fluctuations

The generalization capability of the proposed models and their ensemble is further
investigated by employing the models to forecast groundwater levels for higher forecasting
horizons (2-, 4-, 6-, and 8-week ahead). For this purpose, the generalization capability
of the developed models at higher forecasting horizons is analysed for observation well
GT8134046 as an example. Six statistical performance measures including benefit (R, IOA,
NS, a-10 index) and cost indices (rRMSE, MAD) are calculated using actual and model-
predicted groundwater level values for providing 2-, 4-, 6-, and 8-week ahead forecasting.
The results are presented in Figures 11 and 12. Figure 11 presents a comparison of the
performances of the individual and ensemble models based on R, IOA, NS, and a-20 index
criteria. It is observed from Figure 11 that performances of the individual models do
not vary substantially among the forecasting horizons indicating reliable performances
of the proposed models at higher forecasting horizons. Although performances slightly
deteriorate at the higher forecasting horizons, all benefit indices have values higher than
0.8 for all prediction horizons, which clearly demonstrate the acceptable performances of
the models with higher accuracy even at 8-weeks ahead forecasting. It is also evident from
Figure 11 that the proposed ensemble model shows superior performances for all instances
of performance indices and forecasting horizons. It is worthwhile to mention that the
analysis presented here is based on the data obtained from observation well GT 8134046 for
demonstrating the generalization capability of the proposed ensemble modelling approach.
Based on this analysis, it is perceivable that the proposed model would provide reliable
performances for higher forecasting horizons at other observation wells.
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Figure 11. Performance comparison of the individual and ensemble models for forecasting the 1-, 2-, 4-, 6-, and 8-week
ahead groundwater level fluctuations at GT8134046.
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Performances of the models are also evaluated using NRMSE and MAD criteria.
Lower values of rRMSE and MAD at all considered forecasting horizons demonstrate that
the proposed models are able to forecast groundwater level values when higher forecasting
horizons, e.g., 8-weeks ahead (2 months ahead) are used. Furthermore, the ensemble model
produces lower values of rRMSE and MAD than the individual models, which indicates
the superior performance of the ensemble model over the standalone models.

Finally, ranking of the individual and ensemble models for 2-, 4-, 6-, and 8-weeks
ahead groundwater level forecasting is performed, and is presented in Table 10. It can be
perceived from Table 10 that the proposed ensemble model appeared to be the top-ranked
model for all considered forecast horizons. Therefore, the proposed ensemble model can
be applied to forecast groundwater levels at higher forecasting horizons.

Table 10. Ranking of models using entropy weight-based decision theory for 2-, 4-, 6-, and 8-week ahead groundwater level
forecasting at the observation well GT8194046.

Models
2-Week Ahead 4-Week Ahead 6-Week Ahead 8-Week Ahead

Ranking Value Ranks Ranking Value Ranks Ranking Value Ranks Ranking Value Ranks

Ensemble 0.993 1 0.995 1 0.973 1 0.995 1
DE-ANFIS 0.962 2 0.979 2 0.911 3 0.978 2
HA-ANFIS 0.887 3 0.940 3 0.964 2 0.966 3
PSO-ANFIS 0.865 4 0.919 4 0.881 4 0.956 4
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5. Conclusions

Precise and robust prediction of groundwater levels can be effectively employed in
providing a short- and medium-term prediction modelling approach for groundwater level
fluctuations. This study provides a robust prediction tool for one- and multi-week ahead
groundwater level fluctuations through a weighted average ensemble of three optimization
algorithm tuned ANFIS models (DE-ANFIS, PSO-ANFIS, and HA-ANFIS). The suitable
weekly lag times of groundwater levels are used as inputs to the prediction models, while
the output from the models is the one- and multi-week ahead groundwater levels. The
optimal combination of inputs for the models is executed by carefully examining the PACF
functions followed by performing the FLR approach. The performance comparison of the
proposed models is performed by adopting a set of performance evaluation indexes. Results
demonstrate that the optimized ANFIS models have sufficiently accurate predictions as
indicated by the higher values of R2, IOA, and NS as well as lower values of RMSE, MAE,
and MAD. A weighted average ensemble of the optimized ANFIS models is proposed to
achieve more reliable and accurate predictions. The weights of the individual prediction
models computed by a Multiple Objective Genetic Algorithm (MOGA) are used to construct
the ensemble of the optimized ANFIS models. The performance evaluation indexes for the
ensemble prediction are computed and compared with those of the individual models. The
performance comparison is performed using a ranking scheme of a well-known decision
theory, Shannon’s entropy. The results of this ranking scheme reveal the superiority of the
ensemble models over all the individual models.

The most important finding of this study is that employing a weighted-average ensem-
ble of data-driven prediction models can improve predictions’ robustness by minimizing
the influence of a worse-performing prediction model. This is especially important because
it is difficult, if not impossible, to select the best prediction model for a particular problem
due to a vast number of alternatives and that the best prediction model can be changed
with the changes in the dataset. Therefore, it can be concluded that the proposed weighted
average ensemble approach can be considered as a robust approximation method for pre-
dicting one-week-ahead groundwater level fluctuations for the selected observation wells.
Furthermore, groundwater level forecasts conducted for 2-, 4-, 6-, and 8-weeks in advance
using data from the observation well GT8194046 reveal the potential applicability of the
ensemble approach proposed in this effort. Future research may be directed towards apply-
ing the proposed approach in predicting multi-step-ahead groundwater level fluctuations
at other locations.
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Appendix A

Appendix A.1. Performance Evaluation Indexes

The performance evaluation indexes employed to evaluate the performance of all
standalone optimized ANFIS models, as well as their ensemble, are given below.

Correlation Coefficient, R

R =
∑n

i=1
(
GLi,a − GLa

)(
GLi,a − GLp

)√
∑n

i=1
(
GLi,a − GLa

)2
√

∑n
i=1
(
GLi,p − GLp

)2
(A1)

Relative RMSE, rRMSE

rRMSE =
RMSE
GLa

=

√
1
n ∑n

i=1
(
GLi,a − GLi,p

)2

GLa
(A2)

The rRMSE is often referred to as the Scatter Index (SI), which provides a qualitative
comparison of model performances (excellent, good, fair, and poor). The SI index classifies
a model as acceptable or unacceptable according to the following criteria

SI < 0.1 Excellent
0.1 < SI < 0.2 Good
0.2 < SI < 0.3 Fair

SI > 0.3 Poor

(A3)

Maximum Absolute Error, MAE

MAE = max
[∣∣GLi,a − GLi,p

∣∣] (A4)

Median Absolute Deviation, MAD

MAD
(
GLa, GLp

)
= median

(∣∣GL1,a − GL1,p
∣∣, ∣∣GL2,a − GL2,p

∣∣, . . . ,
∣∣GLn,a − GLn,p

∣∣)
f or i = 1, 2, . . . , n

(A5)

Mean Bias Error, MBE

MBE =
1
n

n

∑
i=1

(
GLi,a − GLi,p

)
(A6)

T-statistic test, Tstat [91]

Tstat =

√
(n− 1) ∗MBE2

RMSE2 −MBE2
(A7)

Uncertainty with 95% confidence level, U95

U95 = 1.96×
√

Standard deviation2 − RMSE2 (A8)

Global Performance Index, GPI

GPI = MBE ∗ RMSE ∗U95 ∗ Tstat ∗
(

1− R2
)

(A9)

Nash–Sutcliffe Efficiency Coefficient, NS

NS = 1−
∑n

i=1
(
GLi,a − GLi,p

)2

∑n
i=1
(
GLi,a − GLa

)2 (A10)
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Theil inequality statistics, U

U =

√
1
n ∑
(
GLi,p − GLi,a

)2√
1
n ∑
(
GLi,p

)2
+
√

1
n ∑(GLi,a)

2
(A11)

Bias proportion of Theil inequality statistics, UB

UB =

(
GLp − GLa

)2

(1/T)∑
(
GLi,p − GLi,a

)2 (A12)

Variance proportion of Theil inequality statistics, UV

UV =

(
σp − σa

)2

(1/T)∑
(
GLi,p − GLi,a

)2 (A13)

Covariance proportion of Theil inequality statistics, UC

UC =
2(1− R)σpσa

(1/T)∑
(
GLi,p − GLi,a

)2 (A14)

where GLi,a and GLi,p represent actual (obtained) and model predicted GL values at the
ith step, respectively; GLa is the mean value of the actual GL values; σa indicates standard
deviation value of the actual GL, σp denotes standard deviation of the predicted GL values,
n represents the numeral of data points, ED is the Euclidian distance of any data points
from their ideal values, ∝ is relative variability in the predicted and actual GL values, and
β is the ratio between the mean (average) predicted and mean (average) actual GL data
demonstrating the bias.

In addition, according to a recently proposed engineering index, a20 − index, we
calculated an a10 − index to assess the reliability of the developed prediction models.

a10 − index =
m10

M
(A15)

where, M denotes the quantity of test datasets and m10 is the numeral of test samples
that have a Actual value/Predicted value ranging between 0.90–1.10. For an impeccable
data-driven prediction modelling approach, the numeric value of a10 − index is anticipated
to have a value of unity (i.e., 1). The values of a10 − index has physical engineering
significance: it states that the number of samples that comply with forecasted values within
a range of variation of ± 10% weighed against the actual values.

Appendix A.2. Ranking of the Prediction Models Using Shannon’s Entropy

The following steps are used to calculate Shannon’s entropy:
Step 1: Formation of a decision matrix of prediction models (individual models and the

ensemble) and performance evaluation indexes. It is assumed that there be m prediction
models and n performance evaluation indexes. Then, the resulting decision matrix is
given by:

GLij =


GL11
GL12

...
GL1n

GL21
GL22

...
GL2n

· · ·
· · ·

...
· · ·

GLm1
GLm2

...
GLmn

 (A16)
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Step 2: Standardization of the decision matrix for minimizing the impacts of index
dimensionality. The performance index values are standardized between 0–1 (Sij ∈ [0, 1],
i = 1, 2, . . . , m; j = 1, 2, . . . , n). The values of Sij are computed as:

Sij =


GLij

max(GLi1,GLi2,...,GLin)
, f or bene f it indexes

GLij
min(GLi1,GLi2,...,GLin)

, f or cost indexes
(A17)

Step 3: Computation of each index’s entropy via utilizing the concepts of Shannon’s
entropy. The entropy value of the jth index was calculated as:

Entropyj = −k
m

∑
i=1

fijln fij (A18)

where,
fij = Sij/ ∑m

i=1 Sij (A19)

k = 1/lnm (A20)

Step 4: Calculation of each index’s entropy weight value. The jth index’s entropy weight
was calculated as:

w(entropy)j =
1− Entropyj

n−∑n
j=1 Entropyj

(A21)

This entropy-based weight designates the prominence of any particular performance
index in the phases of the entire decision-making. The larger the numeric value of the
entropy weight, the greater information the specific index conveys, and the more significant
this performance index will become in the decision-making process.

Step 5: Calculation of each model’s rank weight is carried out by summing up the
multiplication of every index’s entropy weight and the normalized value of that particular
index. This step is mathematically represented by:

w(entropy)i =
n

∑
j=1

Sij × w(entropy)j (A22)

Step 6: Determination of model ranking

max [w(entropy)i], . . . ., min[w(entropy)i]; f or i = 1, 2, . . . , m (A23)
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