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Abstract: The possibility to create a flood wave in a river network depends on the geometric proper-
ties of the river basin. Among the models that try to forecast the Instantaneous Unit Hydrograph
(IUH) of rainfall precipitation, the so-called Multifractal Instantaneous Unit Hydrograph (MIUH)
rather successfully connects the multifractal properties of the river basin to the observed IUH. Such
properties can be assessed through different types of analysis (fixed-size algorithm, correlation inte-
gral, fixed-mass algorithm, sandbox algorithm, and so on). The fixed-mass algorithm is the one that
produces the most precise estimate of the properties of the multifractal spectrum that are relevant for
the MIUH model. However, a disadvantage of this method is that it requires very long computational
times to produce the best possible results. In a previous work, we proposed a parallel version of the
fixed-mass algorithm, which drastically reduced the computational times almost proportionally to
the number of Central Processing Unit (CPU) cores available on the computational machine by using
the Message Passing Interface (MPI), which is a standard for distributed memory clusters. In the
present work, we further improved the code in order to include the use of the Open Multi-Processing
(OpenMP) paradigm to facilitate the execution and improve the computational speed-up on sin-
gle processor, multi-core workstations, which are much more common than multi-node clusters.
Moreover, the assessment of the multifractal spectrum has also been improved through a direct
computation method. Currently, to the best of our knowledge, this code represents the state-of-the-art
for a fast evaluation of the multifractal properties of a river basin, and it opens up a new scenario for
an effective flood forecast in reasonable computational times.

Keywords: river networks; multifractal measures; fixed-mass algorithm; parallel algorithms

1. Introduction

The idea that the branched structures of river networks are multifractal and non-plane
filling objects was first suggested by several authors [1–3]. The importance of the relation
between the geometric characteristics of a river basin and its behavior under intense rainfall
precipitation has been pointed out by Fiorentino et al. (2002) [4], who introduced the Fractal
Instantaneous Unit Hydrograph (FIUH) model, in which they linked directly the lag time
distribution function of a basin with its fractal dimension D, in the hypothesis that the a
single fractal measure could characterize the whole river network. The model was further
refined by De Bartolo et al. (2003) [5], who substituted the fractal dimension D of Fiorentino
et al. (2002) with the generalized fractal dimension D−∞ under the assumption that a river
basin could be better represented as a multifractal object than as a simple fractal, thus
proposing the so-called Multifractal Instantaneous Unit Hydrograph (MIUH). Moreover,
the same authors showed, as in real cases, the MIUH can reproduce simulated hydrographs,
which are in fairly good agreement with the observed ones.

Then, it becomes evident as the possibility to effectively forecast a possible flood peak
happening in a river basin in the presence of rainfall precipitation is strictly connected with
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the need to evaluate the geometric properties of the river network in reasonable times, in
particular, according to the MIUH model, its generalized dimension D−∞. The problem of
determining the fractal dimensions of the basin can be summarized in the following steps:
first, the map of the river basin is projected onto a plane, and its structure is represented by
picking up (manually, or through automatic algorithms) a meaningful set of points lying
on the branches of such 2D maps, the so-called net-points; second, a multifractal analysis
is carried out in order to derive the generalized fractal dimensions Dq, the sequence of
Lipschitz–Hölder exponents αq and the multifractal spectrum f (αq).

The latter analysis can be performed through several numerical algorithms, which
have been widely investigated in the past (see, for instance, De Bartolo et al. (2006) [6]
and references therein for a discussion of the different approaches): fixed-size algorithms
(FSA, e.g., box-counting and sandbox algorithms), the correlation integral method (CIM)
introduced by Pawelzik and Schuster (1987) [7], and the fixed-mass algorithm (FMA)
introduced initially by Badii and Politi (1984) [8]. Among the different approaches, the
most promising one under the point of view of the possible application of an accurate
determination of the parameters entering the MIUH model is the FMA. This happens
because the generalized fractal dimension D−∞, present in the MIUH model, keeps account
of the contribution of the regions of the basin less populated by net-points. Since both the
FSAs and the CIM are based on the idea of counting the number of points falling inside a
region of a given size, when such regions are filled up with few points, their contribution
to the computation of high-order moments yields rather oscillating values due to the poor
statistics, which, in turn, produce large errors in the determination of the generalized
dimensions Dq. On the other hand, the FMA considers the mass, as established a priori,
and computes the characteristic sizes of the subset containing that mass, and therefore, it
does not suffer from such a problem.

The drawback of the FMA is in the slowness of the computation. Where the analyses
carried out numerically through the FSA and CIM produce the results in a computational
time that scales linearly with the total number of points N of the multifractal set, the FMA
requires a number of operations Nop proportional to N2 + N log2(N), which can be a
huge CPU time even on modern fast processors (see below for a detailed explanation of
this high number of operations). This produces a hardly solvable dilemma: on the one
hand, modern Digital Elevation Models (DEMs) and Laser Imaging Detection and Ranging
(LIDAR) techniques help in producing high-quality databases of river basins, with a very
high number of net-points, which can improve the precision in the computation of the
multifractal generalized dimensions, useful for the flood forecasts by using the MIUH
model, for instance; on the other hand, the multifractal analysis that supplies the best
results for the predictive models, the FMA, requires very long computational times, which
limits the effectiveness of real-time forecast of flood peaks.

However, although the number of operations needed by the FMA cannot be easily
decreased, it is a fact that modern computational supplies are typically equipped with
multicore CPUs or are even multi-CPUs. Moreover, it is not truly difficult nowadays to
assemble computational facilities by clustering several moderately expensive PCs intercon-
nected with good network switches to allow the computation of parallelizable algorithms
on a considerable amount of computational cores. In a previous article [9] (hereinafter we
refer to this article as P1), we have discussed in detail a possible implementation of a paral-
lel FMA by using the Message Passing Interface (MPI) paradigm [10], which is nowadays
a standard for parallel numerical computations on distributed memory machines (such
as the clusters of PCs cited above). Such a paradigm can also be used on shared memory
machines, such as single-CPU workstations. However, better speed-ups can be obtained on
single-node workstations by using the Open Multi-Processing (OpenMP) paradigm, which
is also a consolidated standard for parallel numerical computations on shared-memory
machines [11].

In the present article, we improved the parallel algorithm presented in P1 to include
the use of OpenMP. This can improve the performance of the parallelization when the
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computation is carried out on single-CPU, multi-core workstations instead of clusters
equipped with many computational nodes. Moreover, we further improved the analysis
by modifying the algorithm to include a direct computation of the multifractal spectrum
through the FMA [12]. In fact, in P1, the assessment of the multifractal spectra had been
carried out by first computing the generalized dimensions Dq through linear regressions
from the computation of the moments, then obtaining the Lipschitz–Hölder exponents
αq and the multifractal spectrum f (αq) by using suitable numerical differentiation with a
finite-difference approach. In the new version of the algorithm, instead, we used the direct
procedure suggested by Mach et al. (1995) [12] for the direct computation of αq and f (αq).
This allows an improvement of the precision in the computation of the latter two quantities
with respect to P1.

Other than giving more precise and reliable results in the determination of the mul-
tifractal properties of the river networks, the code currently used in the present work
exhibits an almost ideal scaling of the CPU time with the number of computational cores,
thanks to the hybrid MPI/OpenMP parallelization, as will be shown in the section of the
paper devoted to the presentation of the results and the discussion. The improvements in
the computational speeds are remarkable and are limited only by the available number
of cores present on the machine. It is worth noticing that the speed-up is rather good on
both single-node, multi-core machines (like most workstations) and multi-node, multi-core
clusters, as will be shown below.

The plan of the article is the following. In next section, Materials and Methods, we
explain the serial FMA, the reasons for which it requires the very long computational times
given by Nop and the implementation of the direct computation of the Lipschitz–Hölder
exponents and of the multifractal spectrum; then we summarize the parallelization of the
algorithm with the MPI paradigm, proposed in P1, and the new OpenMP parallelization
strategy implemented in the present work. In the third section, devoted to the results,
we applied the proposed numerical methods to the computation of the properties of a
theoretical multifractal set to evaluate the improvements of the application of the direct
computation of the spectra, and then we analyze how the algorithm scales on different
parallel configurations, with MPI only, OpenMP only, or with a hybrid MPI/OpenMP
approach. Finally, in the section devoted to discussion, we draw some conclusions on the
effectiveness of the proposed algorithm and the possible implications this may have on
flood forecasts.

2. Materials and Methods

The multifractal analysis of a set of points is based on generating different partitions
of the set itself and studying the scaling properties of the characteristic lengths with respect
to the number of points (the so-called “measure” or “mass”) falling in each partition of the
set. In particular, we assume that N is the total number of points of the set and that we can
partition the set in nc non-overlapping cells. Let us call si, i = 1, . . . , nc, the size of the i-th
cell and pi the total “mass” (in our case, the number of net-points) falling inside the same
cell. For points belonging to a multifractal set, it is possible to show that the following
relation must hold:

lim
si→0

nc

∑
i=1

pq−1
i s

τq
i

nc
= k (1)

k being a constant, generally taken equal to 1, without losing generality.
In Equation (1), it is possible to show that, for each value of k, an infinite ensemble of

solutions (q, τq) of the problem exists. The generalized fractal dimensions Dq are related to
those solutions through the relation:

Dq =
τq

q− 1
, ∀q 6= 1 (2)
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When the solutions (q, τq) are known, the Lipschitz–Hölder exponents (or “spectrum
of the singularities”) αq and multifractal spectrum f (αq) are given through the relations:

αq =
dτq

dq

f (αq) = qαq − τq

(3)

The approach of the FSA (just to fix the concepts, we use as an example the procedure
followed in the box-counting technique) to find the solutions (q, τq) of Equation (1) is to
consider an ensemble of partitions: for each of them, the sizes of the cells si are kept
constant (si = s, from which the name fixed-size algorithm), but this constant value
decreases exponentially when changing the partition. By taking the logarithms of both
sides of Equation (1), in the limit of a vanishing size s, one obtains:

lim
s→0

log M(s, q) = τq lim
s→0

log s + log k (4)

with:

M(s, q) =

nc

∑
i=1

pq−1
i

nc
(5)

being the (q − 1)-th moment of the “mass” pi falling inside each box of the partition.
Therefore, the solution τq, for a given set of values of q can be determined as the slope of
the linear relation shown in Equation (4) for vanishing values of the size s. In practice,
for each value of q, τq is computed through a linear regression of the logarithms of the
moments M(s, q) with respect to the logarithm of the size s by considering k = 1. Once the
solutions (q, τq) of Equation (1) have been determined, the generalized dimensions Dq, the
Lipschitz–Hölder exponents αq and the multifractal spectrum f (αq) can be determined by
using Relations (2) and (3).

For the FMA, the situation is the opposite. Instead of keeping the size si as constant
for each cell of the i-th partition, one fixes the “mass” pi = p (in our case, the number of
net-points inside each cell of the partition) and computes the characteristic size si of the cell
containing that specific number of points. Again, the solution (q, τq) of Equation (1) can
be determined by taking the logarithms of both sides of the equation and considering the
limit for p→ 0:

lim
si→0

log M(si, τq) = (1− q) lim
p→0

log p + log k (6)

with:

M(si, τq) =

nc

∑
i=1

s
−τq
i

nc
(7)

Here, we took into account the fact that p → 0 whenever si → 0. In this case, the
solution (q, τq) of Relation (1) is obtained by fixing a set of values for τq and finding the
corresponding value of q as the slope of the linear relation shown in Equation (6), which
yields the value of 1− q. The latter operation can be carried out as a linear regression of
the logarithms of the moments M(si, τq) as a function of the logarithms of the “mass” p
(always for k = 1).

In practice, the FMA works in the following way: (i) first, one fixes a set of values
for τq in a given interval and a discrete set of values for p (between 1 and N/2); (ii) for
a given value of p, the size of the circle containing a “mass” equal to p is computed by
calculating, for each of the N points of the set, the first p-th nearest neighbors; (iii) once the
different radii si of the circles containing at most p values are found, for each point, one can
compute the moments (Equation (7)) for all specified values of τq. The true bottleneck of
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the algorithm lies in the point (ii): since for each point of the set, the reciprocal distances for
all the points must be computed, and, subsequently, the vector of such quantities must be
sorted in increasing order, in such a way that the p-th element of the vector represents the
radius of the cell containing, for each point, the p nearest neighbors. The sorting operation
can be carried out in a “fast” way, in N log2(N) operations, for instance, with a heap-sort
algorithm, but the computation of the distances between each couple of points requires
about N2 operations. Therefore, the total number of operations required for a set containing
N points is:

Nop ∝ N2 + N log2(N)

which is a really huge number for high values of N, much higher than the simple counting
operations needed by many of the FSAs.

On the other hand, the FMA is superior to the FSAs, in many respects, at least for the
assessment of the multifractal properties of river networks, as shown by [6]. In fact, as cited
above, the main quantity connected to the geometrical properties of the set and entering
the MIUH model is the quantity D−∞, which corresponds to the zones of the fractal set
where the points are more rarefied. This also corresponds to the maximum value of the
Lipschitz–Hölder exponent αmax. Therefore, the precise determination of the generalized
dimensions Dq in the zones where the number of points is more rarefied is crucial for
the possibility of obtaining an optimal forecast in the MIUH model. Unfortunately, FSAs
exhibit strong oscillations in the computation of the moments (Equation (5)) in the more
rarefied zones of the set due to poor statistics (because the size is fixed, and the “mass”
falling in the cell of the partition is “counted”). On the other hand, FMA does not suffer
from such a problem since, in that case, the number of points is fixed and the size of the
cell computed accordingly. Therefore, the assessment of the D−∞ with the FMA is much
more precise than with FSA, i.e., the first is more suitable to be used for flood forecasting
models like the MIUH.

This represents a problem, in view of the fact that modern DEM and LIDAR techniques
allow the extraction of a quite high number of net-points, which would help improve the
predictive quality of the MIUH. Moreover, recently, an attempt has been made to investigate
scaling laws in flow patterns obtained by numerically simulating the behavior of a river
basin through a 2-dimensional Shallow-Water approach [13]. In such cases, virtually every
point of the numerical grid can be considered as a net-point, thus requiring a significant
numerical effort to characterize the multifractal properties of the basin under study.

A possible solution for the problem of the long computational times for high values
of N, as evidenced in P1, is the parallelization of the FMA. In P1, we proposed a possible
parallelization of the algorithm based on the Message Passing Interface (MPI) paradigm.
This computational model has become a standard for parallel computing, especially on
distributed memory machines. It requires that the computations needed by the numer-
ical code can be divided among a team of numerical cores participating in the parallel
computation. This condition is realized by starting at the same time separated instances
of a process on the different cores and whenever one of the cores needs to be informed
on the status of the computation carried out by other cores, the processes communicate
among them through a Local Area Network (LAN) interconnection. This is quite effective
on distributed memory machines, in which several independent nodes are reciprocally
interconnected through a LAN, but it can, in principle, also work on single-node machines
by running the different instances of the code on the different cores of a single, multi-core
CPU. However, simulating the presence of a network communication on such machines,
where no network is necessary since the cores communicate through the physical bus of
the processor, generates some latency in the communications. In P1, we measured the
speed-up of the code by finding a fairly good scaling of the computational speed with the
number of processors np, although the speed-up curve has a linear trend (i.e., very close to
the theoretical scaling) for smaller np only and tends to saturate for an increasing number
of computational cores due to the above-cited latency in the communications.
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For this reason, we implemented the OpenMP directives into the code in order to
improve the computational speeds on shared memory machines. This paradigm is nowa-
days a standard for this kind of computation, and it works through the use of “directives”,
which can be considered as simple comments, and therefore ignored, unless the compiler is
specifically instructed to consider them with special compilation flags. The parallelization
in OpenMP works in a fork/join implementation: a single process executing the code forks
in a sequence of “threads” (whose number can be specified through environment variables
before the execution of the run) when it encounters # pragma omp parallel directives,
which marks the beginning of a region of the code that can be executed in parallel. The
threads join at the end of the parallel region, and the execution of the code continues as
a serial run. The real effectiveness of such a paradigm depends strictly on the problem
solved by the code: codes involving large, time-consuming loops can be parallelized much
more effectively with respect to a sequence of small loops due to the latency in the creation
of the threads that, being almost independent processes, can require a fairly large amount
of CPU time to be created.

However, in the case of the FMA, the main bottleneck resides in the big loop that
computes the mutual distances between the net-pointsand sorts them. This represents an
almost ideal case for an OpenMP implementation. As we will show below, indeed, the
improvements obtained with the adoption of the OpenMP paradigm are relevant with
respect to the pure MPI case. Moreover, the application of both the paradigms (MPI and
OpenMP) is not at all new in hydraulics applications (see, for instance, [14–16] for relevant
hydraulic applications, albeit in different contexts).

Moreover, beyond improving the computational times of the code on single-node,
multi-core machines, we also improved the precision in the determination of the multifrac-
tal spectrum by including the direct computation of the Lipschitz–Hölder exponents αq
and multifractal spectrum f (αq) in the code, adopting the technique first introduced by
Mach et al. (1995) [12]. In P1, for instance, once the solutions (q, τq) of Equation (1) are
known, the determination of αq and f (αq) was carried out by computing the derivatives in
Equation (3.1) by using a second-order finite differences method with a non-uniform stencil
due to the fact that the values of q are chosen uniformly distributed in a given interval,
but the τq, which are numerically calculated from the linear regression of the moments
as in Equation (6), are not equally spaced (for details about the used formulae, see P1).
This introduces some amount of numerical error, which makes the determination of αq and
f (αq) less precise. Instead, the direct computation method introduced in [12] computes the
spectrum of the singularities and the multifractal one through the relations:

lim
p→0

nc

∑
i=1

s̃i log si

nc
= α(τq) lim

p→0
log p

lim
p→0

nc

∑
i=1

s̃i log s̃i

nc
= f [α(τq)] lim

p→0
log p

(8)

where:

s̃i =
s
−τq
i

1
nc

nc

∑
j=1

s
−τq
j

(9)

which represents a normalized measure of the characteristic lengths to the power −τq. The
advantage of the above method is that it does not require any numerical differentiation and
a linear regression between the quantities at the left hand side of Equation (8) as a function
of log p is enough to compute both αq and f (αq). A detailed derivation of Equation (8) is
shown in Appendix A.
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The parallelization strategy adopted in order to divide the computational effort among
the different nodes and cores of the computational machine was oriented to accelerate the
computation of the mutual distances among the net-points, which is a N2 algorithm. By
following the method pursued in P1, we read the file with all the net-points on all the MPI
processes; however, the computation of the distances is carried out on different subsets of
points on each computational node. The parallelization with OpenMP follows the same
idea: on each node, the loop for the computation of the distances is further divided on each
computational core through a #pragma omp parallel directive by suitably specifying the
different role (private or shared) of the loop variables.

When the mutual distances of each point from the others have been calculated, such a
vector is sorted in ascending order with a heap-sort method. This operation is still carried
out in parallel for each node and core. By sorting the vector of the distances, we ensure that
the p-th element of such a vector corresponds to the radius of the circle containing at most
p nearest neighbors. At this point, the contribution to the moments in Equations (7), (8.1)
and (8.2) is executed separately on each core. At this point, two “reduce” operations—the
first to add-up the contribution computed on each core through a pragma opm reduce
directive and the second to sum the contribution of each single node through a MPI_REDUCE
operation—are performed in order to evaluate the final values of the different moments.

Finally, the linear regressions necessary to compute the values of τq, αq and f (αq)
through the direct method [12] are calculated through a python script. Examples of the
results obtained in the case of a deterministic multifractal are shown in the next section.

3. Results

In this section, we analyze the results of the application of the direct method to a
deterministic multifractal for the determination of τq, αq and f (αq) to assess the precision
of the method in a case in which the theoretical solution of the problem is known. After
that, we study the effectiveness of the parallel algorithm in the case of the pure OpenMP
implementation, which should mimic the most common case of a machine with a single
CPU and many computational cores; then we analyze the performances of the pure MPI
parallel case, which should be closer to the case of a multi-node machine.

3.1. Testing the Direct Method against a Deterministic Multifractal

Here we analyze whether the direct method for the FMA provides good results in
terms of the precision in the assessment of the relevant multifractal quantities τq, αq and
f (αq). To accomplish this aim, we build up a deterministic multifractal through an iterative
procedure, whose multifractal properties can be easily evaluated, to compare with the
results of the numerical algorithm.

To do this, we use the same deterministic multifractal used in P1 in order to compare
the results obtained in P1, where the multifractal spectrum was obtained through numerical
differentiation and not through the direct method. We briefly recall here the construction
of the deterministic multifractal. Major details can be found in P1 and [17].

We start from a square S = [0, 1]× [0, 1] and consider the following transformations:

S1 : (x, y)→ (x′, y′) = (
1
2

x,
1
2

y)

S2 : (x, y)→ (x′, y′) = (
1
2
(x + 1),

1
2

y)

S3 : (x, y)→ (x′, y′) = (
1
2

x,
1
2
(y + 1))

S4 : (x, y)→ (x′, y′) = (
1
2
(x + 1),

1
2
(y + 1))

(10)

In practice, the original square, with a side equal to 1 partitioned into 4 squares, each
having sides equal to 1/2 and the transformations Si, i = 1, . . . , 4 map a generic point (x, y)
into another point belonging to one of the 4 squares of side 1/2. We assign to such mapping
some probability to happen, for instance: Pi = i/10, for i = 1, 2, 3, 4. Notice that: ∑i Pi = 1.
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This means that the transformation S1 can happen with a probability equal to 1/10, S2 with
a probability 2/10, and so on. We then generate an ensemble of N random numbers in
the interval [0,1], and we apply the transformation Si if the random number falls in one
of the intervals: [0,1/10], [1/10,3/10], [3/10,6/10] and [6/10,1]. Since the widths of such
intervals are just equal to Pi, each transformation Si will happen with such a probability.
The result of such a construction for the case of N = 105 net-points is shown in Figure 1.
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∑
i=1

P̃i log P̃i

(12)

where the quantity P̃i is defined in a way analogous to Equation (9):

P̃i =
Pq

i
4

∑
j=1

Pq
j

One can notice here that:
4

∑
i=1

P̃i = 1, which, again, is a property analogous to the one given

in Appendix A, Equation (A4), for the quantity s̃i defined in Equation (9).
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In the different panels of Figure 2, one can see the comparison between the plots
of τq, αq and f (αq) obtained through the parallel FMA (diamonds) and the theoretical
values given by Equations (11) and (12) (black, solid line). It is evident as the two results
are practically identical, thus suggesting that the numerical procedure, together with the
direct method, produces a very precise assessment of the multifractal properties of the set
under study. One can compare such results with the one obtained in P1 (see Figure 3 in
P1: https://link.springer.com/book/10.1007/978-3-030-39081-5 30 October 2021) through
numerical differentiation to realize how the direct method allows a much more precise
assessment of the multifractal spectrum.

5 0 5 10 15
q

20

15

10

5

0

5

10

15

20

(q
)

5 0 5 10 15
q

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

q

1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25
q

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

f(
q)

Figure 2. Comparison between the theoretical (solid line) and numerical (diamonds) values of τq

(upper left panel), αq (upper right panel) and f (alphaq) (lower panel).

3.2. Testing the Effectiveness of the Parallelization Strategy

After verifying that the parallel algorithm yields fairly good results, we want to verify
the improvements the parallel version of the code brings about in view of a possible
application of the method for the flood forecast.

We define the computational speed-up in the usual form:

S(n) =
T1

Tn

where T1 is the CPU time for a serial run, whilst Tn is the execution time in parallel on
n cores. For a perfectly parallelized code, Sth = n. Such theoretical value in most cases
can be typically only reached on a low number of cores due to several effects. On single-
node, multi-core machines, the limited bandwidth of the memory bus, through which all
inter-node communications pass, represents a bottleneck when a large number of cores
have to communicate with each other. The situation is even worse on multi-nodes systems
since all communications pass through the LAN, which is generally much slower than the
memory bus of the motherboard. Therefore, the theoretical scaling Sth is only reachable for

https://link.springer.com/book/10.1007/978-3-030-39081-5
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those algorithms that require very few or no communications at all (although, in some very
special cases, even a superlinear scaling, namely better than the theoretical one, is possible).

In Figure 3, the theoretical (Sth) speed-up (red solid red line), the one obtained by
using OpenMP only (blue diamonds) and the one obtained by using only MPI (green stars)
are shown for comparison as a function of the number of cores. The simulations have been
run on a single-node, 6-core workstation equipped with an Intel i7-10710U CPU with a
peak frequency of 4.7 GHz. It is evident that the parallelization with OpenMP considerably
improves the performance with respect to the pure MPI case, giving a speed-up much
closer to the theoretical one.

1 2 3 4 5 6
n

1

2

3

4

5

6

S(
n)

Theoretical
OpenMP
MPI

Figure 3. Comparison between the theoretical (red solid line), OpenMP (blue diamonds) and MPI
(green stars) speed-ups.

Finally, we analyzed the speed-up that can be obtained on a multi-node cluster to
estimate the parallel performances of the code when compared with the single-node,
single-CPU case treated above. In this case, the code was run on a cluster composed of 32
computational nodes. Each node is equipped with 2 Intel Xeon E5-2680v2 CPUs with 10
cores/CPU at a peak speed of 2.8 GHz and 128 GB of RAM/node. We ran the code with a
number N = 105 net-pointsin 10 different configurations, as reported in Table 1. One run
was executed with the serial version of the code (Run 0 in Table 1), and the reported CPU-
time was 1203 s. All the other 10 runs were executed with different combinations of MPI
processes and OpenMP threads in order to analyze whether the OpenMP parallelization
can effectively enhance the computation. For instance, Runs 4, 5 and 6 were all executed
with the same number of total processes (here, we consider an OpenMP thread as an
actual process, although this is true only during the time in which the processes fork). In
this case, Run 4 was a pure MPI run, with 8 MPI processes and 1 OpenMP thread. In
this case, the CPU-time used for the computation was 220 s, which is quite distant from
the theoretical scaling: serial time/ number of processor ∼150.38 s. Then, Run 5 was
a hybrid MPI/OpenMP code, always involving the execution of 8 processes in total (4
MPI processes and 2 OpenMP threads). In this case, the CPU time used by the code was
considerably lower at 181 s. The last run, Run 6, was a pure OpenMP run, with 1 MPI
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process and 8 OpenMP threads. In this case, the measured CPU time was 156 s, which is
very close to the theoretical scaling of 150.38 s reported above. In all other cases (4 and
16 total processes), we found the same behavior, namely the code benefits some further
speed-up from the introduction of the OpenMP directives with respect to the pure MPI case.

Table 1. Table showing the comparison of the execution times for different MPI/OpenMP combi-
nations of processes/threads for N = 105 net-points. Except for the case of Run 0, where the code
is executed in serial mode, in all other cases, the code is executed on 4, 8 and 16 total processes
(we consider here an OpenMP thread as a process) with different combinations of MPI/OpenMP
processes/threads in order to see whether the OpenMP parallelization improves the speed-up with
respect to the pure MPI case (Runs 1, 4 and 7).

Run # MPI Procs # OpenMP Threads Total Procs Time (s)

Run 0 (serial) 1 1 1 1203
Run 1 4 1 4 340
Run 2 2 2 4 318
Run 3 1 4 4 301
Run 4 8 1 8 220
Run 5 4 2 8 181
Run 6 1 8 8 156
Run 7 16 1 16 101
Run 8 8 2 16 95
Run 9 4 4 16 86

Run 10 2 8 16 77

The results contained in Table 1 are shown in terms of the computational speed-up
S(n) in Figure 4. The red solid line represents the theoretical speed-up, whilst the different
points are the speed-ups measured for the different Runs (listed in the legend of the Figure)
in Table 1. For the cases with 4, 8 and 16 total processes, the points that are closer to the
theoretical speed-up are the ones with the highest number of OpenMP threads (Runs 3, 6
and 10, respectively).

These findings, again, confirm that OpenMP drastically reduces the latences of the
communications by increasing considerably the speed-up of the computations with respect
to the simple MPI case. Moreover, Run 3 and 4 show that whenever possible, the higher
the number of used OpenMP threads, the higher the speed-up is. Of course, this situation
may soon saturate due to the limited amount of cores available on each CPU and the fact
that all cores of the CPU share the same memory bus, which can become a bottleneck
when each core has to access large parts of the memory, and this may be particularly
critical for a much larger number of net-points. Some numerical experiments are needed, in
each case, to establish the best combination of MPI/OpenMP cores to use to minimize the
execution speed.
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Figure 4. Comparison between the theoretical (red solid line) speed-up and the ones obtained with
the different combinations of MPI/OpenMP processes/threads shown in Table 1.

4. Discussion

In the past, several studies have shown that river networks are non-plane filling,
multifractal structures and that their geometric properties strongly influence the behaviour
of the instantaneous hydrograph during rainfall precipitation. Models such as the MIUH,
discussed above, require detailed knowledge of the generalized dimensions of the river
basin. In the past, several authors have shown that, among the several possible methods,
the FMA was the one yielding the most precise assessment of the multifractal measures for
hydrological applications. However, the FMA has the disadvantage, with respect to other
methods, to require rather long computational times to accomplish the analysis.

In order to tackle this problem, we transformed a serial code, developed in the past
to implement the FMA, into a parallel code to reduce the computational times. In fact,
nowadays, modern computers have an increasingly higher number of computational cores,
which can be used together to speed-up the computation. The present study investigates the
possibility to improve this already existing parallel (pure MPI) numerical code to include
the parallelization through the OpenMP paradigm, which is nowadays a standard for
parallel computations on shared memory machines. Although the code parallelized with
MPI allowed the parallel execution not only on multi-node clusters but also on single-node
workstations, we have shown here that the adoption of the OpenMP parallel directives are
quite beneficial for the speed-up of the computation. In any case, the code can be run in a
hybrid mode by using the MPI library to manage the execution on multi-node clusters and
OpenMP to ensure the best possible execution time on the single node. Our results have
shown that the latter yields the best results in terms of computational speed-up in the case
of distributed memory machines.

As an example, the serial version of the code in the case of N = 105 net-pointstakes
about 1203 CPU seconds to be executed according to the results shown in Table 1. This
means that, if we had N = 106 net-points, namely 10 times more than our simple study-case,
by retaining only the most important terms in the number of operations (N2), we can expect
that the CPU time needed by the serial version of the code would be about 120300 CPU
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seconds, namely around 33.5 CPU hours. If we have a machine with 16 cores available,
for instance, due to the quasi-linear scaling of the code in the hybrid MPI/OpenMP case,
we could obtain the results in just 2.5 CPU hours. This is, of course, not an ideal situation,
but, in principle, the speed-up is limited only by the number of cores available on the
machine. The pure MPI implementation realized in P1, for instance, would yield an almost
ideal speed-up for a lower number of processes only due to the latency of the network
interconnection. This situation can be minimized by using the hybrid MPI/OpenMP
implementation of the code described in the present work.

Along with the improvements in the parallelism of the computation, another con-
siderable step towards a better assessment of the generalized dimensions of a river basin
was taken by introducing a direct method for the computation of the Lipschitz–Hölder
exponents and the multifractal spectrum. This allowed us to obtain, at least for the known
case of a deterministic multifractal, a very precise assessment of those quantities, better
than that obtained in the past through numerical differentiation.

5. Conclusions

The possibility of studying the multifractal properties of river networks through this
code opens up, in our opinion, a new scenario in the application of models such as the
MIUH for flood forecasting. In fact, single-node, multi-core CPUs are nowadays present
even on desktop workstations. The parallelization of the code proposed here can exploit
the presence of the different cores on the CPU in an optimal way by effectively dividing
the computational time by the number of available cores. The situation can be even further
improved if more nodes are available, thanks to the MPI implementation.

However, some further improvements are still possible. Nowadays, an increasing
amount of codes for scientific analysis are implementing the possibility to execute the
heaviest numerical tasks on Graphics Processing Units (GPUs), which are equipped with a
huge amount of computational cores, albeit with less extended capabilities with respect to
the cores of the CPUs. Typical paradigms for exploiting the computational power of the
GPUs are: CUDA, developed by Nvidia; OpenACC, developed by Cray, CAPS, Nvidia
and PGI; OpenGL, developed by SGI. We are currently developing a CUDA version of the
parallel FMA in order to further accelerate the computation of the multifractal properties of
river networks. This work is still in progress, and it will be the topic of a forthcoming paper.

In conclusion, the almost ideal scaling with the number of cores achieved by the code,
along with the high precision in the assessment of the multifractal properties, ensured
by the use of the direct method by Mach et al. (1995), make the code presented here a
sort of state-of-the-art tool for the numerical assessment of the multifractal measures of
river basins. This could allow the formation of specialized activities oriented to concretely
realize a sort of real-time forecasting of flood peaks in hydrological applications.
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Abbreviations
The following abbreviations are used in this manuscript:

IUH Instantaneous Unit Hydrograph
MIUH Multifractal Instantaneous Unit Hydrograph
MPI Message Passing Interface
OpenMP Open Multi-Processing
FIUH Fractal Instantaneous Unit Hydrograph
FSA Fixed-Size Algorithm
CIM Correlation Integral Method
FMA Fixed-Mass Algorithm
DEM Digital Elevation Models
LIDAR Laser Imaging Detection and Ranging
P1 Abbreviation for the article: Primavera and Florio (2020) [9]

Appendix A

In order to show how to obtain Equation (8), we have to understand that in the
FMA case, we obtain the values of q(τ) instead of τ(q). In other words, the roles of q
and τ are exchanged between them. In this description, it can be shown [12] that the
Lipschitz–Hölder exponents and the multifractal spectra are given by the relations:

α(τ) =
dq
dτ

;

f [α(τ)] = q(τ)− τ α(τ).
(A1)

We start from the scaling relation in Equation (6), for k = 1, from which we obtain:

q = 1− lim
si ,p→0

1
log p

log

(
∑i s−τ

i
nc

)
. (A2)

Here we use the fact that when the size of the partition tends to zero (si → 0), the “mass”
contained in the cell also tends to zero (pi = p→ 0). Moreover, to simplify the notation, all
the index of the sums range implicitly from 1 to nc.

Now, for α(τ), from Equation (A1.1), we have:

α(q) =
dq
dτ

= − lim
si ,p→0

1
log p

d
dτ

log

(
∑i s−τ

i
nc

)
=

= lim
si ,p→0

1
log p

nc

∑j s−τ
j

∑
i

s−τ
i
nc

log si =

= lim
si ,p→0

1
log p

1
nc

1
1
nc

∑j s−τ
j

∑
i

s−τ
i log si =

= lim
si ,p→0

1
log p

1
nc

∑
i

s−τ
i

1
nc

∑j s−τ
j

log si =

= lim
si ,p→0

1
log p

1
nc

∑
i

s̃i log si

(A3)

where we have introduced the definition of s̃i given in Equation (9). Equation (A3) has the
same scaling properties in the limit of vanishing si and p as Equation (8.1). Therefore, a
simple linear regression yields the values of α(τ).

It is worth noticing here that:
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1
nc

nc

∑
i=1

s̃i =
1
nc

nc

∑
i=1

s
−τq
i

1
nc

nc

∑
j=1

s
−τq
j

= 1 (A4)

since the sum on the index j can be removed from the sum over the index i. This property
will be useful in the next formulae.

Instead, for f [α(τ)], from Equation (A1.2), we have:

f [α(τ)] = q(τ)− τ α(τ) =

= 1− lim
si ,p→0

1
log p

log

(
∑j s−τ

j

nc

)
− τ

(
lim

si ,p→0

1
log p

1
nc

∑
i

s̃i log si

)
=

= 1− lim
si ,p→0

1
log p

log

(
∑j s−τ

j

nc

)
+

(
lim

si ,p→0

1
log p

1
nc

∑
i

s̃i log s−τ
i

)
=

= 1 + lim
si ,p→0

1
log p

[
1
nc

∑
i

s̃i log s−τ
i − log

(
∑j s−τ

j

nc

)]
=

= 1 + lim
si ,p→0

1
log p

[
1
nc

∑
i

s̃i log s−τ
i −

(
1
nc

∑
i

s̃i

)
log

(
∑j s−τ

j

nc

)]
=

= 1 + lim
si ,p→0

1
log p

[
1
nc

∑
i

(
s̃i log s−τ

i − s̃i log
∑j s−τ

j

nc

)]
=

= 1 + lim
si ,p→0

1
log p


 1

nc
∑

i
s̃i log




s−τ
i

∑j s−τ
j

nc





 =

= 1 + lim
si ,p→0

1
log p

{
1
nc

∑
i

s̃i log s̃i

}

(A5)

where we used the property (A4) in the fifth line of Equation (A5).
This relation, except for a constant equal to 1, has the same scaling properties of

Equation (8.2). Therefore, a linear regression analysis carried out on the latter Equation
yields the values of f [α(τ)] we were seeking.
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