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Abstract: Algal blooms are one of the most serious threats to water resources, and their early detection
remains a challenge in eutrophication management worldwide. In recent years, with more widely
available real-time auto-monitoring data and the advancement of computational capabilities, fuzzy
logic has become a robust tool to establish early warning systems. In this study, a framework for
an early warning system was constructed, aiming to accurately predict algae blooms in a river
containing several water conservation areas and in which the operation of two tidal sluices has
altered the tidal currents. Statistical analysis of sampled data was first conducted and suggested the
utilization of dissolved oxygen, velocity, ammonia nitrogen, total phosphorus, and water temperature
as inputs into the fuzzy logic model. The fuzzy logic model, which was driven by biochemical data
sampled by two auto-monitoring sites and numerically simulated velocity, successfully reproduced
algae bloom events over the past several years (i.e., 2011, 2012, 2013, 2017, and 2019). Considering
the demands of management, several key parameters, such as onset threshold and prolongation
time and subsequent threshold, were additionally applied in the warning system, which achieved a
critical success index and positive hit rate values of 0.5 and 0.9, respectively. The differences in the
early warning index between the two auto-monitoring sites were further illustrated in terms of tidal
influence, sluice operation, and the influence of the contaminated water mass that returned from
downstream during flood tides. It is highlighted that for typical tidal rivers in urban areas of South
China with sufficient nutrient supply and warm temperature, dissolved oxygen and velocity are key
factors for driving early warning systems. The study also suggests that some additional common
pollutants should be sampled and utilized for further analysis of water mass extents and data quality
control of auto-monitoring sampling.
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1. Introduction

As urban, industrial, and agricultural activities rapidly increase, their attendant en-
vironmental issues have also intensified to the great concern of scientists and the public.
Algal blooms are one such issue and have become a serious threat to water resources
worldwide [1,2]. Algae blooms induce problems such as depletion of oxygen [3], decreased
biodiversity [4,5], and reduced water transparency. These problems pose serious risks to
human health [6], fisheries, and [7] water resource sustainability. For example, in water
conservation areas [8], waterworks must stop operating when algae blooms occur. Prevent-
ing severe deterioration of water quality due to the fact of this issue will require effective
environmental management techniques. Of particular importance are early warning tech-
niques aimed at identifying algae blooms before or as they occur [9]. This enables rapid
response by the aquaculture industry and other stakeholders at the onset of algae blooms
and increases the chance of mitigating their impacts.
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In recent years, a wide variety of predictive methods have been developed to forecast
algae blooms [10]. They aim to provide an estimation of the likelihood of occurrence and
abundance over short or long timescales [11]. Mechanistic models typically describe the
growth, transport, and decline of phytoplankton [12]. The complexity of these approaches
varies with considered mechanisms, the data availability, and the requirement of prediction.
Statistical models rely on large data sets and tend to be tailored to the specific data set used
for their development. However, theoretical frameworks, such as mechanisms and expert
knowledge, may be difficult to implement in a purely data-driven statistical model.

Furthermore, the precision of the aforementioned methods is constrained by many
factors. First, the definition of a ‘bloom’ event varies among algal species and the require-
ments of management. Some species form a visible bloom or have a significant impact
even with a concentration below a certain density (e.g., Dinophysis spp. can be harmful at
<103 cells L−1 [13]). Second, the crucial drivers and processes of algal blooms are still not
fully understood. The high degree of spatiotemporal heterogeneity in species composition,
food–web interactions, and forms and fluxes of nutrients all account for the imperfect per-
formance of forecasts [14]. Third, notable public events of algae blooms underscore the gaps
between scientific knowledge and applied management [15]. The closure of drinking water
facilities in Toledo, Ohio, in 2014 points to the vulnerable linkages between public demands
and scientific research, which has persisted for two decades, indicating that focusing on the
nutrient concentration is not sufficient for prevention and detection of bloom events [16].
In particular, for coastal areas, shore-based and off-shore monitoring were suggested to
be implemented together to provide sufficient information for decision making regarding
beach closures and aquaculture management practices during blooms [17], even though
the high financial costs often hinder the execution.

New statistical techniques have been deployed to predict algal blooms in response
to observations. Combined with new mechanistic models, statistical data-driven models
enable a deeper understanding of the processes governing the initiation, growth, transport,
and decline of algae, which leads to significant improvements in predicting blooms [18]. A
fuzzy logic model is a typical example of a data-based empirical–statistical model integrated
with known processes. Fuzzy logic is a modeling approach [19] with the ability to reflect
human behavior, which enables it to deal with uncertain and ambiguous subjects [20]
such as currency exchange rates [21], weather prediction [22], and risk assessment [23].
In environmental science, fuzzy logic is widely used to develop environmental indices,
especially with respect to water quality. Instead of assigning a single qualification to a
state variable (e.g., a temperature of 20 ◦C is ‘high’), fuzzy logic applies the concept of
memberships of multiple qualifications. For instance, a temperature of 20 ◦C is assigned a
membership of 0.75 for the qualification ‘intermediate’ and a membership of 0.25 for the
qualification ‘high’. In this way, the degree to which quantitative inputs are assigned to each
category determines the membership. This allows for a more continuous representation of
the state variables. Second, using IF-THEN rules to embody a premise or known causality,
fuzzy logic can combine knowledge of the processes affecting algae blooms with the
conceptual criteria of environmental management. To illustrate, IF the temperature is high,
the current velocity is low and the nutrient concentration is high, THEN the probability of a
bloom is high. With the advantage in considering known processes and utilizing real-time
observation together, fuzzy logic shows promise as an effective tool for building forecasting
systems for algal blooms [24,25].

The Shawan River (Figure 1), located at the center of the Guangdong–Hong Kong–
Macau Greater Bay Area, serves as an important drinking water source. However, it
has connections with other tidal channels (the Shiqiao River) that receive domestic and
industrial sewage. Furthermore, the bidirectional tidal currents decrease the exchange
efficiency of water mass, which increases the vulnerability of the water quality of the Shiqiao
River. There have been two recorded algae blooms: from 25 October to 25 December 2010
and from 22 to 28 October 2012. To prevent further severe deterioration of drinking water
resources due to the fact of algae blooms, sampling of relevant biochemical factors and
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construction of an early warning system were carried out in 2013 and 2014. Subsequently,
this study aimed to develop an early warning index of algae blooms based on a fuzzy logic
model. Section 2 provides a brief introduction of the study area and the framework of the
early warning system. Section 3 presents the application and evaluation of the established
model. Section 4 contains an analysis of the sensitivity of the framework with respect to
the model structure and the setting of thresholds. Section 5 provides the conclusion and
future outlooks.

Water 2021, 13, x FOR PEER REVIEW  3  of  23 
 

 

River. There have been two recorded algae blooms: from 25 October to 25 December 2010 

and from 22 to 28 October 2012. To prevent further severe deterioration of drinking water 

resources due to the fact of algae blooms, sampling of relevant biochemical factors and 

construction of an early warning system were carried out in 2013 and 2014. Subsequently, 

this study aimed  to develop an early warning  index of algae blooms based on a fuzzy 

logic model. Section 2 provides a brief introduction of the study area and the framework 

of the early warning system. Section 3 presents the application and evaluation of the es‐

tablished model. Section 4 contains an analysis of the sensitivity of the framework with 

respect to the model structure and the setting of thresholds. Section 5 provides the con‐

clusion and future outlooks. 

 

Figure 1. The bathymetry and locations of auto‐monitoring stations, sampling sites, and tidal sluices 

in the Shawan–Shiqiao basin. The inset shows the distribution of the Guangdong–Hong Kong–Ma‐

cau Greater Bay Area, Pearl River estuary, major tributaries of the Pearl River, together with the 

location of the Shawan–Shiqiao basin. The Longwan Sluice and Yanzhou Sluice are represented by 

red lines across the river. The two auto‐monitoring sites, Panyu (PY) station and Dongchong (DC) 

station, are labeled by red dots. The two rivers are connected by the Dajiulv (DJL) channel. Purple 

triangles indicate the 10 sampling sites of biochemical variables. Yellow crosses indicate the 3 hy‐

drology sampling locations for validation of the numerical simulation. Black arrows depict the di‐

rection of currents  in a  tidal cycle, with  the Longwan Sluice opening at  the  flood phase and  the 

Yanzhou Sluice opening at the ebb phase. The locations of drinking water source conservation areas 

are shaded in green. 

2. Materials and Methods 

2.1. Study Site 

The Pearl River Delta (PRD) is a complex large‐scale estuarine system in the south of 

China that consists of many tidal river network branches. The Shawan–Shiqiao basin (Fig‐

ure 1), with a total area of 229.8 km2, is located  in the central PRD in Panyu District of 

Guangzhou City. This area is quite shallow, with a depth in most parts of less than 10 m 

(Figure 1). Stratifications are rarely found in this area. It is surrounded by the Shawan and 

Shiqiao rivers, which are influenced by irregular semidiurnal tides and upstream runoff. 

The Shawan River meets the type II water quality standards of China (GB3838‐2002: dis‐

solved oxygen  (DO) ≥ 6 mg/L, chemical oxygen demand (CODCr) ≤ 15 mg/L, ammonia 

Figure 1. The bathymetry and locations of auto-monitoring stations, sampling sites, and tidal sluices
in the Shawan–Shiqiao basin. The inset shows the distribution of the Guangdong–Hong Kong–Macau
Greater Bay Area, Pearl River estuary, major tributaries of the Pearl River, together with the location
of the Shawan–Shiqiao basin. The Longwan Sluice and Yanzhou Sluice are represented by red lines
across the river. The two auto-monitoring sites, Panyu (PY) station and Dongchong (DC) station, are
labeled by red dots. The two rivers are connected by the Dajiulv (DJL) channel. Purple triangles
indicate the 10 sampling sites of biochemical variables. Yellow crosses indicate the 3 hydrology
sampling locations for validation of the numerical simulation. Black arrows depict the direction of
currents in a tidal cycle, with the Longwan Sluice opening at the flood phase and the Yanzhou Sluice
opening at the ebb phase. The locations of drinking water source conservation areas are shaded
in green.

2. Materials and Methods
2.1. Study Site

The Pearl River Delta (PRD) is a complex large-scale estuarine system in the south
of China that consists of many tidal river network branches. The Shawan–Shiqiao basin
(Figure 1), with a total area of 229.8 km2, is located in the central PRD in Panyu District of
Guangzhou City. This area is quite shallow, with a depth in most parts of less than 10 m
(Figure 1). Stratifications are rarely found in this area. It is surrounded by the Shawan
and Shiqiao rivers, which are influenced by irregular semidiurnal tides and upstream
runoff. The Shawan River meets the type II water quality standards of China (GB3838-2002:
dissolved oxygen (DO)≥ 6 mg/L, chemical oxygen demand (CODCr)≤ 15 mg/L, ammonia
nitrogen (NH3-N) ≤ 0.5 mg/L, and total phosphorous (TP) ≤ 0.1 mg/L) and neighbors
several water conservation areas (Figure 1). It is the designated Drinking Water Protected
River of Panyu District, providing drinking water for thousands of people. In contrast, the
Shiqiao River receives large amounts of domestic sewage and agricultural non-point source.
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It is subsequently heavily polluted and only meets the type IV water quality requirements
(DO ≥ 3 mg/L, CODCr ≤ 30 mg/L, NH3-N ≤ 1.5 mg/L, and TP ≤ 0.3 mg/L).

As parts of the tidal river network of the Pearl River, the Shiqiao River and the Shawan
River experience flood and ebb currents twice per day. Driven by the bidirectional flow,
water is interchanged between the two rivers, which enhances the spread of polluted
water from the Shiqiao River [26]. The bidirectional flow also hinders the outflow of
polluted water and prolongs the residence time of pollutants, which further deteriorates
the environmental conditions.

To promote the water quality of the Drinking Water Source Conservation Area in the
Shawan River, the tide sluices located in Yanzhou and Longwan were constructed and
began service in 2010. The Yanzhou Sluice only opens during the ebb tidal phase, whereas
the Longwan Sluice only opens at the flood tidal phase. This has essentially changed
the flow pattern from bidirectional to unidirectional. The salty water from downstream
floods into the Shawan River and the polluted water mass in the Shiqiao River is drained
downstream during the ebb tidal phase, which largely prevents the spread of pollution
into the Shawan River. The combined dispatching of the two sluices speeds up the water
exchange, increases the water environmental capacity, and improves the water’s self-
purification ability, which helps to restore the ecological environment of the river systems.

2.2. Post-Algae Bloom Sampling and Selection of Input Variables

There were two recorded algae bloom events in the Shawan River from 25 November
2012 to 8 December 2012 and from 22 to 28 October 2012. On 24 October 2012, the cell
abundance reached 1.04× 107 ind/L and the chlorophyll-a concentration was 69.5 µg/L. To
detect the water quality conditions of algal growth, three field samplings were conducted
in the Shiqiao and Shawan rivers on 22 November 2013, 24 October 2014, and 21 November
2014. Five sampling sites (i.e., S1, S2, S4, S5, and S7) were chosen on the main channel
of the Shawan River, and two sampling sites were assigned to the two tributary inflow
points (i.e., S3, S6). To better capture the potential influence of the Yanzhou Sluice and
downstream channels, two additional sites were chosen along the Shiqiao River. S9 was
placed near the river fork of the DJL, the only connection between the two rivers, and
S10 was set to capture the downstream influences. The 18 variables sampled were water
temperature (Tem), atmospheric temperature, pH, velocity (Vel) of river flow, suspended
matter, transparency, DO, DO saturation rate, NH3-N, nitrate, nitrite, total phosphorous
(TP), dissolved inorganic phosphate (DIP), silicate (SiO4), potassium permanganate index
(CODMn), chlorinity (Cl), dissolved inorganic nitrogen (DIN), and chlorophyll-a (Chl-a).

The collected data revealed the basic conditions and the variation in ranges of the
hydrodynamic and biochemical factors in this area. In the three sampling periods, the
velocity of the Shawan River ranged from 0.010 m/s to 0.310 m/s. The average velocities
for 22 November 2013, 24 October 2014, and 21 November 2014 were 0.152 m/s, 0.146 m/s,
and 0.099m/s, respectively. Salinity varied only slightly, ranging from 0.01 to 0.13 among
all the samplings. Under adequate nutrient conditions, the optimum value of the ratio
N:P:Si for algae growth is 16:1:15 (Redfield–5 Brzezinski ratio) [27,28]. The minimum
threshold concentrations for algae growth are 0.152 mg/L for Si, 0.035 mg/L for DIN, and
0.01 mg/L for DIP [29]. Across the three sampling periods, the ratio of SiO4:DIP ranged
from 53 to 260, that of SiO4:DIP ranged from 2 to 4, and that of DIN:DIP ranged from 18
to 91, which indicates that phosphate was the most important limiting nutrient and that
the concentration of Si was sufficient for the growth of diatoms. In the first two sampling
periods, the dominating algae were diatoms, whereas Cryptomonas spp. were dominant
during the third period. However, only in the third campaign did the density of algae cells
meet the threshold of an algae bloom (1.04 × 106 ind/L).

To select suitable variables as inputs for the fuzzy logic model, all sampled variables
were analyzed by principal component analysis (PCA) [30] and canonical correspondence
analysis (CCA) [31]. In the PCA, the first two components that contributed the most
variance were extracted and further analyzed. The corresponding variables of the top
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four weighting coefficients of each PCA component and the ranking of sites with the
four highest relative coefficients are all listed in Table 1. NH3-N and TP were important
variables with high weighting coefficients in PCA1, particularly at S10 and S9, which
indicates the severe nutrient pollution in the Shiqiao River. In contrast, the Shawan River
was characterized by high COD with a negative weighting coefficient of DO, indicating
that the organic pollutants were more salient and that the self-purification driven by algae
growth was thriving. Velocity was also an important variable in the top two PCAs in all
three sampling periods, particularly in the downstream section (S10, S9, S8, S7) and upper
stream (S1, S2) of the Shawan River.

Table 1. Results of the PCA analysis on data from three sampling campaigns.

Campaign PCA Com-
ponents

Extracted Sums of
Squared Loadings Weighting Coefficients of Top 3 Factors Relative Coefficients of Locations

Variance% Cumulative
Variance% 1 2 3 4 1 2 3 4

1 PCA1 45.63 46.63 NH3-N
(0.933)

TP
(0.985)

Cl
(0.820)

DO
(−0.833)

S10
(7.988)

S9
(6.658)

S1
(−3.140)

S5
(−3.913)

PCA2 28.77 74.40 CODMn
(0.890)

Chl-a
(0.763)

Vel
(−0.594)

DO
(−0.506)

S5
(3.167)

S1
(2.346)

S8
(−3.979)

S9
(−1.542)

2 PCA1 54.569 54.569 NH3-N
(0.957)

Chl-a
(0.845)

pH
(−0.842)

SiO4
(−0.767)

S10
(11.25)

S9
(6.583)

S1
(−2.908)

S6
(−2.892)

PCA2 10.107 69.676 Vel
(0.706)

TP
(0.471)

pH
(0.493)

CODMn
(−0.373)

S8
(1.773)

S1
(1.773)

S4
(−1.412)

S9
(−1.524)

3 PCA1 60.357 60.357 NH3-N
(0.950)

TP
(0.946)

DO
(−1.969)

pH
(−0.947)

S9
(13.514)

S10
(5.097)

S7
(−4.105)

S8
(−3.550)

PCA2 17.451 77.818 CODMn
(0.854)

Vel
(0.628)

TP
(0.274)

SiO4
(−0.495)

S7
(2.936)

S10
(0.825)

S3
(−3.409)

S2
(−0.906)

A CCA analysis was also conducted to extract the environmental factors that influence
the distribution of algae species. Prior to the CCA, correlation analysis was used to
confirm the independence of these environmental variables. Algae species with relative
abundances higher than 1% were selected. The results of CCA indicated that the CODMn,
DO, DIN, DIP, and temperature were important factors that influenced the distribution of
algae species. Diatoms were relatively insensitive to organic pollutants, DO, and nutrients,
which indicates that diatoms may maintain high abundances for longer periods. In contrast,
Cryptomonas species were more sensitive to nutrient availability. However, green algae
displayed an opposite variation trend toward the concentration of organic pollutants and
were not recorded as a dominant species in the Shawan River.

The analysis revealed that the DO, NH3-N, TP, Vel, and Tem were the most relative
variables to agal blooms and should drive the early warning model. Two auto-monitoring
stations (Figure 1) are located at Shawan River. The first station, Panyu station (PY), is
located on the left side of the upper stream of the Shawan River. The other, Dongchong
station (DC), is on the right side of the downstream section. The monitoring stations
measured 11 parameters every two hours including Tem, pH, DO, conductivity, NH3-N,
TP, CODMn, cyanide, hexavalent chromium [Cr (VI)], copper, and cadmium. The time
series sampled by the two monitoring stations ranged from 2011 to 2012 and 2017–2019.
Considering that DO values change dramatically between day and night when algae
blooms occur, we used the maximum daytime (7:00 to 19:00) DO concentration minus the
minimum nighttime value (19:00 to 7:00) as an input for the early warning model. This
value was denoted by ∆DO. Because velocity was not automatically monitored by the PY
and DC stations, it was supplemented by a validated numerical simulation.

2.3. Numerical Simulation

To obtain the simulated velocity for the fuzzy logic model, a 3D hydrodynamical–
biochemical numerical model, the Environmental Fluid Dynamics Code (EFDC) [32], was
applied to the Shawan–Shiqiao basin. The EFDC was developed by John Hamrick at
Virginia Institute of Marine Science. It includes modules such as hydrodynamics, sediment,
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toxic substances, sediment, waves, and water quality [33]. It has been applied worldwide
in various surface water systems such as rivers, lakes, estuaries, wetlands, and coastal
regions [34]. The model solves the vertically hydrostatic, free-surface, turbulent averaged
equations of motion for a variable-density fluid, using second-order accurate, spatial fi-
nite differences on a staggered C-grid. To include the influence of the sluice operation
on the velocity field, temporal variations were added using the ‘mask.inp’ function in
the EFDC model. In this instance, the EFDC model was able to imitate the opening and
closing of the sluice by mandating ‘mask.inp’ to play the ‘blocking’ role at appointed time
steps [35]. The code version 7.1 of EFDC was applied in this study. The simulation of
the Shawan–Shiqiao basin was formulated on orthogonal curve coordinate grids, with a
spatial resolution ranging from 100 to 300 m. In total, it had 273 × 97 simulation cells in
the horizontal direction, with 1 layer in the vertical direction since the deepest bathymetry
was no more than 10 m. The horizontal resolution ranged from 3.6 to 11.0 m. The time step
was 1 s, and the output time step was 20 min, which allowed for a robust representation of
processes of physics and biogeochemistry. The simulation was forced with meteorological
conditions. Pollutants loading from upstream channels were interpolated from seasonal
observations and operation data of sewage treatment plants near the Shiqiao River. Hy-
drodynamical boundary conditions were provided by a validated simulation covering the
whole Pearl River Estuary domain [36], of which the river flow was interpolated from the
daily-averaged value sampled by the Bureau of Hydrology and Water Resources of Pearl
River, and water elevations at the lower boundary were originally driven by the Global
Tide Assimilation Data [37]. The operations of the two tide gates were implemented based
on the records of sluice operations in reality. The full simulation period encompassed
59 days, which was initialized on 1 January 2014 and ended on 28 February 2014, with a
spin-up time period for 10 days.

To validate the performance of the EFDC simulation, velocity time series sampled at
three sites on 22–23 February 2014 were compared with the simulated values (Figure 2).
The simulation successfully captured the major variations in velocity induced by sluice
operation and tides. The absolute discrepancy between the speeds was less than 8.8 cm/s.
In 92.3% of the time steps, the inaccuracy of direction was less than 60◦.
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2.4. Development of an Early Warning Index Based on Fuzzy Logic

The design and structure of the fuzzy logic model is shown in Figure 3. The inputs of
the model are shown in the left column including biogeochemical data and hydrologic data
such as temperature from auto-monitoring measurements and flow velocity from the EFDC
simulation. In the first step, all input data went through fuzzification. NH3-N, TP, ∆DO,
Vel, and Tem were translated into memberships of sets of qualitative descriptions (Figure 4).
The second step, called fuzzy inference, including fuzzy rules and fuzzy operators, are
shown in the middle column. The fuzzy rules, which embody the IF-THEN logical chain,
were designed based on knowledge of processes. In this study, three water quality variables
were first converted into a water quality index (WQI) by fuzzy rules. Then, the influence of
the WQI and physical variables were merged to generate the fuzzy sets of early warning
variables. In the defuzzification step, the fuzzy sets of early warning variables were
translated into a numerical output that quantitatively described the probability of algae
bloom occurrence. Considering the temporal resolution of the data sets, the warning
system provides early warning indexes every day. The results on day T + 1 only relies on
the conditions on T. Once the early warning index exceeds thresholds, measures are taken
on time to safeguard the operation of the water works.
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2.4.1. Fuzzification

The fuzzification process consists of the definition of the fuzzy sets and membership
functions. In the first step, input values for all variables are converted into several fuzzy
sets, with membership grades determining the extent to which a value belongs to a fuzzy
set. This is based on a defined fuzzy logic, which is a mechanism for describing the
degree of membership of an element to a set and the use of several terms to classify the
linguistic variables.
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The traditional mathematics of logical judgements is based on binary logic, which is
also referred to as the law of bivalence. The law of bivalence responses are ‘completely
true’ and ‘completely false’. For example, it may classify a water temperature value greater
than 30 ◦C as ‘hot’, whereas a value even slightly less than 30 ◦C is ‘not hot’. Zadeh [19]
introduced fuzzy logic to extend the law of bivalence. Fuzzy logic introduces the concept
of partial truth-values that lie between ‘completely true’ and ‘completely false’. This aligns
with patterns of human thinking, which generally do not determine such categories in a
precise sense, necessitating a transition between ‘not hot’ and ‘hot’ (Figure 4). Figure 4e
illustrates two fuzzy logic concepts, ‘fuzzy sets’ and ‘membership functions’. In this
example, ‘hot’ is defined as a linguistic term corresponding to a fuzzy subset of ‘H’ of the
variable ‘water temperature’. The membership function in Figure 4e numerically represents
the degree to which an element belongs to ‘H’.

A membership function describes all information contained in a fuzzy set. Fuzzy set
theory permits the gradual assessment of the membership of elements in relation to a set.
In theory, the fuzzy set ‘A’ is a subset of a non-empty space X, and can be defined as:

A ={ (x1 , µA(x) ) | x ∈ X} 0 ≤ µA(x) ≤ 1 (1)

where x1 belongs to X and is an element of fuzzy set A, and the value of µA(x) shows the
membership grade of x1 in fuzzy set A. µA(x1) = 1 signifies full membership of element
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x1 to fuzzy set A, µA(x1) = 0 means that no element of x1 belongs to fuzzy set A, and
0 < µA(x1) < 1 indicates partial membership of element x1 to fuzzy set A.

A membership function can be expressed in various forms such as triangular, trape-
zoidal, and Gaussian [38]. In this study, the triangular and trapezoidal membership func-
tions were combined to characterize the transitions between different fuzzy sets (Figure 4).
The ranges of these five parameters were identified by finding the minimum and maximum
values of each parameter. Five fuzzy sets were defined by the linguistic terms, named as
very low (VL), low (L), medium (M), high (H), and very high (VH). Each set was divided
based on a literature review and local climate and hydrological characteristics, which are
listed in Table 2. Each input variable was assigned a membership function that ranged
from 0 to 1 on the defined linguistic terms.

Table 2. Input variables and the corresponding fuzzy sets.

Very Low (VL) Low (L) Medium (M) High (H) Very High (VH) Reference

∆DO (mg/L) 0–1.5 0.5–2.5 1.5–3.5 2.5–4.5 3.5–6.0 [39]

NH3-N (mg/L) 0–0.075 0–0.15 0.075–0.225 0.15–0.30 0.225–2.0 [40]

TP (mg/L) 0–0.0075 0–0.015 0.0075–0.0225 0.015–0.03 0.0225–0.2

Tem (◦C) 10–15 10–20 15–25 20–30 25–35 [41–43]

Vel (m/s) 2–10 1–3 0.4–1.2 0.1–0.5 0–0.2 [44]

Early warning index 0–25 0–50 25–75 50–100 75–100

2.4.2. Fuzzy Inference

Fuzzy inference consists of fuzzy rules and fuzzy operators. In the fuzzy rules,
knowledge of processes is laid down in a set of ‘IF-THEN’ rules to describe the relationship
between the input and output fuzzy sets. For example, IF the water temperature is ‘high’
AND the flow velocity is ‘very low’, THEN the probability of an algal bloom is ‘very
high’. The principle of the rule block WQI is that the lowest of these three variables
determines the WQI [45]. Generally, a high ∆DO value indicates that an algal bloom
may occur, as phytoplankton produce oxygen during the day and consume it at night. A
high concentration of NH3-N or TP indicates that there are sufficient nutrients to support
phytoplankton growth. Considering that the depletion of nutrients (NH3-N and TP) could
limit phytoplankton growth or a low ∆DO value could indicate a poor growth state, the
lowest of the three values is supposed to limit the probability of a bloom. Hence, if ‘∆DO’
is ‘M’, ‘NH3-N’ is ‘H’, and ‘TP’ is ‘L’, then the lowest of these three parameters is ‘L’; thus,
‘WQI’ is ‘L’.

The fuzzy sets of physical variables (i.e., Tem, Vel) and the WQI were inputs of the
rule block ‘Early warning index’. The growth rate of phytoplankton generally increased
with Tem [46]. However, it typically decreased when Tem exceeded 30 ◦C, representing a
physiological temperature limit [42]. Only when Tem was ‘H’ instead of ‘VH’ was an algal
bloom highly likely to occur.

The inference rules for the rule block ‘Early warning index’ are more complicated than
that of WQI and, subsequently, the details are provided in Table 3. Fuzzy set operations
determine the process to combine the results from each fuzzy rule. The union operation
creates a new subset from two or more input subsets by uniting them as defined by the
following equation [47]:

µA∪B(x)= µA(x) ∪ µB(x)= max( µA(x) , µB(x) ) (2)
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Table 3. Fuzzy rules determining the fuzzy sets of early warning indexes.

Rule Number IF ‘Tem’ Is: and IF ‘Vel’ Is: and IF ‘WQI’ Is: Then ‘EWI’ Is:

1./2./3./ VL VL (1.)VL/(2.)L/(3.)M/ VL

4./5. (4.)H/(5.)VH

6./7./8./ VL L (6.)VL/(7.)L/(8.)M/ VL

9./10. (9.)H/(10.)VH

11./12./13./ VL M (11.)VL/(12.)L/(13.)M/ VL

14./15. (14.)H/(15.)VH

16./17./18./ VL H (16.)VL/(17.)L/(18.)M/ VL

19./20. (19.)H/(20.)VH

21./22./23./ VL VH (21.)VL/(22.)L/(23.)M/ VL

24./25. (24.)H/(25.)VH

26./27./28./ L VL (26.)VL/(27.)L/(28.)M/ VL

29./30. (29.)H/(30.)VH

31. L L (31.)VL VL

32./33./ L M (32.)L/(33.)M/ L

34./35./ (34.)H/(35.)VH

36. L H (36.)VL VL

37./38./ L H (37.)L/(38.)M/ L

39./40./ (39.)H/(40.)VH

41. L VH (41.)VL VL

42./43./ L VL (42.)L/(43.)M/ L

44./45. (44.)H/(45.)VH

46. L L (46.)VL VL

47./48./ L M (47.)L/(48.)M/ L

49./50./ (49.)H/(50.)VH

51./52./53./ M VL (51.)VL/(52.)L/(53.)M/ VL

54./55. (54.)H/(55.)VH

56. M L (56.)VL VL

57./58./ M L (57.)L/(58.)M/ L

59./60./ (59.)H/(60.)VH

61. M M (61.)VL VL

62. M M (62.)L L

63./64./65. M M (38.)M/(39.)H/(40.)VH M

66. M H (66.)VL VL

67. M H (67.)L L

68./69./70./ M H (68.)M/(69.)H/(70.)VH M

71. M VH (71.)VL VL

72. M VH (72.)L L

73./74./75. M VH (73.)M/(74.)H/(75.)VH M

76./77./78./ H VL (76.)VL/(77.)L/(78.)M/
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Table 3. Cont.

Rule Number IF ‘Tem’ Is: and IF ‘Vel’ Is: and IF ‘WQI’ Is: Then ‘EWI’ Is:

79./80. (79.)H/(80.)VH

81. H L (81.)VL VL

82./83./ H L (82.)L/(83.)M/ L

84./85. (84.)H/(85.)VH

86. H M (86.)VL VL

87. H M (87.)L L

88./89./90./ H M (88.)M/(89.)H/(90.)VH M

91. H H (91.)VL VL

92. H H (92.)L L

93. H H (93.)M M

94./95. H H (94.)H/(95.)VH H

96. H VH (96.)VL VL

97. H VH (97.)L L

98. H VH (98.)M M

99./100. H VH (99.)H/(100.)VH H

101./102./ VH VL (101.)VL/(102.)L/ VL

103./104./ (103.)M/(104.)H/

105. (105.)VH

106. VH L (106.)VL VL

107./108./ VH L (107.)L/(108.)M/ L

109./110. (109.)H/(110.)VH

111. VH M (111.)VL VL

112. VH M (112.)L L

113./114./ VH M (113.)M/(114.)H/ M

115. (115.)VH

116. VH H (116.)VL VL

117. VH H (117.)L L

118. VH H (118.)M M

119./120. VH H (119.)H/(120.)VH H

121. VH H (121.)VL VL

122. VH H (122.)L L

123. VH H (123.)M M

124. VH H (124.)H H

125. VH VH (125.)VH VH

2.4.3. Defuzzification

In the final step, the linguistic outputs of fuzzy inference are translated into a quanti-
tative but relative value for each time step, indicating the degree to which surface blooms
may appear. The center of gravity (COG) method was applied in the defuzzification. Its
discrete form is based on Equation (3), in which µ(xi) is the membership value for point
xi [47]:

x =
∑i µ(xi)xi

∑i µ(xi)
(3)



Water 2021, 13, 3118 12 of 22

2.5. Assessment Routine of Hindcast Results

To better define the beginning and end of the warning period based on the output of
the fuzzy logic model, we developed a method to determine the time when the warnings of
algae blooms tend to initiate and terminate. It consists of an onset threshold that indicates
the issuing of the bloom, a subsequent threshold by which whether the warning should
extend, and a proper prolongation time which determines how long the warning should
be extended. To find an appropriate prolongation time for the alarm after the warning
index time series exceeds the onset threshold, potential values for the prolongation time
ranging 1–15 days were compared with the bloom periods in the records. After reaching
the onset threshold, the warning index series was tested with an interval of 10 in the
range of 10 to 60 to find an appropriate value for a subsequent threshold. If the warning
index series following the initial threshold reaches the defined subsequent threshold, the
warning should be extended for the defined prolongation time. The results of the various
prolongation times and subsequent thresholds were evaluated by 3 typical criteria: the
critical success index (CSI) [48], true positive hit rate (TPR), and false alarm rate (FAR) [49].
The equations are listed below:

CSI =
TNP

TNP + FN + FP
(4)

TPR =
TNP

TNP + FN
(5)

FAR =
FP

TNP + FP
(6)

TNP is the number of positive cases in which the alarm is raised. TN is the number of
negative cases (no bloom) in which the alarm is not raised. FP is the number of false
alarms raised in the absence of a bloom. FN is the number of times when blooms occurs,
but no alarm is raised. Based on the above-mentioned equations, the CSI is proportional
to the frequency of the event being forecast, and The TPR quantifies the percentage of
TRUE events among all alarming events. The higher the CSI and TPR, the more reliable
the forecasting system. On the contrary, the FAR is the percentage shared by false alarms
among all alarming events. Values of the 3 statistical criteria range from 0 to 1. When the
values of CSI and TPR approach 1, the robustness of the system is verified and vice versa
for FAR.

3. Results
3.1. Hindcast of the Recorded Algae Blooms

Two algae blooms were recorded in the Shawan River during 2011–2012 according
to the available data. These occurred from 25 November to 8 December 2011 and from
22 to 28 October 2012. Both blooms began on the southern side of the Shawan River and
spread to the northern side, fully covering the Water Resource Protected Areas during the
bloom peak.

Figure 5 illustrates the daily values of the early warning index based on fuzzy logic for
the PY and DC stations. High values of the early warning index indicate a high probability
of an algal bloom. By comparing the warning index and the records of visible blooms, the
index value of 60 was assigned as the onset threshold for the occurrence of an algae bloom
(Figure 5). The value of the warning index over the 2 year sampling generally remained
below 60 with the exception of two periods (Figure 5a,d). On 26 November (Figure 5b), the
day after the records of a visible algal bloom, the early warning index reached 62 (>60). On
13 October 2012 (Figure 5c), the early warning index also rose above 60 and successfully
predicted an algal bloom that began on 22 October 2012. In accordance with the hindcast
result of the PY station, the early warning index of the DC station reached 62 (>60) on
26 November 2011 (Figure 5e), which was exactly when a visual bloom was recorded. The
early warning index also reached 75.67 on 17 of October 2012, which was 5 days prior to
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the recorded algae bloom (Figure 5f). During 11–14 of October 2013, the warning index
maintained a high value ranging from 50 to 75 in the DC station; however, no blooms were
recorded during this period at the PY station. The fuzzy logic model was also run for the
period of 2017 to 2019, for which auto-monitoring data were available. Consistent with
the absence of algae blooms during this period, the warning index remained below 60,
demonstrating the robustness of the fuzzy logic warning model.
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3.2. Statistical Assessment of the Results

The early warning index resulting from the fuzzy logic model is difficult to evaluate
using standard assessments. Firstly, exceeding the defined threshold of the warning index
only indicates the probable occurrence of an algal bloom, which is challenging to compare
directly with the record of blooms. In particular, information on the onset of blooms is
lacking as the rapid duplication of phytoplankton cells probably begins several days prior
to the first record of a visible bloom. However, in observations of this study, the bloom
was only recorded when the density of algal cells reached a salient level. Highlighting the
importance of early warning, it is often too late to sound the alarm when blooms have
already reached a severe stage and the water quality can no longer serve its designed
functions in the water conservation areas. Lastly, sounding the alarm based on a spiky
early warning index and a single threshold for the onset of blooms cannot predict the
duration of algal blooms. If sufficient nutrient concentrations or ∆DO sustain, the index
could maintain a relatively high value, which may indicate continued growth or favorable
growing conditions for algae. For this reason, the prolongation time and subsequent
threshold were introduced to additionally predict the time at which the blooms were
expected to disappear.
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The values of CSI, TPR, and FAR are plotted in Figure 6 as functions of the prolongation
time of the alarm and the subsequent threshold. For both the DC and PY stations, the
CSI first increased with the prolongation time, reached a peak after 6–8 days, and then
decreased (Figure 6a,b). This indicates that the typical duration of algal blooms in this
area was 6–8 days. The longer the alarm was sounded, the fewer days during the bloom
were likely to be missed, which is why the TPR generally increased with the prolongation
time (Figure 6c,d). When the prolongation time reached 11 days, the TPR approached
1, which suggested that this represents the upper limit of the duration of visible bloom
events in this area. In the range of a prolongation time from 6 to 8 days, the TPR at the PY
station decreased when warning index values less than 30 were not counted (Figure 6c).
In other words, subsequent thresholds higher than 30 were too high for the PY station
and caused the station to omit bloom periods that occurred. However, the TPR of the DC
station was not sensitive to the variations in thresholds (Figure 6d). As seen in the enlarged
time series in Figure 5e,f, we found that lower subsequent thresholds were more suitable
for the PY station (Figure 5b,c), probably due to the systematic difference between the two
stations. Following the major peak above 60, the warning index of PY tended to decrease
rapidly (Figure 5b,c), even if the bloom was present according to the records. Increasing
the subsequent thresholds shortened the duration of the alarm and, thus, increased the
missing alarm rate in the PY station (Figure 6c). In contrast, after the major peak preceded
or coincided with the beginning of the bloom record, the warning index of the DC station
experienced a gradual decrease (Figure 5b,c). With an appropriate prolongation time
(6–8 days), 20 and 40 were the most capable values to predict the following bloom periods
for the PY and DC station, respectively.
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The FAR was largely influenced by the TN (Figure 6e,f) and varied inversely with
the CSI (Figure 6a,b). The FAR was also highly sensitive to the setting of the prolongation
time. Settings of short prolongation times (less than 2 days) may be responsible for missing
subsequent bloom periods, which resulted in high FAR values (Figure 6e,f). However,
when the prolongation time was set to 14, the FAR of PY and DC exceeded 0.7. With an
increasing prolongation time, more periods following the warning threshold were mistaken
for bloom events.

3.3. The False Alarm in 2013

There was a false warning of the occurrence of an algae bloom. In October 2013,
the warning index of DC station exceeded 50 and remained high for 4 consecutive days
(Figures 7 and 5d). However, no records of algae blooms were found during this period.
Among all input variables, the steep increase of ∆DO from 1 mg/L to 2–6 mg/L after
10 October drove the elevated WQI. NH3-N and TP remained approximately 0.33 mg/L
and 0.03 mg/L, respectively. The nutrient concentration contributed little to the variation
in the WQI, as it was stably in the middle level of the fuzzy set. The velocity was at a
medium level and the temperature was favorable for algae growth. Since the nutrients
stay in middle or higher levels, the elevated ∆DO determined the increase in the early
warning index.
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Figure 7. Time series of the input variables and the warning index of the DC station during the false
alarm period in October 2013.

However, at the PY station, there was neither a sustained increase in ∆DO during this
false alarm period nor an increase in the warning index. The correlation between the DC
and PY stations were rather low in the time series (Table 4), indicating little clues that could
be referred to from the other station.

Table 4. Correlation coefficient of the warning index and driving variables of the fuzzy logic model between the PY and DC
stations in different time periods.

Time Warning Index ∆DO NH3-N TP Temperature

1 January 2011–31 December 2013 0.14 0.07 0.01 −0.05 0.97
25 November 2011–8 December 2011 0.14 0.06 0.35 0.69 0.97

10 October 2012–28 October 2012 0.28 0.14 0.24 0.38 0.76
10 October 2013–20 October 2013 0.48 0.54 0.17 −0.08 0.49
1 January 2017–31 December 2019 0.15 0.02 0.14 0.00 0.95
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3.4. The Sensitivity of the Model Settings

To further illustrate the sensitivity of the various input variables, we conducted a
sensitivity analysis by setting the input variables to the median values of the VL, L, M, H,
and VH levels (Table 2) and running the fuzzy logic model over the period of the bloom
events under each setting. The results demonstrated that ∆DO was the most sensitive
variable (Figure 8a–f). During the period prior to and during the bloom record, the warning
index derived from the sampled value overlapped with the warning index derived from
the ∆DO artificially assigned to the H and VH levels. However, when ∆DO was assigned
with M, L, or VL values, the corresponding warning index never exceeded 50. Conversely,
assigning the velocity value with VL, L, or M levels resulted in higher values of the warning
index (Figure 8g–l). Aligned with the warning index derived from the validated simulation
that mimicked the real system, the velocity remained in the ‘very low velocity’ or ‘low
velocity’ subsets during the record of algae blooms, indicating that algae take advantage of
calm hydrology conditions to accumulate.

3.5. Systematic Difference between Two Stations

The sluices’ operation can change the spread direction of the currents, leading the
pollutants to enter the conservation area. The operation of the Yanzhou and Longwan
sluices has changed the currents in this area from bidirectional to unidirectional (Figure 1),
which has altered the intrusion of salty water and the spreading of waterborne pollutants.
During the ebb phase (Figure 9a,c), the contaminated water from the Shiqiao River drains
downstream (Figure 9a). In the DJL channel (location in Figure 1), the flow largely moves
north (Figure 9c), indicating that the stronger ebb currents in the Shiqiao River inhibit the
spread of its pollutants. Although the pollutants move downstream through the northern
channel, the subsequent flood tide pushes the contaminated water back and potentially
into the Shawan River due to the closure of the Longwan Sluice during the flood tidal
phase (Figure 9d). Based on the distribution of ammonia in the simulation, the polluted
water mass from the Shiqiao River could enter the Shawan River through the DJL channel
and reach the intersection east of DC station (Figure 9b–d).
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The simulated hydrodynamic feature may help to illustrate the difference between
the two stations and shed light on the potential combined warning framework using data
from both stations in the future. Within the limits of pollutant intrusion from the Shiqiao
River due to the prior ebb tides, the DC station is more sensitive to the influence of tides
from downstream regions. After initially exceeding warning thresholds, the warning index
of the DC station experienced a slower and more gradual decrease (Figure 5e,f), which
was mainly attributable to the slower recovery of velocity to the M or higher (Figure 8h,j,l)
level. The intrusion of pollutants supplies the DC station with a water mass with different
characteristics from that in most of the Shawan River in the further upstream part. However,
the salinity of the auto-monitoring stations stayed at 0.01 during all sampled periods, which
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prevented further analysis of the extent and intensity of saltwater intrusion and further
spatial estimation of water mass differences between the two stations.

Limited by data availability, the model’s output and algae bloom records were only
compared quantitatively. The records only cover the bloom events that were detectable
from the water’s color alone. This left the definition of ‘early’ open, as the algal community
would have already rapidly increased in abundance before detection by visual observation.
Given that South China has a nutrient-rich environment in which the water temperature
rarely drops below 15 ◦C, the probability of algae blooms is theoretically high. However,
the mechanisms and associated data sets necessary to provide early warning are complex.
Among the variables of the fuzzy logic model, the ∆DO and velocity were the most sensitive
driving variables.

4. Discussion

Based on our study, the periods with a high risk of algal blooms are in autumn.
However, referring to publications about the downstream areas of our study site in the
Pearl River Estuary, significant spatial variability has been highlighted. The growth of
phytoplankton is influenced by underwater light availability, nutrients, stability of water
column, and propagation of fronts [50]. Along the longitudinal axis of the Pearl River
Estuary, it has higher productivity in summer and autumn [51]. Wind events have also
added event-scale bloom in the records [52]. However, in river networks in the upstream
part of the major estuary of the Pearl River and the adjacent small bay, further exploration
was quite limited by the sparse data availability. In Shenzhen Bay, which is close to
Hongkong, the strong runoff in May increases the pH and turbidity, thus inhibiting the
flourishing of algal blooms in spring [53], which may be responsible for the absence of the
significant spring bloom [54]. In summer, high temperatures and decreased residence time
may also hinder the accumulation of algal bloom [55]. In winter, the growth is limited by
temperature [53]. In summary, these conclusions support the high risk of algal blooms in
autumn in river networks in this area.

In this study, we investigated the influence of tidal gates mainly in terms of the change
in currents in tidal cycles. However, the impacts of tidal gates or other forms of dams
may also alter water residence time, light conditions, and sediment trapping nutrient
retention, thus changing primary productivity in these areas [56]. As an important part of
the land–ocean aquatic continuum between upland ecosystems and the ocean, primary
production is supposed to be a key element in the biochemical processes [57,58]. In the
case of the Shawan–Shiqiao river network, residence time in most parts is reduced due
to the one-direction tidal cycle. The release of nutrients from prior polluted sediments
may depend on the age of dams [59] or duration of tidal gates’ operations. If we aim at
reducing the possibility of algal blooms in long-term time scales, the altered ecosystem
structure and function along river networks [60] and nutrients forms [61] should also be
taken into account, which implies the need for long-term field observations and detailed
process studies.

Even though the water quality of the Shawan channel has already met the type II
water quality standards of surface water in China and serves as the drinking water source,
the concentration of ammonia nitrogen and total phosphate are relatively high. In another
word, in the clean water in the Shawan River, the ammonia concentration is classified into
the ‘HIGH’ or even ‘VERY HIGH’ category of bloom risk, as same as the TP. Some scientists
suggest that when the TN and TP exceed 0.2 mg/L and 0.02 mg/L [62], respectively, or
0.5 mg/L for TN and 0.02 mg/L for TP [63], the algal community no longer suffers from
nutrient limiting. Under the condition that there are only criteria or online monitoring
of the water quality index without attention paid to indexes of ecosystem status, to some
extent, the un-matching between water quality standards and thresholds of algal growth
may ‘hide’ the risk of blooms. In addition, the ratio between ammonia and nitrate merit
consideration in the estimation of phytoplankton growth, since it has been observed that
the presence of ammonia can inhibit the uptake of nitrate [64].



Water 2021, 13, 3118 19 of 22

As drinking water is vital to maintaining people’s livelihood, health, and safety, the
standard of a drinking water source is usually stricter than that of general water bodies [65].
It is necessary to analyze and predict the pollution risk to support the development of water
source protection strategies, improving the scientific and risk predictability of water source
protection [66,67]. However, because the algae bloom forecast is directly related to follow-
up emergency management, which may involve multiple departments and enterprises, a
false alarm might lead to increases in economic and social operation costs. Moreover, the
untimely forecast may result in late response and disposal, threatening residents’ drinking
water safety.

In the future, regarding the complexity of the forecast output, adoptions and inte-
grations of forecasting tools of algal blooms may potentially vary among the demands
of decision makers [68]. To better safeguard the operation of drinking water resource
areas and water works, the forecasting systems should not only aim at achieving high
chlorophyll-a or phytoplankton biomass risk prediction based on nutrients and hydro-
dynamical status, but also forecasting in the ecological sense [14] should be increasingly
demanded. For example, effective assessment of certain toxins to be able to treat human
health is necessary such as the MBio Toxin System [69] and MBio MC/CYN Toxin Sys-
tem [70]. Furthermore, studies on the excessive proliferation of phytoplankton (EPP) have
advanced the understanding of the reproduction of algal cells [71] instead of high biomass
that has resulted from reproduction processes. By integrating the previously scattered
field sampling measurements with continuous observation or simulation in the spatial
and temporal ranges, the development of a dense biomass of phytoplankton and related
toxins may gain the potential to break through limitations in applications of early warning
systems [72].

5. Conclusions

The growth of phytoplankton is affected by various factors that hinder the on-time
detection of algae blooms. The present study selected several key factors (i.e., temperature,
∆DO, NH3-N, TP, and velocity) sampled by two auto-monitoring stations, together with
simulated velocity from validated simulations, to build a fuzzy logic model. The built
model was applied to produce an early warning index and hindcasted algae bloom events
successfully. Considering the demands of management, the early warning index was
additionally processed to provide a warning time duration, which reached critical success
index and positive hit rate values of 0.5 and 0.9, respectively. The proposed prolongation
time after the onset of alarm was 6–8 days. The threshold for the bloom onset was 60, with
an appropriate subsequent threshold of 20 and 40, respectively, for the PY and DC stations.
Under sufficient year-round nutrient and temperature conditions for algae growth, the ∆DO
and velocity were the most important factors for producing accurate and timely forecasting.

The systematic differences between the PY and DC stations were revealed and dis-
cussed. The DC station, which was more influenced by the pollutants from prior ebb tides
from the Shiqiao River, displayed a slower decrease in the warning index compared to the
PY station, which is located further upstream and beyond the intrusion of pollutants during
flood tides. The results suggest that spatial differences between sampling sites merit further
exploration, particularly for sites located in the downstream–upstream sections, intersec-
tions between channels, or proximity to a pollution source. Additional parameters, such as
biochemical markers of anthropogenic impacts, should be sampled and utilized for further
analysis of water mass extents and data quality control of auto-monitoring sampling.

Author Contributions: Conceptualization, H.Y. and C.Z.; methodology, H.Y. and C.Z.; setting-up of
the simulation, H.Y. and Y.Y.; validation, H.Y. and Y.Y.; analysis, C.Z., H.Y. and G.C.; writing—original
draft preparation, H.Y.; writing—review and editing, C.Z. and Z.C.; visualization, H.Y., Y.Y. and Z.C.;
supervision, funding acquisition, and project administration, F.Z.; All authors have read and agreed
to the published version of the manuscript.



Water 2021, 13, 3118 20 of 22

Funding: This work was funded by the Key-Area Research and Development Program of Guangdong
Province (No. 2020B1111350001 and No. 2019B110205003) and the Basal Specific Research of the Central
Public-Interest Scientific Institute (Grant No. PM-zx703-202004-141, Grant No. PM-zx097-202002-069).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The availability of the sampled data obeys associated policies of the
Panyu Ecological Environment Bureau. The simulated results presented in this study are available
on request from the first author.

Acknowledgments: All authors are indebted to the Environmental Protection Monitoring Station
of the Panyu District for providing the observed data. Authors are grateful to Zizhi Huang for
formatting this manuscript and Hailong Zeng for technical support for figure plotting. The authors
are obliged to the program ‘Origins, Early Warning and Prevention of Algae Blooms in Shawan
Waterway, Panyu District, Guangzhou’ for organizing the sampling and data processing.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Amorim, C.A.; Moura, A.D.N. Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure,

and ecosystem functioning. Sci. Total Environ. 2021, 758, 143605. [CrossRef] [PubMed]
2. Sidabutar, T.; Srimariana, E.S.; Wouthuyzen, S. The potential role of eutrophication, tidal and climatic on the rise of algal bloom

phenomenon in Jakarta Bay. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol,
UK, 2020; Volume 429, p. 012021.

3. Su, J.; Dai, M.; He, B.; Wang, L.; Gan, J.; Guo, X.; Zhao, H.; Yu, F. Tracing the origin of the oxygen-consuming organic matter in the
hypoxic zone in a large eutrophic estuary: The lower reach of the Pearl River Estuary, China. Biogeosciences 2017, 14, 4085–4099.
[CrossRef]

4. Al-Yamani, F.Y.; Polikarpov, I.; Saburova, M. Marine life mortalities and Harmful Algal Blooms in the Northern Arabian Gulf.
Aquat. Ecosyst. Health Manag. 2020, 23, 196–209. [CrossRef]

5. Hallegraeff, G.M.; Anderson, D.M.; Belin, C.; Bottein, M.-Y.D.; Bresnan, E.; Chinain, M.; Enevoldsen, H.; Iwataki, M.; Karlson, B.;
McKenzie, C.H.; et al. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom
impacts. Commun. Earth Environ. 2021, 2, 1–10. [CrossRef]

6. Berdalet, E.; Fleming, L.E.; Gowen, R.; Davidson, K.; Hess, P.; Backer, L.C.; Moore, S.K.; Hoagland, P.; Enevoldsen, H. Marine
harmful algal blooms, human health and wellbeing: Challenges and opportunities in the 21st century. J. Mar. Biol. Assoc. U. K.
2016, 96, 61–91. [CrossRef]

7. Watson, S.B.; Whitton, B.A.; Higgins, S.N.; Paerl, H.W.; Brooks, B.W.; Wehr, J.D. Harmful Algal Blooms; Elsevier Inc.: Amsterdam,
The Netherlands, 2015; ISBN 9780123858771.

8. Chen, N.; Hong, H.; Gao, X. Securing drinking water resources for a coastal city under global change: Scientific and institutional
perspectives. Ocean Coast. Manag. 2021, 207, 104427. [CrossRef]

9. Wang, C.; Kong, H.-N.; Wang, X.-Z.; He, S.-B.; Zheng, X.-Y.; Wu, D.-Y. Early-warning and prediction technology of harmful algal
bloom: A review. J. Appl. Ecol. 2009, 20, 2813–2819.

10. Huang, J.; Gao, J.F.; Mooij, W.M.; Hörmann, G.; Fohrer, N. A Comparison of Three Approaches to Predict Phytoplankton Biomass
in Gonghu Bay of Lake Taihu. J. Environ. Inform. 2014, 24, 39–51. [CrossRef]

11. Chen, Q.; Guan, T.; Yun, L.; Li, R.; Recknagel, F. Online forecasting chlorophyll a concentrations by an auto-regressive integrated
moving average model: Feasibilities and potentials. Harmful Algae 2015, 43, 58–65. [CrossRef]

12. Zhang, F.; Li, M.; Glibert, P.M.; Ahn, S.H. (Sophia) A three-dimensional mechanistic model of Prorocentrum minimum blooms in
eutrophic Chesapeake Bay. Sci. Total Environ. 2021, 769, 144528. [CrossRef]

13. Reguera, B.; Riobó, P.; Rodríguez, F.; Díaz, P.A.; Pizarro, G.; Paz, B.; Franco, J.M.; Blanco, J. Dinophysis Toxins: Causative
Organisms, Distribution and Fate in Shellfish. Mar. Drugs 2014, 12, 394–461. [CrossRef] [PubMed]

14. Glibert, P.M.; Allen, J.I.; Bouwman, L.; Brown, C.W.; Flynn, K.; Lewitus, A.J.; Madden, C.J. Modeling of HABs and eutrophication:
Status, advances, challenges. J. Mar. Syst. 2010, 83, 262–275. [CrossRef]

15. Stauffer, B.A.; Bowers, H.A.; Buckley, E.; Davis, T.W.; Johengen, T.H.; Kudela, R.; McManus, M.A.; Purcell, H.; Smith, G.J.; Woude,
A.V.; et al. Considerations in Harmful Algal Bloom Research and Monitoring: Perspectives From a Consensus-Building Workshop
and Technology Testing. Front. Mar. Sci. 2019, 6, 399. [CrossRef]

16. Steffen, M.M.; Davis, T.W.; McKay, R.M.; Bullerjahn, G.S.; Krausfeldt, L.E.; Stough, J.M.; Neitzey, M.L.; Gilbert, N.E.; Boyer, G.L.;
Johengen, T.H.; et al. Ecophysiological Examination of the Lake Erie Microcystis Bloom in 2014: Linkages between Biology and
the Water Supply Shutdown of Toledo, OH. Environ. Sci. Technol. 2017, 51, 6745–6755. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2020.143605
http://www.ncbi.nlm.nih.gov/pubmed/33248793
http://doi.org/10.5194/bg-14-4085-2017
http://doi.org/10.1080/14634988.2020.1798157
http://doi.org/10.1038/s43247-021-00178-8
http://doi.org/10.1017/S0025315415001733
http://doi.org/10.1016/j.ocecoaman.2018.02.023
http://doi.org/10.3808/jei.201400258
http://doi.org/10.1016/j.hal.2015.01.002
http://doi.org/10.1016/j.scitotenv.2020.144528
http://doi.org/10.3390/md12010394
http://www.ncbi.nlm.nih.gov/pubmed/24447996
http://doi.org/10.1016/j.jmarsys.2010.05.004
http://doi.org/10.3389/fmars.2019.00399
http://doi.org/10.1021/acs.est.7b00856


Water 2021, 13, 3118 21 of 22

17. Frolov, S.; Kudela, R.M.; Bellingham, J.G. Monitoring of harmful algal blooms in the era of diminishing resources: A case study of
the U.S. West Coast. Harmful Algae 2013, 21–22, 1–12. [CrossRef]

18. Franks, P.J.S. Recent Advances in Modelling of Harmful Algal Blooms. In Global Ecology and Oceanography of Harmful Algal Blooms;
Glibert, P.M., Berdalet, E., Burford, M.A., Pitcher, G.C., Zhou, M., Eds.; Springer International Publishing: Cham, Switzerland,
2018; pp. 359–377, ISBN 978-3-319-70069-4.

19. Zadeh, L.A. A video-enabled dynamic site planner. Inf. Control 1965, 8, 338. [CrossRef]
20. Alhazaymeh, K.; Halim, S.A.; Salleh, A.R.; Hassan, N. Soft intuitionistic fuzzy sets. Appl. Math. Sci. 2012, 6, 2669–2680.
21. Milanesi, G.S. Fuzzy logic, parity theories and two currencies valuation for emerging markets with de discount cash flow model.

Financ. Mark. Valuat. 2019, 5, 69–94. [CrossRef]
22. Aisjah, A.S.; Arifin, S. Maritime weather prediction using fuzzy logic in Java Sea for shipping feasibility. Int. J. Artif. Intell. 2013,

10, 112–122.
23. Milton-Thompson, O.; Javadi, A.A.; Kapelan, Z.; Cahill, A.G.; Welch, L. Developing a fuzzy logic-based risk assessment for

groundwater contamination from well integrity failure during hydraulic fracturing. Sci. Total Environ. 2021, 769, 145051.
[CrossRef]

24. Bruder, S.; Babbar-Sebens, M.; Tedesco, L.; Soyeux, E. Use of fuzzy logic models for prediction of taste and odor compounds in
algal bloom-affected inland water bodies. Environ. Monit. Assess. 2014, 186, 1525–1545. [CrossRef] [PubMed]

25. Kim, Y.; Shin, H.S.; Plummer, J.D. A wavelet-based autoregressive fuzzy model for forecasting algal blooms. Environ. Model.
Softw. 2014, 62, 1–10. [CrossRef]

26. Chi, W.; Zhang, X.; Zhang, W.; Bao, X.; Liu, Y.; Xiong, C.; Liu, J.; Zhang, Y. Impact of tidally induced residual circulations on
chemical oxygen demand (COD) distribution in Laizhou Bay, China. Mar. Pollut. Bull. 2020, 151, 110811. [CrossRef] [PubMed]

27. Choudhury, A.K. Relationship between N:P:Si ratio and phytoplankton community composition in a tropical estuarine mangrove
ecosystem. Biogeosci. Discuss 2015, 12, 2307–2355. [CrossRef]

28. Brzezinski, M.A. The Si:C:N ratio of marine diatoms: Interspecific variability and the effect of some environmental variables. J.
Phycol. 2004, 21, 347–357. [CrossRef]

29. Fisher, T.; Peele, E.; Ammerman, J.; Harding, L. Nutrient limitation of phytoplankton in Chesapeake Bay. Mar. Ecol. Prog. Ser.
1992, 82, 51–63. [CrossRef]

30. Vidal, R.; Ma, Y.; Sastry, S.S. Principal component analysis. In Interdisciplinary Applied Mathematics; Springer Nature: Basingstoke,
UK, 2016; Volume 40, pp. 25–62.

31. ter Braak, C.J.F.; Verdonschot, P.F.M. Canonical correspondence analysis and related multivariate methods in aquatic ecology.
Aquat. Sci. 1995, 57, 255–289. [CrossRef]

32. Hamrick, J.M. A Three-Dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects; Special
Report in Applied Marine Science and Ocean Engineering; Virginia Institute of Marine Science, College of William and Mary:
Williamsburg, VA, USA, 1992.

33. Zhu, L.; Zhang, H.; Guo, L.; Huang, W.; Gong, W. Estimation of riverine sediment fate and transport timescales in a wide estuary
with multiple sources. J. Mar. Syst. 2021, 214, 103488. [CrossRef]

34. Shen, J.; Haas, L. Calculating age and residence time in the tidal York River using three-dimensional model experiments. Estuar.
Coast. Shelf Sci. 2004, 61, 449–461. [CrossRef]

35. Zhao, C.; Yang, H.; Fan, Z.; Zhu, L.; Wang, W.; Zeng, F. Impacts of Tide Gate Modulation on Ammonia Transport in a Semi-closed
Estuary during the Dry Season—A Case Study at the Lianjiang River in South China. Water 2020, 12, 1945. [CrossRef]

36. Hu, J.; Li, S. Modeling the mass fluxes and transformations of nutrients in the Pearl River Delta, China. J. Mar. Syst. 2009, 78,
146–167. [CrossRef]

37. Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE.
Comput. Geosci. 2002, 28, 929–937. [CrossRef]

38. Van Broekhoven, E.; De Baets, B. Fast and accurate center of gravity defuzzification of fuzzy system outputs defined on trapezoidal
fuzzy partitions. Fuzzy Sets Syst. 2006, 157, 904–918. [CrossRef]

39. Lee, J.; Hodgkiss, I.; Wong, K.; Lam, I. Real time observations of coastal algal blooms by an early warning system. Estuar. Coast.
Shelf Sci. 2005, 65, 172–190. [CrossRef]

40. Kong, F.; Song, L. Study on the Formation Process of Cyanobacteria Bloom and Its Environmental Characteristics; Science Press: Beijing,
China, 2011; ISBN 978-7-03-030870-2.

41. Zachariassen, K.E.; Cossins, A.R.; Bowler, K. Temperature Biology of Animals. J. Appl. Ecol. 1989, 26, 1092. [CrossRef]
42. Montagnes, D.J.S.; Franklin, M. Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content:

Reconsidering some paradigms. Limnol. Oceanogr. 2001, 46, 2008–2018. [CrossRef]
43. Liang, K.; Wang, X.; Zhang, D. Ecological conditions of diatom water bloom formulation in the middle and lower reach of the

Hanjiang River and strategy for water bloom control. Environ. Sci. Technol. 2012, 35, 113–116.
44. Holopainen, A.L.; Hovi, A.; Ronkko, J. Lotic algal communities and their metabolism in small forest brooks in the Nurmes area of

eastern Finland. Aqua. Fenn. 1988, 18, 29–46.
45. Pandey, A.; Parhi, D.R. MATLAB Simulation for Mobile Robot Navigation with Hurdles in Cluttered Environment Using

Minimum Rule based Fuzzy Logic Controller. Procedia Technol. 2014, 14, 28–34. [CrossRef]

http://doi.org/10.1016/j.hal.2012.11.001
http://doi.org/10.1061/9780784413616.194
http://doi.org/10.46503/DHIQ4370
http://doi.org/10.1016/j.scitotenv.2021.145051
http://doi.org/10.1007/s10661-013-3471-1
http://www.ncbi.nlm.nih.gov/pubmed/24242080
http://doi.org/10.1016/j.envsoft.2014.08.014
http://doi.org/10.1016/j.marpolbul.2019.110811
http://www.ncbi.nlm.nih.gov/pubmed/32056605
http://doi.org/10.5194/bgd-12-2307-2015
http://doi.org/10.1111/j.0022-3646.1985.00347.x
http://doi.org/10.3354/meps082051
http://doi.org/10.1007/BF00877430
http://doi.org/10.1016/j.jmarsys.2020.103488
http://doi.org/10.1016/j.ecss.2004.06.010
http://doi.org/10.3390/w12071945
http://doi.org/10.1016/j.jmarsys.2009.05.001
http://doi.org/10.1016/S0098-3004(02)00013-4
http://doi.org/10.1016/j.fss.2005.11.005
http://doi.org/10.1016/j.ecss.2005.06.005
http://doi.org/10.2307/2403720
http://doi.org/10.4319/lo.2001.46.8.2008
http://doi.org/10.1016/j.protcy.2014.08.005


Water 2021, 13, 3118 22 of 22

46. Sherman, E.; Moore, J.K.; Primeau, F.; Tanouye, D. Temperature influence on phytoplankton community growth rates. Glob.
Biogeochem. Cycles 2016, 30, 550–559. [CrossRef]

47. Ross, T.J. Fuzzy Logic with Engineering Applications; Wiley: Hoboken, NJ, USA, 2010; ISBN 9780470743768.
48. Mason, I. Dependence of the Critical Success Index on sample climate and threshold probability. Aust. Meteorol. Mag. 1989, 37,

75–81.
49. Kurvers, R.H.J.M.; Krause, J.; Argenziano, G.; Zalaudek, I.; Wolf, M. Detection Accuracy of Collective Intelligence Assessments

for Skin Cancer Diagnosis. JAMA Dermatol. 2015, 151, 1346–1353. [CrossRef]
50. Zu, T.; Wang, D.; Gan, J.; Guan, W. On the role of wind and tide in generating variability of Pearl River plume during summer in

a coupled wide estuary and shelf system. J. Mar. Syst. 2014, 136, 65–79. [CrossRef]
51. Ye, H.; Chen, C.; Sun, Z.; Tang, S.; Song, X.; Yang, C.; Tian, L.; Liu, F. Estimation of the Primary Productivity in Pearl River Estuary

Using MODIS Data. Estuaries Coasts 2015, 38, 506–518. [CrossRef]
52. Yin, K.; Zhang, J.; Qian, P.-Y.; Jian, W.; Huang, L.; Chen, J.; Wu, M.C. Effect of wind events on phytoplankton blooms in the Pearl

River estuary during summer. Cont. Shelf Res. 2004, 24, 1909–1923. [CrossRef]
53. Yuan, C.; Xu, Z.; Zhang, X. Seasonal changes of phytoplankton in Shenzhen Bay from 2010 to 2011 and its relationship with

environmental factors. Trans. Oceanol. Liminol. 2015, 1, 112–120. [CrossRef]
54. Zhang, W.; Mu, S.S.; Zhang, Y.J.; Chen, K.M. Seasonal and interannual variations of flow discharge from Pearl River into sea.

Water Sci. Eng. 2012, 5, 399–409. [CrossRef]
55. Sun, J.; Lin, B.; Li, K.; Jiang, G. A modelling study of residence time and exposure time in the Pearl River Estuary, China. J.

Hydro-Environ. Res. 2014, 8, 281–291. [CrossRef]
56. Mendonça, R.; Kosten, S.; Sobek, S.; Barros, N.; Cole, J.J.; Tranvik, L.J.; Roland, F. Hydroelectric carbon sequestration. Nat. Geosci.

2012, 5, 838–840. [CrossRef]
57. Regnier, P.; Friedlingstein, P.; Ciais, P.; MacKenzie, F.T.; Gruber, N.; Janssens, I.; Laruelle, G.; Lauerwald, R.; Luyssaert, S.;

Andersson, A.J.; et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 2013, 6, 597–607.
[CrossRef]

58. Battye, W.; Aneja, V.P.; Schlesinger, W.H. Is nitrogen the next carbon? Earth’s Futur. 2017, 5, 894–904. [CrossRef]
59. Chen, Q.; Shi, W.; Huisman, J.; Maberly, S.C.; Zhang, J.; Yu, J.; Chen, Y.; Tonina, D.; Yi, Q. Hydropower reservoirs on the upper

Mekong River modify nutrient bioavailability downstream. Natl. Sci. Rev. 2020, 7, 1449–1457. [CrossRef]
60. Maavara, T.; Chen, Q.; Van Meter, K.; Brown, L.E.; Zhang, J.; Ni, J.; Zarfl, C. River dam impacts on biogeochemical cycling. Nat.

Rev. Earth Environ. 2020, 1, 103–116. [CrossRef]
61. Middelburg, J.J. Are nutrients retained by river damming? Natl. Sci. Rev. 2020, 7, 1458. [CrossRef]
62. Heisler, J.; Glibert, P.; Burkholder, J.; Anderson, D.; Cochlan, W.; Dennison, W.; Dortch, Q.; Gobler, C.; Heil, C.; Humphries,

E.; et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 2008, 8, 3–13. [CrossRef]
63. Qin, B.; Wang, X.; Tang, X. Drinking water crisis caused by eutrophication and cyanobacterial bloom in Lake Taihu: Cause and

measurement. Adv. Earth Sci. 2007, 22, 896–906.
64. Poxleitner, M. Consequences of nitrogen enrichment on lake plankton, der Ludwig-Maximilians-Universität München. Ph.D.

Thesis, der Ludwig-Maximilians-Universität München, Munich, Germany, 2016.
65. Guo, T.; Yu, H.; Luo, J.; Li, Z. Safety problems in drinking water sources and standardized legal measures. Environ. Sci. Manag.

2010, 35, 14–16.
66. He, T.; Luan, Z.; Guan, W. Discussion on the strategy of water source protection from the perspective of watershed ecosystem

management. Environ. Prot. 2018, 46, 12–17.
67. Zhang, H.; Wang, Y. Thoughts on boosting up-to-standard construction of major safe drinking water sources in China. China

Water Resour. 2018, 9, 17–19.
68. Gill, D.; Rowe, M.; Joshi, S.J. Fishing in greener waters: Understanding the impact of harmful algal blooms on Lake Erie anglers

and the potential for adoption of a forecast model. J. Environ. Manag. 2018, 227, 248–255. [CrossRef] [PubMed]
69. Reverté, L.; Campàs, M.; Yakes, B.J.; Deeds, J.R.; Katikou, P.; Kawatsu, K.; Lochhead, M.; Elliott, C.T.; Campbell, K. Tetrodotoxin

detection in puffer fish by a sensitive planar waveguide immunosensor. Sens. Actuators B Chem. 2017, 253, 967–976. [CrossRef]
70. Bickman, S.R.; Campbell, K.; Elliott, C.; Murphy, C.; O’Kennedy, R.; Papst, P.; Lochhead, M.J. An Innovative Portable Biosensor

System for the Rapid Detection of Freshwater Cyanobacterial Algal Bloom Toxins. Environ. Sci. Technol. 2018, 52, 11691–11698.
[CrossRef] [PubMed]

71. Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol.
2018, 16, 471–483. [CrossRef] [PubMed]

72. Rousso, B.Z.; Bertone, E.; Stewart, R.; Hamilton, D.P. A systematic literature review of forecasting and predictive models for
cyanobacteria blooms in freshwater lakes. Water Res. 2020, 182, 115959. [CrossRef] [PubMed]

http://doi.org/10.1002/2015GB005272
http://doi.org/10.1001/jamadermatol.2015.3149
http://doi.org/10.1016/j.jmarsys.2014.03.005
http://doi.org/10.1007/s12237-014-9830-5
http://doi.org/10.1016/j.csr.2004.06.015
http://doi.org/10.13984/j.cnki.cn37-1141.2015.01.016
http://doi.org/10.3882/j.issn.1674-2370.2012.04.004
http://doi.org/10.1016/j.jher.2013.06.003
http://doi.org/10.1038/ngeo1653
http://doi.org/10.1038/ngeo1830
http://doi.org/10.1002/2017EF000592
http://doi.org/10.1093/nsr/nwaa026
http://doi.org/10.1038/s43017-019-0019-0
http://doi.org/10.1093/nsr/nwaa073
http://doi.org/10.1016/j.hal.2008.08.006
http://doi.org/10.1016/j.jenvman.2018.08.074
http://www.ncbi.nlm.nih.gov/pubmed/30199720
http://doi.org/10.1016/j.snb.2017.06.181
http://doi.org/10.1021/acs.est.8b02769
http://www.ncbi.nlm.nih.gov/pubmed/30208702
http://doi.org/10.1038/s41579-018-0040-1
http://www.ncbi.nlm.nih.gov/pubmed/29946124
http://doi.org/10.1016/j.watres.2020.115959
http://www.ncbi.nlm.nih.gov/pubmed/32531494

	Introduction 
	Materials and Methods 
	Study Site 
	Post-Algae Bloom Sampling and Selection of Input Variables 
	Numerical Simulation 
	Development of an Early Warning Index Based on Fuzzy Logic 
	Fuzzification 
	Fuzzy Inference 
	Defuzzification 

	Assessment Routine of Hindcast Results 

	Results 
	Hindcast of the Recorded Algae Blooms 
	Statistical Assessment of the Results 
	The False Alarm in 2013 
	The Sensitivity of the Model Settings 
	Systematic Difference between Two Stations 

	Discussion 
	Conclusions 
	References

