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Abstract: The Zambezi River basin is the fourth largest basin in Africa and the largest in southern
Africa, comprising 5% of the total area of the continent. The basin is extremely vulnerable to climate
change effects due to its highly variable climate. The purpose of this study was to evaluate the
impact of climate change on streamflow in one of the sub-basins, the Kabombo basin. The multi-
global climate model projections were used as input to the Soil Water Assessment Tool (SWAT)
hydrological model for simulation of streamflow under RCP 4.5 and RCP 8.5 climate scenarios. The
model predicted an annual streamflow increase of 85% and 6% for high uncertainty and strong
consensus, respectively, under RCP 8.5. The model predicted a slightly reduced annual streamflow
of less than 3% under RCP 4.5. The majority of simulations indicated that intra-annual and inter-
annual streamflow variability will increase in the future for RCP 8.5 while it will reduce for the
RCP 4.5 scenario. The predicted high and moderate rise in streamflow for RCP 8.5 suggests the need
for adaptation plans and mitigation strategies. In contrast, the streamflow predicted for RCP 4.5
indicates that there may be a need to review the current management strategies of the water resources
in the basin.

Keywords: catchment hydrology; global climate model; high uncertainty; streamflow simulation;
strong consensus

1. Introduction

Climate change effects have now exacerbated the variable climate of Southern Africa.
The changing climate has continued to alter the hydrology of the region to an extent where
all water dependent sectors such as energy, agriculture, mining, municipal water supply,
and tourism are affected. The current status of climate change impacts on hydrology calls
for evaluation to enhance effective planning. The Zambezi River basin (ZRB) comprises
13 sub-basins, one of which is the Kabompo basin. The evaluation of the potential impact
of climate change on future streamflow regime for Kabompo River basin is a prerequisite
for water resources planning [1]. The basin has inadequate and inaccurate information on
temporal and spatial variability of streamflow, especially regarding water availability, qual-
ity and maintenance of environmental flows [2]. The most common and widely used tools
for understanding the historical climate conditions and projecting possible future climate
changes under different emission scenarios are global circulation models (GCMs) [3]. The
GCMs are described as mathematical representations of physical, biological and chemical
fundamentals of the climate system [4].

The GCMs are used for representative concentration pathways (RCP), defined as a
set of scenarios that have been adopted by climate researchers to provide possible future
scenarios for the evaluation of the atmospheric composition [5,6]. Scenarios are detailed
descriptions of how the future is likely to unfold in different social, economic, technological,
environmental, greenhouse gas emission and climate settings [5]. There are four RCP that
have been developed as climate scenarios, and these are RCP 2.6 as the lowest range, RCP
4.5 and RCP 6.0 as the middle range, and RCP 8.5 as the highest range [6,7]. Generating
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future climate scenarios using GCMs for local and regions of interests does not produce
realistic results due to coarse spatial resolution, and will require downscaling to regional
or local scales [5]. Downscaling is achieved through dynamic and statistical methods
based on spatial and temporal climate projections. Several studies have shown that both
dynamic and statistical downscaling techniques have similar characteristics [3]. Statistical
downscaling is based on observed relationships between the current climate and future
climate for a specific GCM. The result can be used to validate the results of the regional
climate models (RCM) [3].

Prediction of future hydrology and water resources is based on downscaled GCM
projections, which are used as input data in hydrological models to simulate hydrological
variables, such as observed streamflow through calibration [2,8]. The complexity of river
catchments with dynamic systems requires the development of a better understanding
of how these systems will be altered with a changing climate [9]. Streamflow prediction
can be achieved through the use of hydrological ensemble systems [10,11]. Assessments of
impact of climate change on hydrology and water resources come with many uncertainties
which can be attributed to emission scenarios, climate models, hydrological models, and
downscaling methods [11,12]. Many times, uncertainties associated with climate models
are larger than those of hydrological models or downscaling methods [13,14]. Uncertainty
with hydrological prediction using GCM projections is better addressed with an ensemble
system than a deterministic approach [15].

Several climate change impact studies have used the GCM ensembles to assess future
streamflow. For instance, five GCMs were used in ZRB to analyse streamflow and found
that part of the basin will experience decreasing percentage changes while some parts
will have increasing percentage changes [16]. A large GCM ensemble data applied in the
Zambezi River basin found that a series of potential impacts are more severe under RCP
8.5 than under RCP 2.6 or 4.5, indicating that Greenhouse Gas (GHG) mitigation may
minimize uncertainties about the future climate scenarios, thereby reducing the risks of
extreme changes as compared to the unconstrained emissions under RCP 8.5 [17]. GCM
ensemble data were applied in Lake Victoria basin, Kenya and found that the range of
change in mean annual rainfall of 2.4–23.2% corresponded to a change in streamflow of
about 6–115% [18]. GCM projections were applied in the Upper Zambezi River basin
for analysis of catchment water balance components and it was concluded that there
would be considerable precipitation increase leading to high runoff under RCP 8.5 and
insignificant change under RCP 4.5 in some parts of the basin [19]. Three GCMs were used
to analyse flood frequency in Kafue River basin within the ZRB based on simulated daily
streamflow and it was concluded that in general, flood events increased during the B1
scenario (RCP 4.5) for 2021–2050 [20]. However, none of the studies had so far analysed in
detail the streamflow variability on a high resolution for the Kabompo River basin under
various time scales and climate change scenarios.

The objective of this study was to evaluate the impact of climate change on streamflow
based on multi GCM projections with a view to minimize uncertainty. Six statistically
downscaled and bias-corrected GCM projections under historical, RCP 4.5 and 8.5 cli-
mate scenarios were used as input to a calibrated Soil Water Assessment Tool (SWAT)
hydrological model for the simulation of six-member ensemble streamflow. The simulated
streamflow ensembles are based on the historical period 1975–2005, which was considered
as the baseline, while RCP 4.5 and RCP 8.5 focused on 2020–2050. Land use and land cover
were kept constant during SWAT simulations for RCP 4.5 and RCP 8.5, with climate change
being the only factor influencing streamflow variability. The basin has insignificant changes
in land/use land cover in the recent past due to limited development in the area. The largest
land use/land cover has been wooded savannahs covering about 95% of the basin area. It
is part of the rural area of the ZRB with huge potential for socio-economic development.

The results revealed two possible future scenarios for the Kabompo River basin based
on high uncertainty and strong consensus. The high uncertainty scenario predicts high
streamflow in the basin while strong consensus predicts slightly less streamflow than
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even the baseflow. Temperatures are also predicted to increase under both scenarios,
which may lead to higher potential evapotranspiration. The study is considered a novelty
in the detailed analysis of streamflow under high resolution for high uncertainty and
strong consensus. The generated new knowledge for streamflow variability under various
scenarios could be useful for future water resources planning for the basin and contribute
towards water resources management strategies and a review of policies.

2. Material and Methods
2.1. Study Area

The Zambezi River basin (ZRB) has an area of 1,320,000 km2, making it the fourth
largest river basin in Africa and the largest transboundary river in southern Africa that is
shared by eight countries. This study focused on the Kabompo River basin (KRB), one of
the sub basins, located in the Northwestern country of Zambia (Figure 1). The KRB forms
part of the upper ZRB with an area of 72,087 km2 that is predominantly wooded savannahs
as land use/land cover. Figure 1 shows the study area in Africa and the ZRB.

Water 2021, 13, x FOR PEER REVIEW 3 of 22 
 

 

The results revealed two possible future scenarios for the Kabompo River basin based 
on high uncertainty and strong consensus. The high uncertainty scenario predicts high 
streamflow in the basin while strong consensus predicts slightly less streamflow than 
even the baseflow. Temperatures are also predicted to increase under both scenarios, 
which may lead to higher potential evapotranspiration. The study is considered a novelty 
in the detailed analysis of streamflow under high resolution for high uncertainty and 
strong consensus. The generated new knowledge for streamflow variability under various 
scenarios could be useful for future water resources planning for the basin and contribute 
towards water resources management strategies and a review of policies. 

2. Material and Methods 
2.1. Study Area 

The Zambezi River basin (ZRB) has an area of 1,320,000 km2, making it the fourth 
largest river basin in Africa and the largest transboundary river in southern Africa that is 
shared by eight countries. This study focused on the Kabompo River basin (KRB), one of 
the sub basins, located in the Northwestern country of Zambia (Figure 1). The KRB forms 
part of the upper ZRB with an area of 72,087 km2 that is predominantly wooded savannahs 
as land use/land cover. Figure 1 shows the study area in Africa and the ZRB. 

 
(a) 

Water 2021, 13, x FOR PEER REVIEW 4 of 22 
 

 

 
(b) 

Figure 1. (a) Location of Study area in Africa. (b) The study area in the Zambezi River Basin [21]  
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The KRB has a humid and subtropical climate. This basin records average yearly
rainfall of 1200 mm, yearly average runoff of 100 mm, and high river flows of 240 m3/s [22],
making a significant contribution to surface water and groundwater resources in the entire
Upper ZRB. According to previous studies [22,23], the runoff coefficient is very low in the
ZRB and is usually less than 10% of the Mean Annual Precipitation (MAP) on average. The
coldest month is July with mean monthly temperatures of less than 13 ◦C, while October is
the hottest month with a mean daily temperature of 29 ◦C. The potential evapotranspiration
(PET) is estimated to be about 1300 mm [23]. The KRB has not been spared from global
warming, as the decadal mean temperature rose in most of the ZRB ranges from 0.21 ◦C to
0.33 ◦C between 1960 and 2006 [24]. The basin has a high potential for rain-fed and irrigated
agriculture productivity and important potential sites for hydroelectric power generation
such as Chikata falls in the Kabompo district, the Kabompo gorge (under construction),
Nyamwezi Falls, and Muzhila Falls in the Mwinilunga district. The basin is also a home of
an ecosystem with the West Lunga National Park, and economical centre of the country
with large mines such as the Lumwana mine, (one of the largest mines in Africa), the
Kalumbila mine and the Zabesha mine. The estimated population based on a 2010 census
of the basin is 700,000 people with high poverty levels who rely on water resources for
their livelihood. In view of the hydrological and social economic factors mentioned above,
the KRB was identified to be strategic and hence chosen as a case study to demonstrate the
impact of climate change on hydrology.

2.2. Modelling Approach

The modelling approach was adopted in the study where the SWAT calibrating
hydrological model was forced with six GCM projections in simulation of streamflow. The
six GCMs from Coupled Model Intercomparison Project Phase 5 (CMIP5) were statistically
downscaled and used for climate change modelling. Figure 2 shows the flow diagram of
the modelling approach.
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2.3. Model Selection

The Soil and Water Assessment Tool (SWAT) is a conceptual, continuous and dis-
tributed hydrologic model, which divides the basin into hydrological response units (HRU)
based on the slope, soil characteristics and land use [25]. This model was selected for
hydrological modelling because of its capability to do long-term simulations and wide
application in climate change impact studies [26]. It is extensively used at a local, regional
and global scale to simulate surface runoff, interception storage, groundwater flows, tile
drainage, percolation and water quality [27]. The model is activity based and established
to evaluate the impacts of management choices on water resources and nonpoint source
pollution in river basins [28]. The SWAT model has shown to be applicable for hydrological
modelling under various climatic and environmental conditions [29].

2.4. Climate Data

Daily climatic data such as precipitation, maximum and minimum air temperature,
relative humidity, solar radiation, and wind speed are required to use the SWAT model
for simulation of water balance components [30]. When measured climate data are not
available or missing, SWAT simulates daily weather data to fill the missing data [31]. The
analysis was based on future climate scenarios from six statistically downscaled and bias-
corrected GCMs, namely, Access1-0, CNRM-CM, IPSL-CM5A-LR, MIROC, MPI-ESM-MR
and MRI-CGCM3-MR, under the RCP 4.5 and RCP 8.5 emission scenarios for the period
of 2020 to 2050 [11]. These GCMs were obtained from the NASA Earth Exchange (NEX)
Global Daily Downscaled Projections (NEX-GDDP). The NEX-GDDP dataset has a high
spatial resolution of 0.25◦ (approximately on 25 km × 25 km) and has been downscaled
using global climate scenarios generated by GCM runs conducted through the Coupled
Model Intercomparison Project Phase 5 (CMIP5) [32].

2.5. Criteria for Selecting GCM

In this paper, six GCMs, were considered for the development of multi-model ensem-
bles for precipitation and temperature. The available literature has shown that there is
no standardised procedure for the selection of the appropriate number of GCM for the
multi-model ensemble and most of the studies considered the first three to ten GCM ranked
according to descending order of their performance for the multi-model ensemble [33].
Several studies recommend that one GCM is not sufficient to evaluate uncertainties affect-
ing the future projected climate. In view of this, an ensemble of GCM is a requirement in
climate change impact studies [33]. The CMIP5 GCM runs were generated to support the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5).
The selection of the GCM was based on a set of global, high resolution, bias-corrected
climate change projections that could be used to assess climate change impacts on processes
that are sensitive to finer-scale climate gradients and the influence of local topography on
climate conditions [34].

2.6. SWAT Model Set-Up

The input data for the SWAT model included landuse/land cover obtained from
USGS, the earth explorer, soil data obtained from FAO Africa, rainfall and temperature
data obtained from Zambia Meteorological Department, Lusaka Zambia and DEM (with
30m resolution) obtained from SRTM, and the USGS earth explorer. The set-up of the
SWAT model was further subjected to performance evaluation using four performance
indices that are normally used to assess the model performance. The indices include: Nash
Sutcliff (NS), coefficient of determination R2, the 95% of predictive uncertainty (95PPU)
known as the P-factor and the band representing observed data including its error. The R2

and NS is a probability degree for the SWAT model (rainfall runoff model) in the SUFI-2
technique between the simulated and observed stream flow. The P-factor was applied
to measure the uncertainties associated with the SWAT model. The P-factor and R-factor
are interrelated such that a larger P-factor can only be obtained at the expense of a higher
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R-factor [35]. Properties of error in average basin precipitation and simulated runoff is
described using three evaluation metrics, namely Mean Relative Error (MRE), Centered
Relative Root-Mean-Square Error (CRMSE), and Correlation Coefficient (CC). MRE is an
error metric measuring the systematic error component with values greater or smaller than
zero indicating over- or underestimation, respectively [36]. Monthly model performances
are further evaluated using the ratio of the root mean square error to the standard deviation
of observed data, and the percent bias (PBIAS). Bias ratio is the average of the ratio of the
predicted value to the actual value. The bias ratio of a real unbiased distribution will be
one (1) [37].

The calibrating SWAT model was driven by all six downscaled and bias-corrected
climate projections to simulate future streamflow for the basin [38]. The model inputs of
daily climatic data for the baseline and future climate scenarios included precipitation,
maximum and minimum temperature, solar radiation, relative humidity and wind speed.
The first three-year period was used as a model warm-up period and, therefore, simulations
were run from 2023 to 2050, while the baseline period covered 1978 to 2005. The calibrated
SWAT model used inputs from six GCM projections under the baseline, RCP 4.5 and RCP
8.5 climate scenarios and simulated monthly streamflow (m3/s). Streamflow in the SWAT
model was obtained by summation of surface runoff, interflow and base flow [2]. The
simulated streamflow was then used as an ensemble for quantification and analysis based
on monthly, seasonal and annual time scales. In addition, the study focused on lower time
resolution rather than on daily simulations, because the GCM’s reliability decreases at
higher frequency temporal scales [39].

2.7. Assessment of Climate Change Impact

Many methods have been developed to assess the impact of climate change on global
or regional scale. The most commonly used method is the change factor methodology
(CFM), which is also called delta change factor method [39]. Although CFM is commonly
used to assess the future climate scenarios, there are no properly described procedures that
exist in the literature that can be employed to identify the most appropriate methodology
for different applications [39].

The mathematical formulation procedure was used as CFM, which can be additive or
multiplicative. The additive CFM is determined by finding the change of a GCM variable
resulting from a recent climate simulation and a future climate scenario based on the
identical GCM grid position. The calculated change (delta change) is then added to the
measured data to find the simulated future time series.

The additive change factors involve estimation of averages for baseline and future
scenarios using Equations (1) and (2), respectively [16,39].

GCMb =
Nb

∑
i=1

GCMbi
Nb

(1)

GCM f =

N f

∑
i=1

GCM f i

N f
(2)

where
GCM f i and GCMbi are values from future and baseline scenarios, respectively, for

a temporal domain; and GCM f and GCMb are mean values of the future and baseline
climate, respectively.

In order to calculate the additive change factor, Equation (3) is used.

CFadd = GCM f − GCMb (3)

The above equations were applied in this paper to determine the changes that are due
to climate change.
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2.8. Coefficient of Variation

Intra-annual and inter-annual variability of streamflow at the KRB outlet was analysed
with the coefficient of variation (CV) for each GCM to determine the distribution of the
streamflow around the mean.

3. Results and Discussion
3.1. SWAT Model Calibration, Validation and Uncertainty Analysis

The SWAT model was calibrated and validated with observed streamflow for the
periods of 1982–1997 and 1998–2005, respectively. The goodness of fit was assessed with
the Nash-Sutcliff (NS) method [40] The statistics obtained after calibration showed Nash
Sutcliff (NS) of 0.73, and coefficient of determination (R2) of 0.73. Further statistics obtained
after validation showed NS of 0.64, and R2 of 0.70, The results indicate that all efficiency
parameters are good since they exceed 0.6 [24,28,41]. KRB was delineated with 255 HRUs,
102 sub-basins and a total area of 72,087 km2 using SWAT model. During the calibration and
validation processes, the model was further analyzed for uncertainty using the sequential
uncertainty fitting algorithm (SUFI-2) [42]. The 95% of predictive uncertainty (95PPU) was
well-bracketed during the calibration period of 1982 to 1997, with a P-factor of 0.75 and
an R-factor of 0.75, while during the validation period of 1998 to 2005, the values changed
to 0.73 and 0.55, respectively. The P-factor of 0.75 obtained during calibration and 0.73
during validation indicate that most of the observed and simulated data are bracketed with
95PPU. The slight decrease in P-factor from 0.75 to 0.73 during validation indicates the
level of uncertainties in input variables, such as rainfall. Further statistics, including RSR,
and PBIAS, were used to evaluate the monthly model performances. During calibration,
RSR was found to be 0.52 and PBIAS -2.2 while validation RSR slightly increased to 0.60
and PBIAS increased to 9.4.

The model was analyzed successfully used aforementioned statistics with a goodness
of fit to real data measured, and therefore the objective function was reached. After the
SWAT model calibration and validation were completed, six bias-corrected and statistically
downscaled baseline and future climate projections, derived from the GCMs, were used as
inputs to the SWAT model [34].

3.2. SWAT Simulation
High Uncertainty and Strong Consensus

The SWAT simulated results, based on the six GCM projections, showed considerable
variations in monthly streamflow under RCP 8.5, RCP 4.5, and baseline climate scenarios.
The SWAT streamflow simulation for ensemble GCM under RCP 8.5 showed much higher
flows when using Access1-0 than the remaining five GCMs, giving a consensus of 83%
based on five GCMs out of six (5/6). Therefore, results under RCP 8.5 have been separated
as two cases of five GCM with strong consensus and six GCMs (including Access1-0) with
high uncertainty, while the remaining results for baseline and RCP 4.5 are presented as the
same six-member ensemble.

The RCP4.5 is a middle pathway scenario that corresponds to guidelines of lower
greenhouse gas emission by the international community. The RCP 8.5 is a high emission
scenario, which indicates high impact on climate change. RCP 4.5 and RCP 8.5 together
provide a good overview of possible impacts. The streamflow increased by about 80%
under RCP 8.5 with high uncertainty, while for the strong consensus case, it increased
by 12%, because this is the unrestricted emission scenario. Predictions of streamflow
are generally high under Access1-0 for RCP 8.5 and only moderately increased for the
remaining GCM (strong consensus) such that the calculated average flows are generally
higher than the baseline ensemble mean streamflow. The predicted streamflow indicates
an extreme weather event in the basin, which experiences the highest rainfall in the region
culminating in periodic floods.

The streamflow results for RCP 8.5 showed uncertainty in magnitude, which was
observed by other researchers who stated that there is uncertainty in magnitude and
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direction of change in the Zambezi River basin response to future GCM projections [43,44].
It was pointed out that GCM runs performed under RCP 8.5 result in more uncertainty than
under RCP 4.5 because of climate distribution [17]. Although Access1-0, under RCP 8.5,
showed a higher uncertainty, the simulation results for baseline and RCP 4.5 scenarios were
within the same range with all other GCM. Differences exist only for RCP 8.5 due to the
sensitivity of the unrestricted GHG emissions policy. However, the selected model satisfied
the GCM selection criteria and may therefore not be considered as simply producing
streamflow results that could be regarded as outliers.

Many earlier studies recommend that previous performance evaluation is one of the
most appropriate methodologies since the GCMs that are finest in simulating the baseline
climatic scenarios are most likely to predict the future climate [33,45]. Therefore, the high
streamflow simulated for RCP 8.5 is a direct response to high precipitation input for KRB,
and Access1-0 was therefore considered to have a unique ability in simulations [1]. The
results for Access1-0 under RCP 8.5 were therefore presented as a case for high uncertainty.

Meanwhile, the ensemble GCM simulations under the RCP 4.5 scenario were within
the similar range with minor differences. The baseline GCM simulations and their en-
semble were found with similar patterns and within the same range with ensemble GCM
simulations under RCP 4.5. However, the magnitude and regime of the ensemble SWAT
simulated streamflow under the RCP 4.5 scenario does not significantly differ from the
ensemble baseline streamflow, suggesting that there may be insignificant variations in
hydrological variables, such as water yield, surface runoff, groundwater flow and interflow.
This result for RCP 4.5 is similar to previous studies that suggest that streamflow in the
ZRB is likely to remain within the ranges of historically observed variability [45]. The
results for the RCP 4.5 scenario may also be comparable to a previous study on median
change in rainfall that projected to be close to no change in the ZRB for both RCP 4.5 and
RCP 8.5 climate scenarios [17]. Further previous studies in the ZRB generally predicted
rising temperatures and precipitation decrease and that season may become shorter and
more variable, predicting more extended drought periods and more severe floods [43]. The
results under RCP 4.5 also agree with previous climate change impact studies that used
five GCM (CGCM3.1, CSIRO3.0, ECHAM5, CCSM3.0 and HACDM3), and concluded that
the ZRB will have increased temperatures and decreased precipitation leading to reduced
streamflow according to a special report on emission scenario A1B (SRES A1B) [18].

The findings in this paper show an average temperature rise of 1.6 ◦C under RCP
8.5 and 1.3 ◦C under RCP 4.5 for the same time period. The average temperature for the
baseline scenario was used as reference for the estimation of the temperature change. The
temperature rise of 1.6 ◦C is significant as it comes with huge effects on evapotranspiration
and is likely to lead to general dryness in some areas of the basin. The result confirms the
findings of the previous studies which predicted that the mean monthly potential evapo-
transpiration would increase in the future [3,44]. Despite the increase in temperature, the
patterns across the basin remain similar to the baseline climate for the winter season in June,
July and August (JJA) and summer season in September, October and November (SON).

3.3. Annual Streamflow Analysis

The different GCM projections were used as input for simulation of future streamflow
by SWAT model for the baseline, RCP 4.5 and RCP 8.5 climate scenarios to show variations
and patterns. The results under RCP 8.5 were separated for strong consensus and high
uncertainty to demonstrate future possibilities for the ZRB. The simulated results include
the calculated averages as shown in Figure 3a–d to highlight variations about the mean
and patterns.
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Figure 3. Cont.
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Figure 3. (a) Baseline ensemble streamflow with the average; (b) RCP 4.5 ensemble streamflow with
the average; (c) RCP 8.5 ensemble streamflow based on high uncertainty with the average; and
(d) RCP 8.5 ensemble streamflow based on strong consensus with the average.

The streamflows based on the GCM baseline, the RCP 4.5 and RCP 8.5 strong consen-
sus scenario in Figure 3a,b,d show similar patterns in the annual streamflow simulations
that are in the same range of magnitude between 30 and 90 mm/year across the basin.
Figure 3c indicates that the GCM ensemble was significantly different as the streamflow
simulation based on Access1-0 is higher and in the range of 168–725 mm/year across the
basin with a different pattern. The differences in simulations for RCP 8.5 may demon-
strate uncertainty in non-perfectly calibrated model and GCMs that have various model
characteristics [1].

3.4. Monthly Streamflow Analysis

Figure 4a indicates the monthly streamflow, based on Access1–0 for the RCP 8.5
scenario that has a high uncertainty, with the highest magnitude of 1696 m3/s compared
to the baseline and RCP 4.5. The highest simulated streamflow occurs in January while,
in February and March, the flow begins to recede until August, when it becomes similar
to the base flow. The lowest flow of 204 m3/s is experienced in September and October.
Thereafter, the flow begins to rise gently up to November, where there is a sharp rise due
to rainfall events starting towards the end of September.

The peak baseline streamflow is 224 m3/s occurring in March while peak streamflow
for the RCP 4.5 scenario in the same month is 187 m3/s. The baseline streamflow is
slightly higher than that of the RCP 4.5 throughout the year, predicting a decrease in flow
magnitude under RCP 4.5. The lowest flow for both baseline and RCP 4.5 is 73 m3/s in
November. Figure 4a under RCP 8.5 (high uncertainty) shows a shift in the peak flow
occurrence when compared to the other three scenarios. The peak flow for RCP 8.5 in
Figure 4a is predicted to be in January, while the baseline, RCP 4.5 and RCP 8.5 (Figure 4a’)
scenarios have a corresponding peak flow in March. There is also a sharp rise in flow
predicted for the RCP 8.5 scenario for the period between November and January, which
may be triggered by a high rainfall input at the beginning of October. Figure 4a’ indicates
the monthly streamflow based on Access1-0 under RCP 4.5 and a baseline that has strong
consensus and shows similar pattern as all other GCM streamflows.
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Figure 4. Streamflow simulations based on individual global climate models: (a) ACCESS1-0 (high uncertainty);
(a′) ACCESS1-0 (strong consensus); (b) CNRM-CM; (c) IPSL-CM5A-LR; (d) MIROC; (e) MPI-ESM-MR; (f) MRI-CGCM3-MR;
and (g) average streamflow for GCM Ensemble.
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Figure 4c shows the prediction of streamflow based on IPSL-CM5A-LR for the RCP
4.5 and RCP 8.5 scenarios. The streamflow simulations have nearly the same flow regime,
with some differences between January and April. The streamflow for RCP 8.5 is higher
than the ones for both RCP 4.5 and the baseline, which are almost comparable to one
another throughout the year. Figure 4d shows the prediction of streamflow based on
MIROC5 under the RCP 4.5 and RCP 8.5 scenarios compared to the baseline period. The
three streamflow simulations have nearly the same magnitude and flow regime with some
differences between January and April. The streamflow for RCP 8.5 is slightly higher than
for RCP 4.5, which is also higher than the baseline streamflow between January and April.

Figure 4e shows no variation in the streamflow simulated for the baseline period, the
RCP 4.5 and RCP 8.5 scenarios and therefore predicts no changes in streamflow for the
near future. Figure 4f shows the streamflow for RCP 4.5 and RCP 8.5 will be considerably
less between January to April, while slightly less for the rest of the months when compared
to the baseline.

Figure 4g shows the average streamflow for ensemble GCM based on baseline, RCP
4.5 and RCP 8.5 with strong consensus. The streamflow simulation based on the GCM
shows that the future magnitude of streamflow will reduce slightly between the months of
May and December, while considerable reductions will occur between January and April.

Overall, Figure 4 shows most of the streamflow simulations, based on five GCM,
predict slight increases in streamflow, while streamflow simulations based on Access1-0
(Figure 4a) predict a considerable increase, and streamflow simulations based on MRI-
CGCM3-MR predict slightly less streamflow. The streamflow simulations in Figure 4a
are within the same range while streamflow simulations in Figure 4a have an enormous
increase when compared to other GCMs. Further analysis was therefore performed to
calculate monthly streamflow ensemble means based on the six GCM in Figure 5 for the
baseline as well as the RCP 4.5 and RCP 8.5 climate scenarios as it improves the outcome of
simulations [46].
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Figure 5. Monthly mean streamflow ensembles under (a) high uncertainty and (b) strong consensus.

The mean streamflow ensembles shown in Figure 5a,b indicate that the baseline and
RCP 4.5 streamflows will have insignificant variations in magnitude and flow regime
although the stream flows for RCP 4.5 will be slightly less than baseline streamflow.
Meanwhile, the mean streamflow for RCP 8.5 with high uncertainty will be much higher in
magnitude than the two ensemble mean streamflows with a wide variation in flow regime.
The RCP 8.5 with strong consensus on Figure 5b shows a moderate increase in monthly
streamflow and with a similar pattern with Baseline and RCP 4.5 streamflow ensembles.
The simulated flows are within the range of the other GCMs.

The ensemble mean streamflow for RCP 8.5 indicates a sharp rise from November to
January, while for RCP 4.5, there is a moderate rise from November to January. The predic-
tions from the ensemble mean streamflow indicate an increased magnitude of streamflow
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for RCP 8.5, which may culminate into flooding of most parts of the basin depending
on topography, whereas RCP 4.5 generally indicate a slightly lower streamflow when
compared to the baseline flow. In order to determine the actual increase or decrease of
the ensemble mean streamflow in Figure 6, the change factor methodology (CFM) [39]
was applied.
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Figure 6. Ensemble mean streamflow changes (a) under high uncertainty; and (b) strong consensus.

Figure 6a shows the highest streamflow of 270 m3/s for RCP 8.5, which is much higher
than the ensemble means of that of RCP 4.5. The highest increase in streamflow occurs in
January, while the lowest increase occurs in September and October. Prediction of the flow
regime shows that peak flow occurs in January and recedes gently until September before
beginning to rise again in November. Figure 6b shows the highest increase in streamflow
of 25 m3/s for RCP 8.5 to be moderately higher than the streamflow for RCP 4.5.

3.5. Seasonal Flow Analysis

The KRB experiences four seasons, namely December, January and February (DJF)
representing the typical rainy season (spring); March, April and May (MAM) indicating
the autumn season; June, July and August (JJA) representing the winter season; and finally,
September, October and November (SON) representing summer.

Streamflow varies depending on the season. DJF and MAM are known as wet sea-
sons, while JJA and SON are known as dry seasons. Future streamflow from the GCM
ensemble means were analyzed based on the aforementioned seasons and monthly future
streamflows. The CFM was applied to monthly streamflow and aggregated to seasonal
streamflow. Figure 7 shows the seasonal comparisons between baseline, RCP 4.5 and RCP
8.5 stream flows under high uncertainty and strong consensus with corresponding changes
per season.
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Figure 7. Comparisons of change in seasonal streamflow for (a) high uncertainty; and (b) strong consensus.

The seasonal streamflow in Figure 7 indicates that for RCP 4.5, streamflow will be
reduced by −0.6% in DJF, −0.7% in MAM, −1% in JJA and −2% in SON in both scenarios.
The seasonal streamflow will be slightly less than the historical flow because all seasons
have been predicted with an increasing negative magnitude, with highest occurrence in
SON at 2% reduction.

However, the seasonal streamflow for RCP 8.5 is apparently high for all seasons in
contrast to the baseline and RCP 4.5 stream flows. The highest seasonal streamflow change
in Figure 7a is predicted to be 134% for DJF, which is followed by 87% for MAM, 44% for JJA
and 34% for SON. This implies that DJF and MAM may experience severe floods, whereas
JJA and SON represent the dry season where the streamflow does not significantly differ
from the baseline flow. Predictions in Figure 7b show that seasonal streamflow will increase
in DJF by 10%, MAM by 5%, JJA by 2% and SON by 5%. All percentage calculations are
based on baseline data.

The results show consistency with previous studies which predicted that, under the
RCP 8.5 scenario for the period 2020–2050, most part of the ZRB is likely to experience
dryness, apart from areas in the north (close to Malawi and Northern Zambia), which will
be wetter and therefore leading to high streamflow [15,17]. As the KRB is located in the
North-western part of Zambia, the results agree with the findings on the rise of extreme
events in most ZRB riparian states that included Malawi, Zambia and Mozambique [47].
Others previous studies predicted a significant increase in rainfall events over Southern
Africa (including Angola, Namibia, Mozambique, Malawi and Zambia), which will lead to
more streamflow [48,49].

3.6. Intra-Annual Flow Analysis

Concerning the monthly streamflow simulation for six GCM, the intra-annual variabil-
ity showed a uniform pattern of streamflow indicating significant correlation efficiency. The
streamflow simulation in Figure 8 shows monthly streamflow variability for six GCM based
on RCP 8.5 and with significant differences between high uncertainty and strong consensus.

The simulated streamflow in Figure 8a shows that monthly streamflow for Access1.0 is
much higher than the majority, suggesting uncertainty and confirming that different GCM
respond differently to model formulations for dynamics, physics (i.e., parameterizations)
and external forcing. Figure 8b shows that the simulations from the GCM are similar
and give a uniform pattern throughout the period of projection. The simulated monthly
flows were aggregated to ensemble mean annual flows in Figure 9 to analyze the annual
variability for the three climate scenarios.
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The ensemble mean annual flows in Figure 9a are predicted to be high for RCP 8.5
with high uncertainty compared to the ensemble mean for both RCP 4.5 and baseline.
Figure 9a shows that annual flows for RCP 4.5 and baseline have insignificant differences in
magnitude and regime. The ensemble mean annual streamflow for RCP 4.5 in Figure 9a,b
predicts a slight reduction when compared to the baseline streamflow. This result is
consistent with the previous study which predicted that on average the annual rainfall
in the ZRB (about 960 mm) will decrease across the ZRB, which is expected to reduce
runoff [16], while others predicted from the baseline runoff data that it will decrease by
2050s [44]. Researchers predicted that ZRB would result in a decline in water runoff with
consequent reductions in streamflow under RCP 4.5 by 2100 [49].
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3.7. Intra-Annual and Inter-Annual Streamflow Variability

Flow regime analysis has always been critical in the environmental sciences to en-
hance the understanding of streamflow variability [50]. Intra-annual variability of baseline,
RCP 4.5 and RCP 8.5 stream flows were determined for each GCM to assess the distri-
bution around the mean, which was calculated as Coefficient of Variation (CV). Table 1
indicates the estimated CV for various stream flows for different climate scenarios. All
the CVs for the RCP 4.5 scenario are lower than that of the baseline scenario. Therefore,
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most simulations indicate that intra-annual and inter-annual streamflow variabilities will
decrease for RCP 4.5 in the future.

Table 1. Estimated coefficient of variation (CV).

GCM. Access CNRM
CM5

IPSL
CM5A

LR
MIROC MPI-ESM-MR MRI-CGCM3-MR Highest

CV
Mean

CV
Lowest

CV

Baseline scenario
Intra-annual CV 0.410 0.413 0.404 0.387 0.386 0.396 0.413 0.399 0.386
Inter-annual CV 0.160 0.139 0.140 0.128 0.096 0.153 0.160 0.136 0.096

RCP 4.5 Scenario
Intra-annual CV 0.399 0.401 0.419 0.406 0.384 0.371 0.419 0.397 0.371
Inter-annual CV 0.141 0.121 0.119 0.087 0.079 0.125 0.141 0.112 0.079

RCP 8.5 Scenario
Intra-annual CV 0.998 0.427 0.434 0.419 0.407 0.375 0.998 0.510 0.375
Inter-annual CV 0.334 0.158 0.118 0.101 0.116 0.142 0.334 0.161 0.101

Most of the CVs for the RCP 8.5 scenario (except those for MRI-CGCM3-MR) are
higher than the CVs for the baseline scenario. The annual streamflow increase is rather
high and has, therefore, been assessed by investigating the intra-annual and inter-annual
variability of streamflow, which was high for RCP 8.5.

Table 1 shows that the averaged intra-annual variability for RCP 8.5 for high uncer-
tainty is 0.510, which is higher than 0.399 of the six estimates of the intra-annual variability
for the baseline. Similarly, the averaged inter-annual variability for RCP 8.5 for high un-
certainty is 0.161, which is also higher than 0.136 of the six estimates of the inter-annual
variability for the baseline. In the same way, most of the CV for the RCP 8.5 scenario
(except those for MRI-CGCM3-MR) are higher than the CV for the baseline scenario. Most
simulations indicate that intra-annual and inter-annual streamflow variability will increase
in the future for RCP 8.5 by a considerable margin.

The results revealed a huge uncertainty of the future for the KRB. The KRB is faced
with two scenarios based on RCP 8.5 which is the unrestricted policy for high uncertainty
and strong consensus with implications for floods and drought, respectively. The overview
of results analysed under high uncertainty show that climate change may result in floods
in the basin. The KRB baseline period shows years of floods and drought that have been
reported in the past. The predicted potential floods are expected to be more severe than
the historical floods. This may lead to more severe damage to infrastructure, food crops,
ecosystems, and possibly loss of lives if adequate adaptation and mitigation strategies
are not put in place. Water quality is also likely to be altered and more low-lying areas
are expected to be inundated. The predicted high temperatures in the basin may have
implications of high evapotranspiration from vegetation and high evaporation from surface
water bodies. This scenario requires strengthening of flood early warning systems to help
in adaptation and mitigation.

The climate change scenario under strong consensus shows a status quo where stream-
flow is likely to remain the same. However, the basin water resources may be more stressed
due to the increased water demand and possible rise in evapotranspiration. The scenario
of drought will culminate into high aridity and drying up of some rivers and streams, as
well as boreholes, leading to water shortages in some communities that largely depend
on groundwater points. Agriculture productivity may be negatively affected and lead to
food insecurity. Water levels in reservoirs may drastically be reduced affecting hydropower
generation capacity and therefore subsequently affecting the ecosystem, some mining
activities, water supply, and small-scale industries in KRB.

3.8. Main Limitations of the Study

The GCM, Access1-0 under RCP 8.5 had simulated higher magnitudes of streamflow
compared to the other five GCMs, indicating uncertainties, and a conclusion was made
based on strong consensus and high uncertainty. The streamflow results for RCP 8.5
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showed uncertainty in magnitude, which was also observed by other researchers who
stated that there is uncertainty in magnitude and direction of change in the Zambezi River
basin response to future GCM projections [43,44]. It was pointed out that GCM runs
performed under RCP 8.5 result in more uncertainty than under RCP 4.5 because of climate
distribution [17]. The simulation of Access1-0 under RCP 8.5 was considered to be a unique
model skill (1).

4. Conclusions

The detailed analysis of streamflow under high resolution for strong consensus and
high uncertainty is considered a novelty. The generated new knowledge for streamflow
variability under various scenarios could be useful for future water resources planning and
contribute to the preparation of realistic adaptation measures for the basin.

The projected changes in temperature show an increasing trend with minor uncertain-
ties, while showing considerable uncertainties in precipitation. The basin for the RCP 8.5
scenario shows significant changes in streamflow based on high uncertainty and strong
consensus among the ensemble streamflow simulations and strong consensus where the
five GCM streamflow have good agreement. There are also significant increases in seasonal
stream flows that range between 34% and 134% as analyzed from the ensemble mean of
RCP 8.5 under high uncertainty, while the seasonal increases under the strong consensus
range between 2% and 10%

The basin for the RCP 4.5 scenario will be subjected to insignificant changes in monthly,
seasonal and annual flow regimes and magnitudes. The predictions suggest that the
magnitude and temporal streamflow will be slightly less than the baseline magnitude. The
RCP 4.5 future climate scenario predicts a negligible reduction in streamflow for the basin
whether simulated as individual GCM or ensemble mean.

The predicted high stream flows for RCP 8.5 under high uncertainty and moderate
rise in stream flow under strong consensus suggest the need for adaptation plans and
mitigation strategies. In contrast, the stream flows predicted for RCP 4.5 will require
the review of current management strategies of water resources in the basin, considering
the ever-increasing water demand and other impacts, such as on water quality. Most
simulations indicate that intra-annual and inter-annual streamflow variability will decrease
in the future for RCP 4.5, while increasing for RCP 8.5 for both cases (high uncertainty and
strong consensus) by a considerable margin.

Temperature was predicted with a robust change signal, while precipitation was very
variable with huge uncertainties, especially for the RCP 8.5 scenario. The future studies
need to focus on RCP 4.5 and RCP 8.5 for the period 2050–2090 to assess any possible
climate change impacts, such as temperature change on streamflow, that would arise from
the corresponding scenarios. It is also recommended to analyse the effects of landuse/land
cover changes on water resources and to increase the number of GCM projections to
find a better consensus and possible uncertainty for analysis of future hydrology and
water resources.
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