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Abstract: Climate and land use changes have substantially affected hydrologic cycles and increased
the risk of drought. Reservoirs are one of the important means to provide resilience against hydrologic
variability and achieve sustainable water management. Therefore, adaptive reservoir operating rules
are needed to mitigate their adverse effects. In this study, the Hanjiang River Basin in southeast China
was selected as the study area. Future climate and land use projections were produced by the Delta
method and CA-Markov model, respectively. Future climate forcings and land use patterns were
then incorporated into a distributed hydrologic model to evaluate river flow regime shifts. Results
revealed that climate and land use changes may lead to severe drought conditions in the future.
Lower flows are shown to be more sensitive to environmental changes and a decline of monthly
flows could reach up to nearly 30% in the dry season. To address the threat of increasing drought
uncertainties in the water supply system, the aggregation-decomposition method incorporated with
hedging rules was applied to guide the multi-reservoir operation. Parameters of optimal hedging
rules were obtained by a multi-objective optimization algorithm. The performance of hedging rules
was evaluated by comparison to standard operating policies and conventional operating rules with
respect to reliability, resiliency, vulnerability, and sustainability indices. Results showed that the
multi-reservoir system guided by hedging rules can be more adaptive to the environmental changes.

Keywords: climate and land use changes; SWAT model; hedging rules; aggregation-decomposition;
drought conditions

1. Introduction

Water has been widely perceived as one of the most important natural resources to
sustain human social and economic development. Water conservancy projects and water
supply systems are designed to meet anthropogenic and environmental water needs [1].
However, the intensification of human activities over the past century has dramatically
accelerated the global land use and climate change rate, and changes are certain to continue
in the near future. In the context of changing environments, the water supply system,
which has been designed based on the original characteristics of water resources, may face
more challenges to adapt to hydrological regime shifts.

Climate and land use changes have substantially affected terrestrial hydrological
cycles. Increased greenhouse gas emissions lead to a rise in air temperature, and thus,
intensify the terrestrial hydrological cycle, causing more extreme hydrometeorological
events. Middelkoop et al. [2] revealed that climate change will lead to higher winter flow
and lower summer flow in the Rhine basin. The shifts of flow regime would put pressure

Water 2021, 13, 3095. https://doi.org/10.3390/w13213095 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-6248-3402
https://doi.org/10.3390/w13213095
https://doi.org/10.3390/w13213095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13213095
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w13213095?type=check_update&version=1


Water 2021, 13, 3095 2 of 18

on local water security and water availability. Xu et al. [3] exhibited a decline of river
runoff in winter, while an increase in summer under all of the emission scenarios, implying
more possible extreme disasters (floods and droughts) may appear in Qiantang River Basin,
East China. In contrast with climate change, land use changes usually affect the water
distribution on the land surface through processes such as interception, infiltration, sur-
face/subsurface runoff, and evapotranspiration, etc. For example, urbanization expands
the impervious surface area, which will reduce infiltration and the concentration time.
Therefore, urbanization may come with more flash floods with higher peaks [4,5]. Evapo-
transpiration is usually more sensitive when regional dominant land cover conversions
take place [6,7]. Moreover, previous studies investigated the combined effect of land use
and climate change on water resources. A large number of these studies discovered that the
frequency and intensity of future floods and droughts would become more unprecedented
under the changing environments [8,9].

Reservoirs are one of the important means to provide resilience against hydrologic
variability and achieve sustainable water management [10–12]. However, the hydrological
flow regime shifts in the future may pose big challenges for the reservoir design and opera-
tion under the assumption of hydrologic stationarity [13,14]. For example, Georgakakos
et al. [15] pointed out that current reservoir operation policies would be incompetent to
satisfy the water supply needs during drought periods under climate change. Therefore,
it is necessary to improve the adaptability, reliability, and resilience of existing reservoir
systems under the increasing environmental uncertainties [16].

To mitigate the impacts of climate and land use changes, a number of adaptive
reservoir operating policies have been proposed. Specifically, the hedging mechanism
has been wildly applied to cope with the increasing uncertainties of future flow patterns.
Compared with the standard operating policies (SOPs), which release water as close to
the water demand as possible, only saving a surplus of water for future use, the hedging
rules (HRs) would accept small deficits in the current stage to reduce the probability of
a severe water shortage later [17–19]. Therefore, HRs tend to be more resilient to the
flow regime changes that are intensified by the changing environments. Steinschneider
et al. [20] developed an adaptation strategy by combining hydrologic forecast information
and risk hedging via an option instrument. Results suggested that the proposed strategy
could effectively improve system reliability under climate change scenarios. In order to
alleviate the damage of future droughts, Karamouz et al. [21] applied hedging rules into
the contingency planning scheme of the reservoir to reduce the damages of water deficit.
Adeloye et al. [22] developed optimized static and dynamic zone based hedging policies
for reservoir operation, which could better utilize the buffering capacity to reduce the
system vulnerability. Alimohammadi et al. [23] changed the SOP into a Modified Linear
Decision Rule policy, which avoided the complete draining of the reservoir for several
consecutive months by giving agricultural demands a lower priority than the urban water
supply. Ahmadianfar et al. [24] introduced a two-dimensional hedging policy into the
agricultural reservoir operation, revealing decreased vulnerability and water deficit under
the RCP 8.5 climate scenario.

Even though HRs have been proven to be an effective way to cope with the uncer-
tainties of future drought, few studies made efforts to investigate how to derive adaptive
joint operating rules based on HRs for the multi-reservoir water supply system under the
changing environments. For a multi-reservoir system, the cooperation for reservoirs is
needed to achieve optimal water resources management. The aggregation-decomposition
method has been proven to be one of the effective ways [25–27]. The basic idea of the
multi-reservoir aggregation-decomposition method is to aggregate multiple reservoirs into
a virtual aggregated reservoir to determine the optimal total output, which is then allocated
to individual reservoirs [28,29].

This paper aimed at investigating the impact of climate and land use changes on
drought conditions, and then proposed the adaptive operating rules for the multi-reservoir
system. The Hanjiang River Basin in southeastern China was selected as the study area,
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where the lack of enough reservoir regulation capacity together with the large amount of
anthropogenic water demand make the water supply system more vulnerable to streamflow
uncertainties. Based on the Bureau of Hydrology and Water Resources Pearl River Water
Resources Commission of Ministry of Water Resources in China, the monthly average
runoff of the Hanjiang River Basin was down 20%–90% from the historical average for
25 consecutive months from 2019 to 2021, due to climatic anomaly, which led to the most
severe drought conditions since 1956. Therefore, a deeper understanding of the adaptive
management is expected to contribute to drought mitigation under climate and land
use changes. The remainder of this paper is organized as follows. The methodology is
introduced in Section 2. Section 3 introduces the study area and the data used in this study.
Subsequently, the results and discussion are presented in Section 4. The conclusions are
drawn in Section 5.

2. Methodology

The flowchart of this study consists of two main parts, and it has been shown in
Figure 1: (1) Evaluation of low flow regime changes, which is based on land use projection,
climate change projection, and SWAT model simulation; (2) evaluation of reservoir opera-
tion performance by comparing adaptive hedging rules with standard operating rules and
conventional operating rules.
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Figure 1. Flowchart of the methodology.

2.1. Hydrologic Model

The soil and water assessment tool (SWAT) model is a physically based, continuous-
time, distributed parameter model that is able to simulate the quality and quantity of water
on the basin scale and predict the impact of land use and climate changes [30,31]. The
hydrologic routines in the SWAT model consist of the following components: Weather, sur-
face/subsurface runoff, groundwater flow, percolation, evapotranspiration, reach routing,



Water 2021, 13, 3095 4 of 18

etc. The SWAT model applies a two-level spatial discretization scheme. Specifically, the
watershed is first divided into sub-basins based on topography and further discretized into
hydrologic response units (HRUs), with the homogeneous land use, soil type, topography,
and management approach [32].

The sequential uncertainty fitting version 2 (SUFI-2) program, embedded in the SWAT-
CUP (calibration and uncertainty procedures) [33] was utilized in the model calibration.
The SWAT-CUP is able to calibrate model parameters in different spatial scales, including
the basin, sub-basin, and HRU scales.

2.2. Land Use Projections

In this study, the CA–Markov model, embedded in IDRISI Selva, was used to produce
land use projections. Cellular automata (CA) is a dynamic process model with powerful
spatial computing ability. The Markov process refers to a random process, whose future
probabilities are determined by its most recent values. The CA–Markov model combines
the advantages of these two processes, and can be used to carry out the spatial–temporal
land use change simulation [34]. The CA–Markov model iteratively simulates the spatial
distribution of land use based on the Markov transition matrix and transition suitability
image. The Kappa index is commonly used to evaluate the land use simulation results [35].
A Kappa index value greater than 0.75 denotes a decent consistency of two land use maps.
The Kappa index is defined as follows:

Kappa =
P0 − Pc

Pp − Pc
(1)

where P0 is the percent correct for the output; Pc is the expected percent correct due to
change; and Pp is the percent correct when the classification is perfect.

The following example illustrates the approach to make land use projections. Given
the land use maps of 1995, 2010, and 2015, in order to produce the land use patterns in 2050,
there will be three steps: (1) Based on land use maps of the year 1995 and 2010, IDRISI
Selva calculates the Markov transition matrix, taking 1 year as the time step. (2) Taking
the land use map of 1995 as the initial state, the CA-Markov model simulates the land
use variation iteratively and finally the land use map of 2015 is generated. The Kappa
index was calculated to validate the simulation results. (3) On the basis of decent model
performance in step (2), the CA-Markov model can be applied to simulate the land use
map of 2050 starting from 2015.

2.3. Climate Change Projections

In this study, the Delta method was used to generate precipitation and temperature
data series under future climate scenarios. The basic theory of the Delta method is to
scale the observed climate according to the simulated changes, which are derived from
GCMs [36,37]. To this aim, the monthly average differences of climatic variables (temper-
ature and precipitation), extracted from the GCM output, between future and historical
periods were first calculated. Then, the differences were superimposed to the baseline
climate data series. The differences of monthly mean temperature ∆Ti and the ratio of
monthly mean precipitation ∆Pi were calculated based on:

∆Ti = (T f ut,i − Tbase,i) (2)

∆Pi = P f ut,i/Pbase,i (3)

where T f ut,i and Tbase,i are the average temperature of GCM for the ith month in future and
baseline time periods, respectively. P f ut,i and Pbase,i are the average precipitation amount
of GCM for the ith month in future and baseline time periods, respectively.
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2.4. Multi-Reservoir Operation Model
2.4.1. Aggregation-Decomposition Method

The aggregation-decomposition method was used in the multi-reservoir operation.
Reservoirs were aggregated in the unit of water volume and then decomposed based on
the percentage of inflow. The reservoirs can be aggregated as follows:

V(t) =
N

∑
j=1

[
Vj(t) + Ij(t)× ∆t

]
(4)

where V(t) is the storage of the aggregated virtual reservoir at the beginning of time
period t; Vj(t) is the storage of reservoir j at the beginning of time period t; Ij(t) is the
inflow of reservoir j during time period t; ∆t is the time interval; and N is the number of
reservoirs.

Hedging rules (HRs) were applied as the operating rules for the virtual aggregated
reservoir operation. SOPs were applied as the baseline for comparison. The SOPs and HRs
of the aggregated reservoir are shown in Figure 2.
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Figure 2. Operation rules of the aggregated reservoir: (a) SOP; (b) HR. Dm refers to the water demand, and Vc refers to the
active capacity of the reservoir.

As seen in Figure 2b, the two-point hedging rule contains two parameters, SWA and
EWA, representing the starting and ending water availability for hedging, respectively. The
water release of the virtual aggregated reservoir could be calculated using Equation (5), as
shown below:

Rt =


WAt

Dt + (SWAt − Dt)
WAt−EWAt

SWAt−EWAt
Dt
WAt −Vc

WAt < SWAt

SWAt ≤WAt ≤ EWAt

EWAt ≤WAt < Dt + Vc
WAt ≥ Dt + Vc

(5)

where t denotes the time period.
The total release Rt calculated using Equation (5) could then be allocated to the

individual reservoirs using Equation (6), as shown below:

Rj(t) = R(t)×
Ij(t)

∑N
j=1 Ij(t)

(6)

where Rj(t) is the water release of individual reservoir j during the time period t; and Ij(t) is
the inflow of individual reservoir j during the time period t.
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The constraints considered in the model include water balance, water storage limits,
and release capacity, as shown below:

Vj(t + 1) = Vj(t) +
(

Ij(t)− Rj(t)
)
∆t (7)

Vj,min ≤ Vj(t) ≤ Vj,max (8)

Rj,min ≤ Rj(t) ≤ Rj,max (9)

where Vj(t) and Vj(t + 1) are the beginning and ending storage limits of reservoir j at time
period t; Vj,min and Vj,max are the lower and upper water storage limits of reservoir j; and
Rj,min and Rj,max are the lower and upper water release limits of reservoir j.

2.4.2. Optimization Method

Two objective functions were selected to evaluate the multi-reservoir operation model
performance, which are to maximize the water supply reliability (RE) and to minimize the
maximum water deficit (DE).

max(RE)⇔ max

{
∑T

t=1 Z(t)
T

}
× 100% (10)

min(DE)⇔ min
{

max
(

1− Q(t)
Dm

)}
× 100% (11)

where Z(t) is a binary indicator. When the flow Q(t) is greater than the water demand Dm
at the cross section, Z(t) is equal to 1. Otherwise, Z(t) is equal to 0.

The HRs were optimized through the Pareto-archived dynamically dimensioned
search (PA-DDS) algorithm [38]. PA-DDS is a multi-objective optimization algorithm,
which has shown its efficiency and effectiveness in solving water resources problems in
previous studies [39–41].

2.5. Evaluation Indicators

(1.) Hydrologic model performance

The Nash-Sutcliffe efficiency (NSE), relative error (RE), and coefficient of determi-
nation (R2) were used to evaluate the SWAT model performance, which can be defined
as:

NSE = 1− ∑T
t=1(Qs,t −Qo,t)

2

∑T
t=1
(
Qo,t −Qo

)2 (12)

RE =
|∑T

t=1 Qo,t −∑T
t=1 Qs,t|

∑T
t=1 Qo,t

× 100% (13)

R2 =
[∑T

t=1
(
Qo,t −Qo

)(
Qs,t −Qs

)
]2

∑T
t=1
(
Qo,t −Qo

)2
∑T

t=1
(
Qs,t −Qs

)2 (14)

where Qs,t and Qo,t refer to the simulated and observed streamflow at time period t, respec-
tively. Qs and Qo refer to the mean of simulated and observed streamflow, respectively.

(2.) Regime changes

To evaluate the regime changes of low flow under changing environments, indicators
were selected from the perspective of magnitude and variability [42]. The three selected
magnitude indicators are the 90th percentile of daily flow (Q90), the lowest seven consecu-
tive average flow (Qmin7), and the average flow (Q). Q90 is a robust indicator of low flows;
Qmin7 indicates consecutive extreme low flows; and Q represents the average amount of
water. One selected variability indicator is the interquartile range between Q50 and Q90
(Qvar), which represents the variation of low flows.
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(3.) Reservoir operation performance

Reliability, resiliency, and vulnerability indices were introduced to evaluate the per-
formance of the reservoir operation system in the Hanjiang River Basin. Reliability has
been defined in Section 2.4.2, and here denoted by IRE. The resilience index (IRS) is used
to measure the recovery rate from an unsatisfactory state [43,44], which can be defined as
follows:

IRS =
∑T−1

t=1 W(t)
T −∑T

t=1 Z(t)
(15)

where W(t) is a binary indicator. If Z(t) = 0 and Z(t + 1) = 1, then W(t) = 1. Otherwise
W(t) = 0. Vulnerability is represented by the mean water deficit, and here denoted by IVU.
Finally, a sustainability index (IS) was introduced to represent the combined performance
of the above three indices [24], which can be defined as follows:

IS = [IRE × IRS × (1− IVU)]
1
3 (16)

3. Case Study
3.1. Study Area

The Hanjiang River is one of the most important rivers in southeast China. It lies
between 23.28 and 26.08◦ N and between 115.22 and 117.2◦ E, with an area of 30,112 km2.
The Hanjiang River Basin spans three provinces (Guangdong, Fujian, and Jiangxi), and
around 10.7 million people live there. The Hanjiang River Basin has a subtropical climate
and the annual average precipitation in this basin is around 1600 mm, but its temporal
distribution is uneven, with the amount in the flood season accounting for almost 80%. On
the other hand, compared with the average annual total anthropogenic water use in the
basin (4.5 billion m3), the total active storage of the large reservoirs is only 1.4 billion m3,
which indicates a relatively weak water regulation capacity.

The Tingjiang River and the Meijiang River are the two main tributaries. As shown
in Figure 3, there are five large reservoirs in the Hanjiang River Basin, with Mianhuatan
Reservoir (MHT) located on the Tingjiang River and Changtan Reservoir (CT). The Heshui
Reservoir (HS) and Yitang Reservoir (YT) are located on the tributaries of the Meijiang
River. The Gaobei (GB) Reservoir is located on the mainstream of the Hanjiang River. The
basic parameters of reservoirs are listed in Table 1.
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Table 1. Basic parameters of the reservoirs in Hanjiang River Basin.

MHT CT HS YT GB

Catchment area (km2) 7907 1990 251 578 26,590
Normal water level (m) 173 148 138 153 38

Dead water level (m) 146 136.5 132.5 133 28
Active storage (106 m3) 1122 54.5 41.3 107 93.9
Total storage (106 m3) 2035 172 116 166 365.6

There are three water diversion projects in the basin, which are the Hanjiang-Rongjiang-
Lianjiang water diversion project (HRLWD), Hanjiang-to-Jieyang water diversion project
(HJWD), and Hanjiang-to-Raoping water diversion project (HRWD). Their maximum intake
flows are 30, 11.3, and 4.6 m3/s, respectively. All of the three water diversion projects take
water from the river segment, which is at the upstream of the Chaoan hydrologic station.

3.2. Data

(1.) Climate data

The daily climate data (including precipitation, air temperature, wind speed, radiation,
and relative humidity) at 16 meteorological stations during the period from 1979 to 2005
were collected from the China Meteorological Data Sharing Service System.

A set of 23 general circulation models (GCMs), such as ACCESS1.0, BCC_CSM1.1,
BNU-ESM, CanESM2, etc. derived from the fifth assessment report (AR5) of the intergov-
ernmental panel on climate change (IPCC), were used to generate the climate projections
data under climate change scenarios for both representative concentration pathways (RCP)
4.5 and 8.5. This study used the ensemble mean values of precipitation and air temper-
ature to represent climate change projections, in order to reduce the uncertainties of the
GCM models.

In this study, the baseline time period is from 1979 to 2005, and the future time period
is from 2035 to 2060 (2050s).

(2.) Streamflow data

The observed daily streamflow data during the period from 1979 to 2005 at Chaoan
hydrologic station were collected from the Hydrology Bureau of Guangdong Province. The
Chaoan hydrologic station was located on the control cross section of the lower reaches of
the Hanjiang River Basin (Figure 1).

Streamflow data from 1979 to 1995 were used to calibrate the SWAT model (the first
year serving as a warmup period) and data from 1996 to 2005 were used for validation.

(3.) Topographic, soil data, land use/cover

The topography data were determined on the basis of the NASA shuttle radar topo-
graphic mission (SRTM) digital elevation model (DEM) with a cell size of 90 m × 90 m. A
digital soil map was generated from the 1:1,000,000 scale soil map of China. Digital land
cover/land use maps of the year 1995, 2010, and 2015 were derived from the large-scale
(1: 100,000) land use map of China. They were regenerated by reclassifying into five main
land use types (woodland, grassland, developed, agriculture, and water) in this study.

3.3. Reservoir Operation System

(1.) Reservoirs

In the Hanjiang River Basin, the MHT, CT, HS, and YT reservoirs are in parallel and
all of their water release will enter the GB reservoir in the downstream. In this study, four
upstream parallel reservoirs were aggregated as a virtual reservoir. Therefore, the multi-
reservoir system in the Hanjiang River Basin could be simplified as a cascade reservoir
system comprised of two reservoirs.

The HRs were applied as the operating rules for both the aggregated virtual reservoir
and GB reservoir in the downstream. There are two parameters (i.e., SWA and EWA)
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for each reservoir. The time varying HRs were applied at monthly steps considering the
uneven distribution of runoff throughout the year. Therefore, there are 48 parameters in
total for the multi-reservoir system in the Hanjiang River Basin.

As a comparison scheme, the SOP rules were applied for the aggregated virtual
reservoir and GB reservoir, as well as to investigate whether the system performance could
be improved by HRs or not. Moreover, conventional operating rules (COs) of reservoirs
were evaluated as the benchmark.

(2.) Water diversion projects

Both HJWD and HRWD are designed for domestic water use. Therefore, the two
projects take water from Hanjiang on the scale of 15.9 m3/s, on a constant basis. In contrast
with HJWD and HRWD, the HRLWD is designed to improve the aquatic ecosystem in
other districts. Therefore, the HRLWD operates on the basis that the priority of flow at the
Chaoan section was required to be guaranteed at first. The designed operation rules of
HRLWD are: When the flow at the Chaoan section is less than 300 m3/s, the project stops
working. When the flow at the Chaoan section is larger than 300 m3/s, the water intake of
the project should not be larger than 30 m3/s, guaranteeing a minimum flow at the Chaoan
section that is not less than 300 m3/s.

(3.) Water demand at the Chaoan section

The Chaoan section is the controlling section of Hanjiang River Basin, where the
downstream is the Hanjiang Delta region. The minimum environmental flow required at
the Chaoan section is 128 m3/s. However, the minimum discharge at the Chaoan section
should not be lower than 180 m3/s to meet the water demand in the Hanjiang Delta
region. Therefore, the aim of reservoir operation is to guarantee the minimum discharge of
180 m3/s at the Chaoan section.

4. Results and Discussion
4.1. Hydrologic Model Calibration and Validation

Figure 4 shows the calibration and validation results of the SWAT model. To help
visualize the hydrograph, only the time periods from 1991 to 1998 are displayed. Results of
evaluation indicators are listed in Table 2. Both in the calibration and validation periods,
NSE values are higher than 0.7, RE are within 10%, and R2 are higher than 0.7. The overall
performance of the SWAT model constructed in Hanjiang River Basin is acceptable.
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Table 2. Calibration and validation results of the SWAT model.

Period
NSE

RE (%)
R2

Daily Monthly Daily Monthly

Calibration 0.75 0.84 −7.53 0.74 0.84
Validation 0.71 0.87 9.70 0.73 0.92

4.2. Land Use and Land Cover

Figure 5a,b shows the real and the simulated land use maps in 2015. The Kappa index
reaches up to 0.986, representing the reliability of the CA-Markov model.

The land use projection in 2050 shows that the area of the urban and grassland will
continue to expand, from 2% and 8% to 4% and 9%, respectively. On the contrary, the area
of woodland and agriculture will decrease from 74% and 15% to 71% and 14%, respectively.
Among the four land use types, the relative change of urban area is relatively obvious,
which expands from 691 to 1207 km2, accounting for about 4% of the total area of Hanjiang
River Basin above the Chaoan section. The most significant region where urban land
expansion takes place is in the middle and upper reaches of the Meijiang River Basin. The
population of this region reaches up to 3 million, about 40% of the total population of
Hanjiang River Basin above the Chaoan section.
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4.3. Hydrological Flow Regime Changes

Table 3 shows the flow regime changes at the Chaoan section under land use and
climate changes. The land use changes will lead to a decline of Q90 and Qmin7 by 1.8%
and 0.6%, respectively, but an increase of Q and Qvar by 0.6% and 0.4%, respectively. The
overall influence caused by land use changes is not large. As for the RCP 4.5 and 8.5
climate scenarios, Q will decrease by 2.3% and 5.2%, respectively; Q90 will decrease by 7.5%
and 11.9%, respectively; Qmin7 will increase by 1.3% and 0.7%, respectively; and Qvar will
decrease by 3.9% and 6.3%, respectively. It shows that climate changes will lead to overall
decreases of average flow and low flows in Hanjiang River Basin, and the variability of low
flows will decrease, as well. Compared with the RCP 4.5 scenario, the flow will be drier
under the RCP 8.5 scenario. Furthermore, the impact of climate changes on the streamflow
in the Hanjiang River Basin will be higher than the land use changes, which makes the
change pattern of low flows under the combined scenarios similar to the pattern under
climate change only.

Table 3. Changes of low flow at the Chaoan cross section under changing environments.

Characteristics Current
(m3/s) lu2050 (%) rcp45 (%) rcp85 (%) rcp45_lu2050

(%)
rcp85_lu2050

(%)

Magnitude
Q90 225.2 −1.8 −7.5 −11.9 −8.4 −12.5

Qmin7 49.0 −0.6 +1.3 +0.7 +2.1 +1.4
Q 852.0 +0.6 −2.3 −5.2 −1.5 −4.4

Variability Qvar 414.0 +0.4 −3.9 −6.3 −3.2 −5.4
Note: Lu2050 refers to the land use scenario for the year 2050; rcp45 and rcp85 refer to the RCP 4.5 and 8.5 climate scenarios, respectively.
The shaded area indicates the negative value.

Figure 6 shows the flow duration curves and relative changes of the flows above the
50th percentile. To help visualize the flow data, especially low flow data, a logarithmic scale
for the vertical axis is used in the flow duration curve (Figure 6a,b). The impact pattern of
land use and climate changes on the flows in the 50th and 90th range is basically consistent.
The absolute changes of flow between each projected scenario and the baseline scenario
from Q50 to Q90 show a decreasing amplitude. Figure 6c shows that the relative changes
of flow in the Q50–Q75 range is relatively stable, while that in the Q75–Q90 range becomes
larger with the decrease of flow data. For the low flow over Q90, the relative changes are
still lower than the Q50–Q75 range, even though there are some fluctuations. Therefore, the
low flow is more sensitive to the changing environments.

The changes of streamflow for each month at the Chaoan section under changing
environments are shown in Figure 7. The land use changes will amplify the flow during
February and September, while reducing the flow in the rest of the months, but the overall
influence is within ±2%. Compared with the land use change scenarios, climate changes
will have a more significant impact on the monthly flow at the Chaoan section, with overall
relative changes ranging from −33% to 21%. The flow will be amplified during June and
August, while reduced in the rest of the months. For the two climate change scenarios, the
flow will be lower under the RCP 8.5 scenario both in the flood season and dry season.
The most severe flow decrease will appear before the flood season (February, March, and
April), during which the maximum decrease amplitude will reach up to 32.3%. For the
combined effect of land use and climate changes, the change amplitude will be larger in
the flood season, while smaller in the dry season.
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4.4. Assessment of Hedging Rules under Future Scenarios

Future flow regime projections indicate a severe decline of low flows in the dry
season, especially from February to March. Moreover, a similar situation will appear in
April. This indicates that the extension of water supply time and the increase of the water
supply amount would bring more challenges on the water supply systems in the Hanjiang
River Basin.
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As the accumulated effects of different land use and climate change scenarios (i.e.,
RCP 4.5 and 8.5) are similar, RCP 8.5 combined with the LU2050 scenario was selected to
evaluate the performance of hedging rules, since it would lead to relatively more severe
drought conditions.

Figure 8 shows the Pareto solutions of water supply reliability and maximum water
deficit, obtained by PA-DDS for HRs, in comparison with the solution of SOPs. The solution
of COs is (61.6, 92.3), which is outside the axis ranges. Therefore, it has not been plotted.
Both the solutions of HRs and SOPs are superior to the COs, suggesting that the joint
operation of multiple reservoirs can make better use of water resources. Compared with
the objectives of all the Pareto solutions using HRs, the SOPs have a close water supply
reliability but relatively larger maximum water deficit depth. The Pareto front of HRs
indicates that the increase of water supply reliability generally accompanies the increase
of maximum water deficit depth, as they are two conflicting objectives in a water supply
system with limited water resources.
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Figure 8. Pareto solutions of PA-DDS for HRs in comparison with the SOPs solution.

Considering the trade-off between the two objectives, it would be better to select a set
of operation rules which can guarantee as much higher water supply reliability as possible
on the premise of maximum water deficit within 20%. Therefore, the HRs with a solution of
(18.54, 98.98), as shown in Figure 8, were selected. The selected HRs for the aggregated vir-
tual reservoir and GB reservoir for each month are shown in Figures 9 and 10, respectively.

The performance of different operation rules under future scenarios (RCP8.5-LU2050)
are shown in Figure 11. Results show that the IRS obtained by the selected HRs is higher
than either SOPs or COs, which indicates that the water supply system operating with HRs
can be more quickly recovered in case of a severe water deficit period. The IRE for HRs
is close to that of SOPs, which is decided by the HRs selection in Figure 6, and improves
by 7% compared with COs. The IVU for the HRs is the lowest among the three reservoir
operating rules, representing that HRs can help reduce the average water deficit. Moreover,
the results show that the water supply system guided by SOPs is more vulnerable to future
drought than the COs, even though SOPs improve the resiliency and reliability. This is
likely due to the fact that SOPs give priority to ensure the water demand in the facing
period, while that may lead to severe water deficit in the later period. Additionally, the
IS of HRs shows a preferable result compared with SOPs and COs. Therefore, it can be
concluded that a reservoir operation system that is applied with HRs stably outperforms
SOPs or COs in terms of resiliency, reliability, vulnerability, and sustainability.
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4.5. Discussion

This study investigated possible adaptive strategies for the multi-reservoir system
under changing environments, and found the significant improved performance using the
hedging rules, which was helpful for water resources management. However, there are
still some aspects that need to be discussed.

(1.) On the changing environments

In this study, the land use change projection was conducted by the CA-Markov model.
The model outputs depend on the initial state, which was the land use pattern in 2015, as
well as the Markov transition matrix, which was calculated based on the land use map in
1995 and 2010. This makes the land use change projection a pure mathematical study. In
reality, the change rate of land use in the Hanjiang River Basin may not remain the same
for over 30 years. Land use will be affected by the changes in the population size and
distribution, as well as the planning and management of local governments.

On the other hand, this study used the ensemble mean values of precipitation and air
temperature to represent climate change projections in order to reduce the uncertainties of
the GCM models. In fact, a better way to cope with future uncertainty could be to evaluate
each climate scenario and determine the operation interval for the reservoirs by means of
Bayesian model averaging or other methods.

In addition, it has to be pointed out that this study did not consider the change of
anthropogenic water demands, which varies with population, agriculture, and industry.
This should be considered in the future studies.

(2.) On the joint operation of multi-reservoir system

This study utilized the aggregation-decomposition method to guide the multi-reservoir
operation, implying that all of the reservoirs can be managed by the same authority. In
reality, four large reservoirs in the Hanjiang River Basin are located in two provinces (MHT
in the Fujian province and the rest in the Guangdong province). This makes an ideal
cooperative reservoir operation mode hard to achieve. A better approach to realize sustain-
able transboundary water governance could be to propose cooperative and self-enforcing
alternatives to facilitate equitable water distribution [45].
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(3.) On the reservoir operating rules

This study applied the HRs into the reservoir operation. HRs can be regarded as an
improvement on the basis of SOPs, which are one of the simplest and most widely used
operating rules in water supply systems [46]. Nevertheless, adaptive strategies can be
achieved in countless other ways, such as the optimization of operating rules in other
forms [23,40,47] or the optimization of operating rule curves (Zhou et al., 2013). The
performance of different adaptive strategies may vary with the structure of the reservoir
network, the characteristics of the streamflow, and the water demand [48].

5. Conclusions

This study conducted the hydrologic simulation under climate and land use changes,
and then derived the adaptive reservoir operating rules based on the hedging mechanism,
in order to mitigate the possible damages of future drought conditions to the water supply
system.

The SWAT hydrologic model was constructed for the Hanjiang River Basin. The
CA-Markov model was utilized to generate land use projections in 2050. The Delta method
was used to generate precipitation and temperature data under future climate scenarios
including RCP 4.5 and 8.5. The separate and combined impact of land use changes and
climate changes on low flows were investigated. Considering the limited water regulation
capacity of the reservoirs in the Hanjiang River Basin, the hedging mechanism was intro-
duced in the reservoir operating rules. Moreover, to guide the multi-reservoir operation,
the aggregation-decomposition method was used. Four parallel reservoirs, which are MHT,
CT, HS, and YT were aggregated into a virtual reservoir. To improve the water supply
reliability and reduce the water deficit, a multi-objective optimization algorithm called
PA-DDS was used to derive the optimal reservoir operating rules. The performance of HRs
was compared with SOPs and COs. Two main conclusions could be drawn as follows:

(1.) Hanjiang River Basin is expected to experience more severe drought conditions under
the land use and climate changes. Lower flows are more sensitive to environmental
changes and a decline of monthly flows can reach up to nearly 30% in the dry season.

(2.) By applying HRs into the multi-reservoir operation in the Hanjiang River Basin, the
water supply system can be more adaptive to the environmental changes in terms of
reliability, resiliency, vulnerability, and sustainability, compared with SOPs and COs.
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