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Abstract: The precipitation phase (PP) affects the hydrologic cycle which in turn affects the climate
system. A lower ratio of snow to rain due to climate change affects timing and duration of the
stream flow. Thus, more knowledge about the PP occurrence and drivers is necessary and especially
important in cities dependent on water coming from glaciers, such as Quito, the capital of Ecuador
(2.5 million inhabitants), depending in part on the Antisana glacier. The logistic models (LM) of PP
rely only on air temperature and relative humidity to predict PP. However, the processes related to
PP are far more complex. The aims of this study were threefold: (i) to compare the performance
of random forest (RF) and artificial neural networks (ANN) to derive PP in relation to LM; (ii) to
identify the main drivers of PP occurrence using RF; and (iii) to develop LM using meteorological
drivers derived from RF. The results show that RF and ANN outperformed LM in predicting PP in
8 out of 10 metrics. RF indicated that temperature, dew point temperature, and specific humidity
are more important than wind or radiation for PP occurrence. With these predictors, parsimonious
and efficient models were developed showing that data mining may help in understanding complex
processes and complements expert knowledge.

Keywords: precipitation phase; Andes precipitation; random forest; logistic models; automatic
discovery

1. Introduction

The precipitation phase has a fundamental role in the hydrologic cycle and the energy
fluxes between land and atmosphere, which affects the climate system. Due to climate
change (CC) and climate warming, the rain to snow ratio is expected to increase, affecting
the water supply stored as snowpack for one billion people world-wide in winter as well
as affecting large cities in mountainous tropical regions such as the Andes [1]. Additionally,
as global temperature raises, the impact on snowpack dynamics and streamflow amount
and timing may affect an adequate management of water resources, added to the pressing
need of water supply due to urbanization and migration to main cities.

The Andean glaciers are important for fresh water supply, especially in dry arid re-
gions, making them vulnerable to changes in temperature. This happens because the glacier
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depends on the snow cover to delay mass loss [2]. However, the phase of precipitation
is controlled by atmospheric profiles of temperature and moisture [3,4], identified an air
temperature increase by approximately 0.1 ◦C/decade with a tendency to increase in the
1960–1990 period. For this reason, it is necessary to study the driving factors governing the
occurrence of the precipitation phase and its variability.

The trend of higher rain to snow ratio under CC affects several aspects of the hydro-
logical functioning of a basin. Furthermore, the phase of the hydrometeors depends on
the energy transfer from the atmosphere’s temperature and its water content. Thus, the
hydrometeors phases observed at ground stations are influenced by factors such as the
vertical profile of temperature, the height of the planetary boundary layer, and the type of
temperature gradient [5–7]. Changes in precipitation leading to lower snow accumulation
decrease the response time of the streamflow and affect the magnitude and the duration of
the baseflow in summer. Lower response times of hydrologic basins added to enhanced
rainfall extremes due to CC may produce higher frequency of flashfloods with its negative
impacts associated. Furthermore, this affects the partitioning of water between evapotran-
spiration and runoff. Thus, changes in the rain to snow ratio affect the hydrological cycle,
the land–atmosphere interaction, and beyond; they have societal impacts from the water
management perspective and the assessment of risks related to natural disasters.

Traditionally, air temperature is used to estimate the PP. Empirical relations are cali-
brated for specific locations [8,9], and are mainly focused on the lower 5% fraction (snow)
or values higher than 95% (rain) [10,11]. Other models use a lower and an upper threshold
for mixed phase precipitation and then fit a linear or a more complex function to describe
the mixed phase range [12,13]. More recently, [11], included humidity content related vari-
ables in snow covered mountain regions to model PP, which provided acceptable results.
Therefore, the consideration of air moisture related variables provides proxy information
about the latent heat fluxes driving energy change in the hydrometeors by sublimation
or condensation [14]. Models that consider the hydrometeor temperature (Th) or the dew
point temperature (Td) as predictors for PP are grounded in these concepts [15,16].

Few studies investigated the thresholds driving the precipitation phase in the tropical
Andes. For instance, [8], compared snow and rain air temperature thresholds between Char-
quini in Bolivia (ca. 4800 m.a.s.l) and Davos in the Swiss Alps (1590 m.a.s.l). They found
differences lower than 0.5 ◦C, despite its strong humidity and cloudiness seasonality [3,13],
with 0% occurrence of snow for temperatures higher than 3–3.5 ◦C and 100% snow oc-
currence for temperatures lower than −1–−1.5 ◦C. Following a classical approach, [17],
applied −1 ◦C and 3 ◦C thresholds for snow and rain occurrence in the Antisana glacier
in Ecuador and fitted a polynomial equation based on the work of [18], to represent the
mixed PP. However, the complex orography of the Antisana glacier added to the influ-
ence of strong easterly winds, which transport high humidity from the Amazon [4,19],
makes this location adequate and scientifically interesting to evaluate the influence of other
meteorological variables besides air temperature to derive PP.

The approaches to predict PP change from the variables used for prediction to the type
of models used for this purpose. However, due to its simplicity and good performance,
logistic models using temperature and/or humidity are of special interest. For instance, [7],
used logistic regression models to compute the fraction of snow as a function of various
meteorological variables, e.g., air temperature and relative. Their ability to incorporate
humidity makes them better to predict the precipitation phase than methods using air
temperature alone [11], especially in warm humid sites where the temperature range for
solid precipitation increases in relation to dry cool zones [20]. Thus, logistical regression
models produced the lowest mean biases compared to observations of snow depth and
snow water equivalent [21]. However, despite the relative simplicity to identify the relation
of the PP with the predictors in these models, which could make it easier to derive the
processes involved, the consideration of more variables is far from straightforward, because
expert knowledge is necessary to determine how some processes may be translated into
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equations. Thus, the use of highly effective data mining models may be an option to study
the effect of considering additional variables for PP prediction.

Artificial intelligence (AI) methods have been used successfully in several applications
for water resource management [22], where the most widely used approach is utilization of
artificial neural networks (ANN). However, due to the simplicity and the highly accurate
capabilities in classification and regression problems, random forest (RF) has been explored
in water resources more recently. Therefore, in the present study, AI models were used
to analyze the complex interacting processes between meteorological variables and PP
occurrence. The application of AI methods for PP prediction is a pioneering approach
according to the available literature, and the good performance of its application in several
fields makes it appealing to evaluate these methods for PP research.

Thus, the aims of the present study were threefold: (i) to evaluate the performance of
RF and ANN models in relation to logistic models (LM) to derive PP; (ii) to identify the
main drivers of PP occurrence from RF models; and (iii) to use these drivers to develop
parsimonious logistic models that can help in understanding the underlying processes
in relation to PP occurrence. In Section 2, the study area and the data are described. In
Section 3, the methodology is presented. In Section 4, the results are discussed, and in
Section 5, the discussion and the concluding remarks are presented.

2. Study Area and Data

As a part of the Andean Regional Climate Change Adaptation Project/Adaptation
to the impact of the accelerated retreat of glaciers in the tropical Andes (PRAA by the
acronym in Spanish), the PRAA-Morrena station is in glacier 12 of the Antisana volcano
at 4725 m a.s.l, 0◦29′38′′ S, 78◦09′40′′ O in the west flank of the Andes Cordillera in
Ecuador (Figure 1). Due to its closeness to the glacier, this station is more reliable to
study the processes occurring at the terminal zone of the glacier and is more sensitive
to changes in temperature and precipitation [23]. In Table 1, the sensors installed in this
station are presented, and the study site is shown in Figure 1. The meteorological data
were sampled every 10 s and recorded every 15 min due to limitations in memory space.
The disdrometer OTT Parsivel 2 [24], measures the hydrometeor type and records the
cumulative precipitation every 15 min. The disdrometer is located at 4730 m.a.s.l in the
glacier foreland of the Antisana volcano.

Table 1. List of sensors installed in the PRAA-Morrena station located in the Antisana glacier 12.

Variable (Unit) Sensor (Height) Nominal Accuracy

Air temperature (◦C) Vaisala HPM45AC-shielded (2.00 m) ±0.2 ◦C
Relative humidity (%) Vaisala HPM45AC-shielded (2.00 m) ±2% (0–90%)
Wind speed (m s−1) Young 05103 (3.5 m) ±0.3 m s−1

Wind direction (◦ deg) Young 05103 (3.5 m) ±3 deg
Incoming and outgoing SWR

(W m−2)
Kipp & Zonen

CNR4 0.3 < λ < 2.8 µm (1.00 m) Daily value ±10%

Incoming and outgoing LWR
(W m−2)

Kipp & Zonen
CNR4-G3 5 < λ < 50 µm (1.00 m) Daily value ±10%

The disdrometer measured data were corrected [25–29], for diameter, speed, and bulk
variables. However, the PP recorded by the disdrometer was considered adequate.

The data were filtered, selecting precipitation higher than 0.1 mm h−1, and data with
error flags were discarded. Additionally, only data with the meteorological variables
available were selected for this study to avoid time series infilling procedure. Finally,
12,248 events were obtained, with 10,747 events between July 2012 and January 2016 for
the calibration of models and 1483 observations between July 2019 and February 2020 for
the validation.
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Figure 1. Location map of monitoring stations used for the Antisana glacier 12. (a) Antisana glacier in the northern Andes
of Ecuador, (b) Moraine basin, (c,d) PRAA-Morrena station for two seasons, November 2017, and June 2019, respectively.

The dew point temperature, Td, was derived from air temperature, Ta (◦C), and relative
humidity (RH) using the Magnus equation:

Td =
cr

(b− r)
con r = ln(RH/100) + bTa/(c + Ta) (1)

where b = 17.67 and c = 243.5 ◦C [30].
The hydrometeor temperature, Th, may be considered as the ventilated temperature

of wet bulb thermometer related to the surface thermodynamic fluxes. Using the approach
of [9]:

Th = Ta +
D(Ta)L(Ta)

λt(Ta)

(
ρTa − ρsat(Th)

)
(2)

Due to the non-linear dependence of Th on both sides of the equation, iteratively, the
Newton–Rapson numerical setting was applied [9]. D(Ta) [m2 s−1] is the water vapor diffu-
sion, L(Ta) [J kg−1] sublimation latent heat, λt(Ta) [J m−1 s−1 K−1] air thermal conductivity,
ρTa [kg m−3] water vapor density, and ρsat(Th) [kg m−3] is the saturated water vapor in the
surface of the hydrometeor.

The specific humidity was determined by a variation of Equation (17), p. 283 from [31]
that uses indirectly Ta and RH:

SH =
e ∗Mvd

Patm
100

[
g kg−1

]
(3)

where Mvd is the ratio between the water vapor molecular weight and the mean molecular
weight for dry air.

Here, e is the saturated vapor pressure for moist air given by the next equation:

e =
RH
100
∗ 6.1078 e

17.08085∗Ta
243.175+Ta [mb] (4)
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The list of variables used in the present study is presented in Table 2. These vari-
ables were used independently or in groups to generate data availability scenarios, as
explained below.

Table 2. List of variables used in this study.

Variable Description Units

Date Date and hour Format UTC
Month, hour Month and hour Dimensionless

SWRI, SWRR, LWRR, LWRI Incoming and outgoing SW and
LW radiation

W
m2

Ta, Th, Td
Air, hydrometeor, and dew

point temperature
◦C

RH, SH Relative and specific humidity %, g/kg
P Precipitation mm

PP Precipitation phase: 0,0.5,1 for
solid, mixed, liquid Dimensionless

3. Methods

The first aim of this study was the evaluation of RF and ANN models to predict PP
in relation to LM. In Figure 2, the schematic representation of the methodology is shown.
The LMs are simple parsimonious models based on expert knowledge which depend on
one or two temperature or humidity related variables, limiting the possibility to evaluate
the influence of other variables on PP occurrence. However, RF and ANN models can
take several variables as inputs, which may improve the predictive performance of PP.
Therefore, data availability scenarios (DAS) were devised to evaluate and compare several
LM, RF, and ANN models, which may help to identify the performance of AI models
depending on the availability of meteorological data.

Figure 2. Flowchart of the methodology.
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For the second aim, the mean decrease Gini index (MDG) was used to identify the
main predictors of PP occurrence (see Figure 2). MDG was calculated as the average
throughout the forest of the decrease in Gini impurity for a predictor, obeying higher
values for the most important variables. Therefore, MDG was used to identify the most
important PP weather drivers, which were used to create LMs. These models were created
to evaluate the capacity of automatic generation of predictors and compare them with
LMs based on expert knowledge. Thus, these models were evaluated against LM, RF, and
ANN models from the first objective. A more detailed explanation of the methodology is
presented in the following subsections.

3.1. Quality Control of Data

The technical information of the disdrometer used for this study indicated that the
accuracies in solid and liquid precipitation were ±5% and ±20%, respectively [24]. In
addition, only a few events were classified as solid PP, while high air temperature, e.g.,
7 ◦C, was measured. As such, outliers affected the generation of the liquid phase as well as
solid and mixed curves.

Due to the multidimensional nature of the problem, e.g., for each event, in addition to
the disdrometer variables, meteorological variables were monitored to classify the large
dataset of multidimensional data, and the unsupervised clustering approach k-means
was applied. To identify the optimal number of clusters, the silhouette criteria was used.
Then, the groups showing physically unfeasible center means (e.g., of PP, air temperature,
dew point temperature, and humidity) were removed from the dataset and verified by
performing the “S” curve with and without this group. Finally, to furnish the “S” curve [13],
temperature bins were selected. For each bin, the median of PP was obtained. This was
done for liquid and solid phases. The results obtained using K-means outliers’ detection are
shown in Figure 3 (Ta, Th, Td from top to bottom rows). The original data are presented as
“S” curves in cyan color, and the black curves were obtained after K-means filtering, which
were smoother, as expected [7]. The change produced by this filter was more pronounced
for Ta than Th or Td, as shown in Figure 3.

Figure 3. Plots of Ta, Th, Td (from top to bottom) shown for solid, mixed, and liquid precipitation (from left to right). The
“S” curves in cyan were plotted from the observed data, and the black curves were plotted with data after multidimensional
K–means outliers’ detection. Temperature class is in the horizontal axis in all plots and is represented by the median value
per bin.
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3.2. Precipitation Phase Forecasting
3.2.1. Data Availability Scenarios (DAS)

Despite the data availability of several meteorological variables for this study, 8 data
availability scenarios (DAS) were considered. In this fashion, the results may be evaluated
depending on the data available to the researcher, helping to evaluate the performance of
the models for several DASs. This also indicates the versatility of the models to be applied.

The scenarios are shown in Table 3. It is worth mentioning that these scenarios were
applied only to ANN and RF models, because the LMs are dependent on either Ta, Th, or
Td. DAS 6 used Ta and RH to compare AI models to LM1. DAS 7 used Th to compare to
LM2, and DAS 8 used Td to compare to LM3.

Table 3. Description of the data availability scenarios (DAS) and the corresponding variables used for each scenario. For all
DAS, the target was the precipitation phase.

DAS SWRI SWRR LWRR LWRI T RH SH WSPEED WDIR T.DewP T.H

1 X X X X X X X X X
2 X X X X
3 X X X X X X X X X X X
4 X X X X X X X
5 X X X
6 X X
7 X
8 X

3.2.2. Logistic Models

The PP was considered as a discrete variable, with 0, 1, and 0.5 (dimensionless) for
snow, rain, and mixed PP, respectively [10,13]. LMs consider X1, X2, . . . Xn, predictors or
independent variables and α0, α1, . . . , αn parameters [32]. In this study, 3 logistic models
were evaluated.

Logistic model 1 (LM1) followed the approach proposed by [7]:

fr(rain) =
1

1 + eα+βTa+γRH (5)

where:

fr(rain): fraction of rain;
α, β, γ : parameters to be calibrated;
Ta, RH : air temperature and relative humidity (predictors used in the model).

Logistic models 2 and 3 (LM2) and (LM3) were dependent of the hydrometeor temper-
ature, Th, and the dew point temperature, Td, respectively. Ref. [9], proposed the power
logistic equation:

fr(rain) =
1

1 + bx ∗ cxTx
(6)

where:

Tx : is a temperature. For LM2 and LM3, Th and Td were used;
bx, cx : are parameters to be calibrated.

To calculate the precipitation fraction related to a specific temperature, increments of
0.5 ◦C were used as:

fr(rain, Tx) =
∑Tx rain (mm)

∑Tx Total precipitation (mm)
(7)

In similar fashion, this equation was applied to solid and mixed precipitation.
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To express the LMs as the multiple linear regression (MLR) [33], presented in Equation
(8), it was necessary to use the transformation shown in Equation (9). Then, the calibration
of parameters for the MLR was conducted.

y = β0 + β1 ∗ x1 + . . . + βn ∗ xn + ε (8)

y = ln
(

1− f r
f r

)
(9)

Here, y is the dependent variable calculated as Equation (9), xi represents independent
variables, βi represents parameters to be calibrated, and ε is a stochastic error. The Table 4
shows the structure of each LM used based on the Equation (9).

Table 4. Multiple linear regression models used for LM.

βi∗xi LM1 LM2 LM3

β0 α ln bTh ln bTd
β1 ∗ x1 β ∗ Tair ln cTh ∗ Th ln cTd ∗ Td
β2 ∗ x2 γ ∗ RHair − −

3.2.3. Artificial Neural Networks Models

ANNs are inspired by the functioning of the human brain. They are designed to detect
patterns between inputs and outputs by learning algorithms. The artificial neurons have
inputs and one output (see Figure 4), and a transfer function transforms the inputs to the
output using, as its argument, the weighted sum of inputs. Among the most used transfer
functions are the linear, the sigmoid, and the tansigmoid [34].

Figure 4. Artificial neuron with inputs Xi, output y, and activation function f (left) as well as artificial
neural network with three layers (shallow network). The hidden and the output layers used specific
case transfer functions (right).

Artificial neurons are arranged in layers, which are fully connected, and the weights
assigned to each connection are defined during the training of the network by complex,
highly multidimensional optimization algorithms such as the gradient descent or the
Levenberg–Marquart, among others [34]. ANNs are used in classification and regres-
sion [35,36]. They are considered as part of the data mining paradigm; therefore, the
performance of this approach depends on the data availability. Usually, for calibration, 70%
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of the data are used, and 30% are used for validation. For a more detailed description of
the ANN approach, see [37].

The selection of the transfer functions and the number of neurons for the hidden
layer and the output layer was determined iteratively. The tansigmoid transfer function
was used in the hidden layer, and the SoftMax function was used in the output layer.
These transfer functions are available in the ANN toolbox of MATLAB as part of the
“Classification network” option used in this study. For the number of neurons, 3 were
used for the output layer and 10 for the hidden layer using the mean square error as loss
function. The back-propagation algorithm was used for the optimization of the network
synaptic weights. The proportions of data used for calibration, validation, and testing were
70%, 15% and 15%. The data were preprocessed according to the data availability scenarios
previously explained, from DAS1 to DAS8. The target vector was one of the following:
[0,0,1], [1,0,0], [0,1,0], representing rain, snow, and mixed PP, respectively. For each interval,
the rain fraction was calculated as the number of rain events divided by the total events.

3.2.4. Random Forest Models

RF is an AI method based on supervised learning with extensive applications in
science and engineering due to its good performance for classification and regression. RF is
a group of tools called trees. The forest is formed by a random group of decision trees [38].
Within the forest, every tree is formed by a random sample called bagging, which is the
starting point of decision branches. A tree in the end has a decision which counts as a vote,
and the decision with the most votes is taken (Figure 5). If more trees are considered, the
prediction is more accurate [39].

Figure 5. Example of how a decision tree in RF works.

The RF algorithm may be used to infer discrete or continuous data. Its versatility
copes easily with gaps in the data; however, as with any black box model, at the end, the
results are shown, but little information is available about the cause of the results [40]. RFs’
ability to cope with forecasting and classification problems makes this technique more
attractive for new applications in water resource management. The R library in random
forest was used in this study [41]. The reader is referred to the studies of [42] for further
information.

3.2.5. Metrics of Evaluation

To evaluate the performances of LM, ANN, and RF models, two kinds of metrics were
used, e.g., metrics of detection and metrics of PP fraction quantification, hereafter referred
to as fraction quantification metrics. The former measures the detection of snow, rain, or
mixed PP events, and the latter measures the fraction of PP for a bin of a variable, for
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instance, air temperature. The proportions of data for calibration and validation were 80%
and 20%, respectively. The data were selected randomly to avoid any trend, which also
improved the robustness of the models.

Metrics of Fraction Quantification

The observed and the simulated precipitation phases are represented as Xobs(i) and
Xsim(i), and the corresponding fractions are frobs(k) and frsim(k). N is considered as the
number of observations, and M is the number of bins for the representation of a variable.

The mean bias, MB, indicates positive or negative departure from the observed data.
Thus, a value of 0 indicates a null difference of means. The MB is calculated as:

MB =
1
M

M

∑
k=1

( f rsim(k)− f robs(k)) (10)

The RMSE of the precipitation fraction was calculated as:

RMSE =

√
∑M

k=1( f rsim(k)− f robs(k))
2

M
(11)

The explained variance of the precipitation fraction was calculated as:

r2 =
∑M

k=1

[(
f robs(k)− f robs

)
∗
(

f rsim(k)− f rsim

)]
√

∑M
k=1

(
f robs(k)− f robs

)2
∗∑M

k=1

(
f rsim(k)− f rsim

)2
(12)

The Nash–Sutcliffe index (NSE) evaluates the representation of extreme values. NSE
values of 1, 0, and negative are related to the best model, a model as the mean value, and a
model inferior in prediction to the mean value [43]. NSE was calculated as:

NSE = 1− ∑M
k=1( f rsim(k)− f robs(k))

2

∑M
k=1

(
f robs(k)− f robs

)2 (13)

The Kling–Gupta coefficient (KGE) was used to overcome some limitation of the NSE.
The best model has a value of 1, and some authors argue that positive values are generally
good models and negative values are bad models, although others argue that values less
than 0, e.g., −0.41 [43], indicate the benchmark comparison with the mean. The KGE was
calculated as:

KGE = 1−

√√√√(r− 1)2 +

(
σf rsim

σf robs

− 1

)2

+

(
f rsim

f robs
− 1

)2

(14)

where:

σf rsim
and σf robs

are the standard deviation of the simulated and the observed fractions.
r is the linear correlation.

Metrics of Detection

To evaluate the misclassified events (PM) and the unclassified events (PU), the indexes
PM and PU were calculated as shown in the paragraphs below. Events with fractions
between 5% and 95% were considered as unclassified, whereas a misclassification was
considered if the model simulated below 5% (snow) and rain was observed, or if the model
simulated a PP fraction over 95% (the rain) and snow was observed. Following [7], to
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minimize uncertainties related to the phase of precipitation, the mix precipitation values
were excluded.

PM =
∑N

i=1 Misclassi f ied events (Xi, Yi)

N
(15)

PU =
∑N

i=1 Unclassi f ied events (Xi, Yi)

N
(16)

The critical success index (CSI) is the ratio of the correct forecast to the sum of the
correct forecast, plus false alarms, plus misses. The perfect model has a value of 1.

CSI = ∑N
i=1 Rain cases (Xi ∩Yi)

N −∑N
i=1 Snow cases (Xi ∩Yi)

(17)

The snowfall change (SFC) and the precipitation accumulative error (PAE) measured
the cumulative error in snow to rain ratio [10]. As mentioned, mixed events were excluded.

SFC =
Scal − Sobs

Sobs
(9) (18)

Rain Error = ∑ Scal(i)− Sobs(i)
Preciprain+snow

f or Sobs(i) < Scal(i) (19)

Snow Error = ∑ Sobs(i)− Scal(i)
Preciprain+snow

f or Sobs(i) > Scal(i) (20)

PAE = Rain Error + Snow error (21)

where:

Sobs(i) and Ssim(i) are the observed and the simulated snow indicators.

Normalization of Metrics

To ease the interpretation of the results, a normalization process was applied to all
models’ evaluation metrics. All metrics were mapped to the range 0 to 1, with a value of 0
for the best model and 1 for the worst model. It is important to clarify that, with metrics
such as r2 where 1 is the best value, the transformation 1–r2 was applied.

For other metrics, the normalization was achieved by simply dividing the metric for a
model xi by the maximum value among all models, as follows:

N_xi =
xi

max(x)all
(22)

where:

N_xi is the normalized value of a x metric for a model i.

In Table 5, the description of the metrics together with the normalized description
are shown.

3.3. Meteorological Drivers

An important step towards the development of a model is the identification of pre-
dictors. Despite the higher performance of AI models over LM, a pitfall is the lack of
information about the processes being modeled and the interrelation between predictors
and targets. The principal aim of this section was to evaluate the main meteorological
drivers for each DAS. Once these main predictors were determined, simpler models, e.g.,
LM, were developed, as discussed in the next section. This approach might help to un-
derstand complex processes unveiling the interrelation of predictors and targets using
“automatic methods” or algorithms.
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Table 5. Description of evaluation metrics and normalized counterparts.

Metric Range and Interpretation Metric Range and
Interpretation

r2 max 1 is a perfect model N_r2 [0–1]: 0 is the best model
kge max 1 is a perfect model N_kge [0–1]: 0 is the best model

rmse value of 0 is perfect model N_rmse [0–1]: 0 is the best model
nash max 1 is a perfect model N_nash [0–1]: 0 is the best model
bias value of 0 is perfect model N_bias [0–1]: 0 is the best model
CSI max 1 is a perfect model N_CSI [0–1]: 0 is the best model
PU value of 0 is perfect model N_PU [0–1]: 0 is the best model
PM value of 0 is perfect model N_PM [0–1]: 0 is the best model
SFC value of 0 is perfect model N_SFC [0–1]: 0 is the best model
PDA value of 0 is perfect model N_PDA [0–1]: 0 is the best model

The evaluation of the importance of variables in RF can be achieved using two indexes,
e.g., the mean decrease Gini (MDG) and the mean decrease accuracy (MDA) [39]. Authors
such as [44], concluded that the ranking stability of MDG was superior to MDA for data
without correlation between parameters. The main reason for this affirmation is that MDA
measures may be scaled by dividing by its empirical standard error. However, MDG has
shown to be sensitive to predictors with different scales of measurement, and MDG may
be preferred over MDA because of increased stability [45]. Thus, MDG was used in this
study to identify the main predictor for RF models in all DAS.

3.4. Development of LM Models from the Knowledge of Artificial Intelligence Models

Once the best predictors derived from RF using MDG were determined, logistic
models were implemented and evaluated. This step was important because the logistic
models use expert knowledge, whereas, here, we proposed to use AI derived knowledge
to implement conceptual models.

Thus, after the evaluation of the best predictors for each DAS using the MDG index,
LM type models were devised as:

f r(rain) =
1

1 + eαLM+βLM∗x1+γLM∗x2
(23)

where:

fr(rain) is the fraction of rain;
αLM, βLM, γLM are parameters to be calibrated;
x1 and x2 are independent variables extracted from MDG.

4. Results
4.1. Evaluation of Artificial Intelligence Methods for Precipitation Phase Forecasting
4.1.1. Logistic Models

In Table 6, the calibrated parameters for LM1 to LM3 are shown, in addition to the
range used for its calibration.

Table 6. Results of the calibration for logistic models.

Model LM1 LM2 LM3

Parameter α B γ bh ch bd cd

Min −11.02 −1.67 0.02 12.26 0.15 4.38 0.17
P50 −4.65 −1.63 0.08 13.88 0.16 4.62 0.19
Max 0.96 −1.57 0.14 15.88 0.17 5.09 0.2

As shown in Figure 6, from left to right, the performance of LM1 was superior to LM2
and LM3 and had a better fit, especially for lower and upper values of PP. Considering that
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LM1 considered relative humidity in addition to temperature, this result is in concordance
with the study of [46], who reported that discrimination of PP at ground level was more
accurate considering air saturation parameters in addition to temperature parameters.

Figure 6. Precipitation phase plots using logistic models. From left to right. LM1 depends on Ta and RH (left). LM2
depends on Th (center). LM3 depends on Td (right). The black points represent observed values, and the red lines represent
simulated values.

A higher influence of Th for the processes related to PP was evident from its better
performance to predict PP in comparison to Td, which showed shortcomings, especially
in values between −1 ◦C and 1 ◦C PP. However, both models LM2 and LM3 slightly
underestimated higher values of PP and overestimated the lower values of PP. Further
evaluation is needed in relation to the discrimination thresholds of percentiles 5 and 95
to separate solid from liquid precipitation. Such an analysis will be conducted in future
research. Such an analysis is important to compare the thresholds determined in other
latitudes, as in as Bolivia by [8].

4.1.2. ANN Models

In Figure 7, the results of rain fraction for the eight DASs are presented. The simulation
of DAS1 to DAS6 was good, but for DAS7 and DAS8, ANN models overestimated the
high values of PP. For mixed PP, DAS1 to DAS6 were well represented with the observed
percentile of 50. This fact shows that ANN models captured intermediate PP better than
LM1 and LM2. For low PP, ANN models showed clear shortcomings, underestimating PP
for all DASs. This is a clear limitation of this approach because it was present for all DASs,
regardless of the predictor variables used in the models.

As mentioned in Section 3.2.1, DAS6, DAS7, andDAS8 were devised to compared AI
models to LM1, LM2, and LM3. The results of Figure 7 show that more variables such as
DAS1 helped to improve PP representation, but the results for DAS6 surpassing DAS7
and DAS8 agree with the results obtained for LM1, LM2, and LM3. Thus, in addition to
temperature related variables, the use of humidity related variables showed better results,
regardless of the model.
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Figure 7. Precipitation phase plots using artificial neural networks for DAS1 to DAS8 from left to right and from top to
bottom. The black dots represent observed values, and the red lines represent the simulations by ANN models.

4.1.3. Random Forest Models

The representation of rain fraction for RF is shown in Figure 8. For high PP values,
RF captured well the observed data. The PP under 50% was captured adequately for all
DASs. The higher and the lower PP values were well represented, clearly outperforming
ANN and LM models. The comparison between DAS6, DAS7, and DAS8, did not show a
significant difference, as was evident for LM and ANN models. Thus, the importance of
variables using the RF approach may be more adequate using MDG, as discussed in the
next section.

Figure 8. Precipitation phase plots using RF for DAS1 to DAS8 from left to right and from top to bottom. The black dots
represent the observed values, and the red lines represent the simulated values.
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4.1.4. Intercomparison of LM, ANN, and RF Models

For further analysis and models intercomparison, in this section, several metrics of
fraction quantification and detection are calculated. In Table 5, the fraction quantification
metrics are in lower case, e.g., r2, kge, rmse, nash, and bias, whereas the detection metrics
are in upper case, e.g., CSI, PU, PM, SFC, and PAE.

LMs showed similar results for quantification and detection metrics. However, LM1
metrics corresponded to the visual appreciation of Figure 6, showing it was better at
simulating extremes than LM2 and LM3 according to kge. Due to the slight differences
among models, the last column in Table 7 shows a score calculated as the sum of the best
of the group, 1, or 0 otherwise. Thus, models LM1 and LM3 showed better performance
than LM2.

Table 7. Metrics for LM, ANN, and RF models. Fraction quantification and detection metrics are in lowercase and uppercase,
respectively.

MODEL r2 kge rmse nash bias CSI PU PM SFC PDA Score

LM 1 0.989 0.979 0.043 0.989 −0.008 0.74 0.68 0.008 −0.005 255.655 4
LM 2 0.992 0.965 0.041 0.991 −0.003 0.841 0.729 0.003 −0.046 212.131 2
LM 3 0.981 0.948 0.063 0.979 0.004 0.868 0.807 0.003 −0.121 220.246 4

RF_1 0.997 0.963 0.035 0.996 0.002 0.905 0.07 0.049 0.017 70.4 1
RF_2 0.997 0.964 0.035 0.996 0.002 0.895 0.072 0.055 0.023 77.8 1
RF_3 0.997 0.962 0.037 0.996 0.003 0.903 0.069 0.05 0.016 71.1 0
RF_4 0.998 0.963 0.035 0.996 0.006 0.891 0.068 0.057 0.01 78.5 2
RF_5 0.998 0.967 0.032 0.997 0.004 0.886 0.074 0.059 0.012 84.9 2
RF_6 0.998 0.965 0.034 0.996 0.004 0.888 0.073 0.058 0.01 83.2 1
RF_7 0.997 0.98 0.033 0.997 −0.007 0.83 0.099 0.088 0.014 134.4 5
RF_8 0.996 0.976 0.042 0.995 −0.004 0.849 0.091 0.078 −0.001 117.9 1

ANN_1 0.995 0.942 0.05 0.991 0.012 0.898 0.059 0.054 0.007 69.3 3
ANN_2 0.995 0.936 0.054 0.99 0.013 0.891 0.055 0.058 0.005 72.2 1
ANN_3 0.995 0.947 0.048 0.992 0.012 0.9 0.059 0.053 −0.002 68.3 5
ANN_4 0.994 0.934 0.055 0.989 0.015 0.885 0.052 0.062 0.002 74.8 1
ANN_5 0.994 0.932 0.058 0.989 0.015 0.879 0.052 0.065 0 79 1
ANN_6 0.995 0.935 0.054 0.99 0.015 0.882 0.052 0.063 0.001 76.6 2
ANN_7 0.987 0.9 0.087 0.975 0.01 0.842 0.052 0.087 −0.001 104.8 2
ANN_8 0.985 0.89 0.092 0.971 0.014 0.87 0.052 0.07 −0.005 85 1

MEAN VALUES

LM 0.987 0.964 0.049 0.986 −0.002 0.816 0.738 0.005 −0.057 229.344 2
RF 0.997 0.967 0.035 0.996 0.001 0.881 0.077 0.062 0.013 89.775 5

ANN 0.992 0.927 0.062 0.986 0.013 0.881 0.054 0.064 0.001 78.75 4

ANN models showed that NSE was less sensitive to kge among models. Thus, based
on the kge index, ANN models for DAS1 and DAS3 performed slightly better than the rest
of the models. RF models in all DASs showed similar results on quantification metrics,
with DAS7 and DAS8 having a better fit on extreme values. However, DAS1 and DAS3
had better results in detection metrics. The scores showed that RF for DAS7 was the best
RF model in five out of 10 metrics, followed by DAS4 and DAS5. Again, despite the
good performance of RF models, it was difficult to easily interpret the reasons why a DAS
showed better results. The results of the mean values (Table 7) showed that, overall, RF
models had a better performance than ANN models and that LMs were less skillful than
both AI models. Thus, RF models showed a robust performance for modeling PP in relation
to LM and ANN.

The normalized metrics are displayed in Figure 9. The good performance of RF models
was evident for fraction quantification metrics, where five out of five results were the best
models, followed by LM and ANN. For detection metrics, ANN models showed a better
performance than RF, and LMs were less skillful than ANN and RF. Based on these results,
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added to the analysis of the results of Table 7, overall, AI models performed better than
LM, and RF showed better results than ANN models.

Figure 9. Normalized metrics for LM, ANN, and RF models. The values are normalized indexes and
the range is [0–1] where the best scores are closer to 0. Fraction quantifications are in lowercase and
detection in uppercase.

The superiority of AI models over LM was expected, firstly because of their ability to
map several input variables to represent an output and secondly because of the power of
machine learning algorithms. However, an interesting result is the superiority of RF over
ANN models. This may be related to the fact that detection of rain, snow, or mixed PP is a
classification problem, where discrete outcomes are expected.

4.2. Meteorological Drivers

For an exploratory analysis in Figure 10, the center and the right plots showed that
PP was more sensible to SH than RH. This interpretation assumed that less sensitive PP
showed overlapping boxplots, while boxplots showing different ranges of a variable were
more sensitive to it. For instance, in Figure 10 (center), the specific humidity showed the
lowest values for snow, the highest values for rain, and mixed PP presented intermediate
values of specific humidity. Contrarily, in Figure 10 (right), there was not a clear range of
relative humidity associated with rain, snow, or mixed PP. This may imply that specific
humidity may be a better predictor than relative humidity when considering air moisture
related variables.

In Figure 10 (left), Th and Td were indicated to be better predictors than Ta. However,
this assumption was still a qualitative one, and a better assessment of meteorological
drivers was obtained from the MDG index of RF models.

To derive the meteorological drivers for PP, the MDG obtained from RF was calculated
for the eight DASs. In Figure 11, the average value of MDG for each variable is shown.
For DAS1, it was clear that specific humidity (SH) was the most important variable when
all variables were considered. This was already reflected in the qualitative analysis of
Figure 10. For DAS1, SH was followed by air temperature and then by outgoing radiation
variables, finally followed by wind speed. Relative humidity was less important than SH
as well as wind direction. These results agree with the findings from [47] in relation to the
development of an empirical mass balance model for the Antisana glacier; although they
used monthly values from reanalysis data only for temperature and wind, they argued that
wind may be used as a proxy of moisture flux from the Amazon.
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Figure 10. Boxplots of Ta, Th, and Td are shown for solid, liquid, and mixed precipitation (blue, red, black) (left). Boxplots
of specific humidity are shown for snow, rain, and mixed precipitation (blue, red, black) (center). Boxplots of relative
humidity are shown for snow, rain, and mixed precipitation (blue, red, black) (right).

Figure 11. Identification of precipitation phase meteorological drivers (variables) using RF. The mean decrease Gini index is
compared for this purpose for each DAS, DAS1 to DAS8, from left to right and from top to bottom.

The MDG index for all DASs reflected that, in all cases, temperature and humidity
related variables were more important than radiation related variables or wind speed
or direction. This result is valuable from a phenomenological perspective because it
indicates that monitoring temperature and air moisture content may be useful for surface
PP forecasting. Additionally, when air temperature, hydrometeor temperature, and dew
point temperature were available, Td was more important than Th, and this was more
important than air temperature. This was shown in DAS3 and DAS4. Additionally,
when specific humidity and relative humidity were available, specific humidity was more
important than relative humidity.
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4.3. Development of Parsimonious Logistic Models with Predictors Derived from RF Information
4.3.1. Implementation of Logistic Models Based on AI Knowledge

The results of MDG for all DASs showed that some variables persistently surpassed
others in importance. Here, three variables were selected to implement in two LM models,
e.g., LM4 was devised with Td and SHd as independent variables and LM5 with Ta and
SHa. Afterwards, these models were compared to expert knowledge based classical LMs,
LM1 to LM3.

The structures of LM4 and LM5 models are shown in Table 8 as well as the calibrated
parameters. The MLR optimization returned a wider range for α, β, and γ parameters in
model LM4 compared to LM5. This was probably due to the difference in the range of Td
and Ta.

Table 8. Calibration of parameters for logistic models with predictors derived from RF.

Model LM4 = α + β ∗ Td + γ ∗ SH LM5 = α + β ∗ Ta + γ ∗ SH

Parameter α β γ α β γ

Min 38.21 1.05 −14.72 −5.82 −2.30 −0.06
P50 59.57 2.62 −8.55 0.31 −1.92 0.44
Max 101.60 5.57 −5.40 3.55 −1.69 1.37

4.3.2. Evaluation of Logistic Models Derived from MDG Predictors

According to Figure 12, LM5 performed better than LM1, LM2, and LM3 in six out of
10 metrics. However, LM4 could not surpass the performance of LM5 despite the use of Td
and SH, the most important variables derived from MDG. This model showed, overall, a
similar performance to LM3, an expert knowledge-based model. However, the use of SH
improved the representation of LM1, which used RH as a humidity related variable.

Figure 12. Normalized metrics (quantification and detection s) for the mean of all the classic logistic
models. For normalized indexes, the range is [0–1], where the best model has a value of 0.

Although further research is necessary, these results highlight the possibility of “auto-
matic” discovery of predictors by AI models and the conceptual implementation in simpler
models. Nevertheless, LM4 did not show a significantly better performance than LM1 to
LM3, although a similar performance showed the potentiality of AI-based development of
knowledge, which is a limitation of black box models.

To evaluate the performance of LM5 in relation to RF and ANN models, in Figure 13,
the normalized metrics are shown. This plot is like Figure 9, where the averages of LM1,
LM2, and LM3 are presented. LM5 improved in kge as the best model and also improved
for rmse with similar results to RF, surpassing ANN performance and SFC with better
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results than RF models. These results prove very valuable, because using both predictors
selected by MDG improved the performance of parsimonious logistic models, turning
information derived from black box models into more transparent models.

Figure 13. Normalized metrics for LM5, ANN, and RF models. Normalized indexes range is [0–1],
where 0 is the best model.

5. Discussion
5.1. Models for Precipitation Phase and Predictor Variables

The temperature and the humidity profiles together with the depth of the surface layer
control the precipitation phase reaching the ground surface [3]. However, when the surface
layer temperatures are close to freezing, and the mixing ratios are neither close to saturation
nor very dry, the phase at the surface becomes difficult to forecast. Furthermore, changes
in temperature and atmosphere’s saturation can also alter the precipitation phase due to
pressure changes driven by changes in vertical air velocity or vertical air movement [48].
The PRAA station fulfills all these conditions due to (1) its altitude near the 0 ◦C isotherm
located between 4800–5100 m.a.s.l [49]; (2) large variability of temperature and specific
humidity between days; and (3) strong wind speed around 4.6 m/s with gusts up to
12 m/s [29]. Therefore, models based on both temperature and humidity variables achieved
better results to forecast PP, as occurred with LM1 and LM5.

Comparing the calibrated parameters of LM1 with respect to the results presented
by [7], the P5–P95 range and the P50 values were very different. This could be related
to differences in climatic conditions between inner tropics and the Alps. On the other
hand, we computed the rain fraction with P50 calibrated values for LM1 (Table 5) and
the mean temperature (2.1 ◦C) and the relative humidity (81%) of the site (according [29]).
Afterwards, it was compared with the rain fraction computed with the mean temperature
and the relationship derived by [17] for the Antisana. With the LM1 model, we obtained a
rain fraction of 0.83, less than the 0.91 obtained by Wagnon. Thus, the RH inclusion in LM1
decreased the rain fraction with respect to another validated approach based on Ta only.

The current use of Parsivel OTT2 disdrometer is an excellent opportunity to monitor
present weather in the site and to explore new approaches to discriminate PP. Since only
simple classifications based on temperature are available for the Andes [8,17], these findings
will help to improve the knowledge about precipitation in alpine sites of tropical Andes,
where solid precipitation is limited to altitudes above 4000 m.a.s.l. Furthermore, the
parameters of LM models may be used to obtain solid precipitation, the key variable for
glaciological modeling in the inner tropics [2].

The application of RF and ANN allowed us to recognize that only Ta provided a very
poor explanation of the PP, while the inclusion of RH or SH improved the performance of
LM models. This could be explained due to humidity variations being related to latent heat
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exchange of hydrometeors during their fall [9]. These facts justify why logistics models
using temperature and humidity variables were demonstrated to be the most suitable to
explain the sigmoidal S-shaped curve of rain–snow partitioning [7,11,46,50].

5.2. Precipitation Phase Trends and Climate Change

Studies related to PP are almost inexistent in Ecuador despite the important fact that,
for instance, the rain to snow ratio represents important information for water resource
management and risks related to flash floods occurrence. Due to climate change, the rain
to snow ratio is expected to increase, affecting water supply stored as snowpack for one
billion people world-wide in winter while also affecting large cities in mountainous tropical
regions such as the Andes [1]. Snow falling in the Andes is stored as ice in glaciers and
then is released during the dry season, contributing to the base flow. Thus, the buffering
effect of glaciers is a vital service during the dry season for water consumption as well
as industrial and agricultural uses [51]. Although the retreat in glaciers may not have a
great impact in the hydrologic cycle at large scale, due to the buffering effect of wetlands
in Ecuador and Perú [1], the change in snowpack may modify the hydrologic functioning
of watersheds, wetlands, and groundwater reservoirs in addition to surface drainage [52].
Another aspect that deserves attention is the increasing risk of flash floods occurrence due
to increasing rain to snow fraction in CC. However, the change of rain to snow fraction is
highly complex in space, depending on several aspects such as topographic features, mean
temperature, and snow cover duration, among others [53].

Considering similar thresholds under CC, e.g., −1 and 3, for snow or rain PP, this
study showed that temperature and specific humidity are much more important than other
variables such as incoming and outgoing radiation or wind. Although it is uncertain, the
amount of precipitation in Ecuador is expected to increase due to CC [1,54], but climate
models have less uncertainty with temperature, which will raise 4.5–5 ◦C by the end
of this century under “business as usual” type emissions scenarios [55]. Additionally,
more moisture is expected to affect the tropical Andes due to enhanced easterlies in CC.
Therefore, these changes in the driving variables of PP may affect the processes involved,
possibly showing non-linear responses, typically related to phase change processes. Thus,
to develop informed base adaptation strategies to CC, more monitoring and studies related
to the societal impact of PP change and occurrence are necessary, especially for large cities
under increasing need for water provisioning and safety.

6. Conclusions

The dramatic decrease in the ratio of snow to rain due to climate change affects the
timing and the duration of the stream flow, affecting the hydrologic cycle and the climate
system through complex feedback processes. Therefore, more knowledge about the PP
occurrence and the driving mechanisms is necessary. The understanding of these processes
is especially important for water management in cities dependent on water coming from
glaciers, such as several cities in the Andes, and along other mountain regions around
the world.

This study first compared the performance of RF and ANN models in relation to
logistic models to derive PP; then, it identified the main drivers of PP occurrence from RF
models and finally used these drivers to develop parsimonious logistic models that can
help in understanding the underlying processes in relation to PP occurrence. The results
showed that RF and ANN outperformed LM in predicting PP in eight out of 10 metrics.
Additionally, RF indicated that temperature, dew point temperature, and specific humidity
were more important than wind or radiation for PP occurrence. With these predictors,
parsimonious and efficient models were developed.

In this research, we presented a pioneering approach in this field. Several advan-
tages of artificial intelligence methods were evident in helping to improve PP forecasting
capabilities, identify predictors, and formulate parsimonious models. Thus, information
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and possibly “knowledge” could be extracted from massive amounts of data, which may
complement the existing expert knowledge in this field.

Further work is necessary to evaluate, in other regions, the methodology developed
in this study as well findings such as the model structure and the main predictors of PP,
which may be specific for the Antisana glacier. Additionally, given the nonlinear response
of PP to temperature thresholds, the development and the comparison of models for
specific seasons would help to improve our understanding of the physical processes behind
PP occurrence.

Author Contributions: Conceptualization, L.C., T.C., L.R. and L.F.G.; data curation, L.F.G. and L.R.;
formal analysis, L.R.; funding acquisition, L.C., T.C. and L.M.; investigation, L.R., D.B., C.P. and M.V.;
methodology, L.C., D.B., L.R., L.F.G. and C.P.; project administration, L.C.; resources, L.C. and L.M.;
software, D.B., L.R. and L.F.G.; supervision, L.M., M.V. and T.C.; writing—original draft, L.C., L.R.
and L.F.G.; writing—review and editing, L.C., L.R., C.P. and T.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Escuela Politecnica Nacional, grant number PIJ-18-05.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Measured and derived data that support the findings of this study are
available from the corresponding author, L.C. on request.

Acknowledgments: The authors are grateful to Escuela Politécnica Nacional for funding the project
PIJ-18-05. The authors thank the French Research Institute for Development (IRD) through the
International Laboratory LMI GREAT-ICE for the facilities provided for the development of this
research and for supporting field work campaigns. The authors acknowledge Romain Biron and Juan
Carvajal for the field data acquisition.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vuille, M. Climate Change and Water Resources in the Tropical Andes; Technical Note No. IDB-TN-515; Inter-American Development

Bank: Washington, DC, USA, 2013; Volume 29.
2. Favier, V.; Wagnon, P.; Chazarin, J.P.; Maisincho, L.; Coudrain, A. One-Year Measurements of Surface Heat Budget on the Ablation

Zone of Antizana Glacier 15, Ecuadorian Andes. J. Geophys. Res. Atmos. 2004, 109, 15. [CrossRef]
3. Harpold, A.A.; Kaplan, M.L.; Klos, P.Z.; Link, T.; McNamara, J.P.; Rajagopal, S.; Schumer, R.; Steele, C.M. Rain or Snow:

Hydrologic Processes, Observations, Prediction, and Research Needs. Hydrol. Earth Syst. Sci. 2017, 21, 1–22. [CrossRef]
4. Vuille, M.; Bradley, R.; Keimig, F. Climate Variability in the Andes of Ecuador and Its Relation to Tropical Pacific and Atlantic Sea

Surface Temperature Anomalies. J. Clim. 2000, 13, 2520–2535. [CrossRef]
5. Gray, D.M.; Prowse, T.D. The Handbook of Hydrology; Maidment, D., Ed.; McGraw-Hil: New York, NY, USA, 1992; p. 824.

ISBN 978-0070397323.
6. Fassnacht, S.; Kouwen, N.; Soulis, E. Surface Temperature Adjustment to Improve Weather Radar Representation of Multi-

Temporal Winter Precipitation Accumulation. J. Hydrol. 2001, 253, 148–168. [CrossRef]
7. Froidurot, S.; Zin, I.; Hingray, B.; Gautheron, A. Sensitivity of Precipitation Phase over the Swiss Alps to Different Meteorological

Variables. J. Hydrometeorol. 2014, 15, 685–696. [CrossRef]
8. L’hôte, Y.; Chevallier, P.; Coudrain, A.; Lejeune, Y.; Etchevers, P. Relationship between Precipitation Phase and Air Temperature:

Comparison between the Bolivian Andes and the Swiss Alps/Relation Entre Phase de Précipitation et Température de Air:
Comparaison Entre Les Andes Boliviennes et Les Alpes S. Hydrol. Sci. J. 2005, 50, null-997. [CrossRef]

9. Harder, P.; Pomeroy, J. Estimating Precipitation Phase Using a Psychrometric Energy Balance Method. Hydrol. Process. 2013, 27,
1901–1914. [CrossRef]

10. Feiccabrino, J.; Lundberg, A. Precipitation Phase Discrimination in Sweden. In Proceedings of the 65th Eastern Snow Conference,
Fairlee, VT, USA, 28–30 May 2008; pp. 239–254.

11. Jennings, K.S.; Winchell, T.S.; Livneh, B.; Molotch, N.P. Spatial Variation of the Rain-Snow Temperature Threshold across the
Northern Hemisphere. Nat. Commun. 2018, 9, 1148. [CrossRef]

12. Quick, M.C.; Pipes, A. U.B.C. Watershed Model. Hydrol. Sci. J. 1977, 153–162. [CrossRef]
13. Kienzle, S.W. A New Temperature Based Method to Separate Rain and Snow. Hydrol. Process. 2008, 22, 5067–5085. [CrossRef]
14. Stewart, R.E. Precipitation Types in the Transition Region of Winter Storms. Bull. Am. Meteorol. Soc. 1992, 73, 287–296. [CrossRef]

http://doi.org/10.1029/2003JD004359
http://doi.org/10.5194/hess-21-1-2017
http://doi.org/10.1175/1520-0442(2000)013&lt;2520:CVITAO&gt;2.0.CO;2
http://doi.org/10.1016/S0022-1694(01)00479-6
http://doi.org/10.1175/JHM-D-13-073.1
http://doi.org/10.1623/hysj.2005.50.6.989
http://doi.org/10.1002/hyp.9799
http://doi.org/10.1038/s41467-018-03629-7
http://doi.org/10.1080/02626667709491701
http://doi.org/10.1002/hyp.7131
http://doi.org/10.1175/1520-0477(1992)073&lt;0287:PTITTR&gt;2.0.CO;2


Water 2021, 13, 3022 22 of 23

15. Bicknell, B.R.; Imhoff, J.C.; Kittle, J.L., Jr.; Donigian, A.S., Jr.; Johanson, R.C. Hydrological Simulation Program-Fortran: User’s Manual;
US Environmental Protection Agency: Athens, GA, USA, 1997.

16. Marks, D.; Winstral, A.; Reba, M.; Pomeroy, J.; Kumar, M. An Evaluation of Methods for Determining During-Storm Precipitation
Phase and the Rain/Snow Transition Elevation at the Surface in a Mountain Basin. Adv. Water Resour. 2013, 55, 98–110. [CrossRef]

17. Wagnon, P.; Lafaysse, M.; Lejeune, Y.; Maisincho, L.; Rojas, M.; Chazarin, J.P. Understanding and Modeling the Physical Processes
That Govern the Melting of Snow Cover in a Tropical Mountain Environment in Ecuador. J. Geophys. Res. Atmos. 2009, 114, 1–14.
[CrossRef]

18. Lejeune, Y.; Bouilloud, L.; Etchevers, P.; Wagnon, P.; Chevallier, P.; Sicart, J.-E.; Martin, E.; Habets, F. Melting of Snow Cover in a
Tropical Mountain Environment in Bolivia: Processes and Modeling. J. Hydrometeorol. 2007, 8, 922–937. [CrossRef]

19. Campozano, L.; Célleri, R.; Trachte, K.; Bendix, J.; Samaniego, E. Rainfall and Cloud Dynamics in the Andes: A Southern Ecuador
Case Study. Adv. Meteorol. 2016, 2016, 3192765. [CrossRef]

20. Ye, H.; Cohen, J.; Rawlins, M. Discrimination of Solid from Liquid Precipitation over Northern Eurasia Using Surface Atmospheric
Conditions. J. Hydrometeorol. 2013, 14, 1345–1355. [CrossRef]

21. Jennings, K.S.; Molotch, N.P. The Sensitivity of Modeled Snow Accumulation and Melt to Precipitation Phase Methods across a
Climatic Gradient. Hydrol. Earth Syst. Sci. 2019, 23, 3765–3786. [CrossRef]

22. Aggarwal, S.K.; Goel, A.; Singh, V.P. Stage and Discharge Forecasting by {SVM} and {ANN} Techniques. Water Resour. Manag.
2012, 26, 3705–3724. [CrossRef]

23. Francou, B.; Vuille, M.; Favier, V.; Cáceres, B. New Evidence for an ENSO Impact on Low-Latitude Glaciers: Antizana 15, Andes
of Ecuador, 0◦28′S. J. Geophys. Res. Atmos. 2004, 109, 17. [CrossRef]

24. OTT HydroMet. Operating Instructions Present Weather Sensor OTT Parsivel 2; OTT HydroMet: Kempten, Germany, 2016; p. 52.
25. Battaglia, A.; Rustemeier, E.; Tokay, A.; Blahak, U.; Simmer, C. PARSIVEL Snow Observations: A Critical Assessment. J. Atmos.

Ocean. Technol. 2010, 27, 333–344. [CrossRef]
26. Tokay, A.; Wolff, D.B.; Petersen, W.A. Evaluation of the New Version of the Laser-Optical Disdrometer, OTT Parsivel2. J. Atmos.

Ocean. Technol. 2014, 31, 1276–1288. [CrossRef]
27. Raupach, T.H.; Berne, A. Correction of Raindrop Size Distributions Measured by Parsivel Disdrometers, Using a Two-Dimensional

Video Disdrometer as a Reference. Atmos. Meas. Tech. 2015, 8, 343–365. [CrossRef]
28. Angulo-Martinez, M.; Begueria, S.; Latorre, B.; Fernández-Raga, M. Comparison of Precipitation Measurements by OTT Parsivel

and Thies LPM Optical Disdrometers. Hydrol. Earth Syst. Sci. 2018, 22, 2811–2837. [CrossRef]
29. Gualco, L.; Campozano, L.; Robaina, L.; Maisincho, L.; Muñoz, L.; Carlos, J. Corrections of Raindrop Size Distribution Measured

by Parsivel OTT 2 Disdrometer under Windy Conditions in Antizana Massif, Ecuador. Water 2021, 13, 2576. [CrossRef]
30. Bolton, D. The Computation of Equivalent Potential Temperature. Mon. Weather Rev. 1980, 108, 1046–1053. [CrossRef]
31. Garratt, J.R. The Atmospheric Boundary Layer; Cambridge Atmospheric and Space Science Series; Cambridge University Press:

Cambridge, UK, 1994; ISBN 9780521467452.
32. Koistinen, J.; Saltikoff, E. Experience of Customer Products of Accumulated Snow, Sleet and Rain. Adv. Weather Radar Syst. 1998,

397–406.
33. Uyanık, G.K.; Güler, N.N.N.; Uyanik, G.K.; Güler, N.N.N. A Study on Multiple Linear Regression Analysis. Procedia Soc. Behav.

Sci. 2013, 106, 234–240. [CrossRef]
34. Agatonovic-Kustrin, S.; Beresford, R. Basic Concepts of Artificial Neural Network (ANN) Modeling and Its Application in

Pharmaceutical Research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [CrossRef]
35. Du, K.L. Clustering: A Neural Network Approach. Neural Netw. 2010, 23, 89–107. [CrossRef]
36. Stangierski, J.; Weiss, D.; Kaczmarek, A. Multiple Regression Models and Artificial Neural Network ({ANN}) as Prediction Tools

of Changes in Overall Quality during the Storage of Spreadable Processed Gouda Cheese. Eur. Food Res. Technol. 2019, 245,
2539–2547. [CrossRef]

37. Jain, A.; Kumar, A.M. Hybrid Neural Network Models for Hydrologic Time Series Forecasting. Appl. Soft Comput. 2007, 7,
585–592. [CrossRef]

38. Sarica, A.; Cerasa, A.; Quattrone, A. Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimers Disease:
A Systematic Review. Front. Aging Neurosci. 2017, 9, 329. [CrossRef] [PubMed]

39. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
40. Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I. Random Forests and Decision Trees. Int. J. Comput. Sci. Issues 2012, 9, 272–278.
41. Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22.
42. Tyralis, H.; Papacharalampous, G.; Langousis, A. A Brief Review of Random Forests for Water Scientists and Practitioners and

Their Recent History in Water Resources. Water 2019, 11, 910. [CrossRef]
43. Knoben, W.J.M.; Freer, J.E.; Woods, R.A. Technical Note: Inherent Benchmark or Not? Comparing Nash-Sutcliffe and Kling-Gupta

Efficiency Scores. Hydrol. Earth Syst. Sci. 2019, 23, 4323–4331. [CrossRef]
44. Nicodemus, K.K. Letter to the Editor: On the Stability and Ranking of Predictors from Random Forest Variable Importance

Measures. Brief. Bioinform. 2011, 12, 369–373. [CrossRef]
45. Calle, M.L.; Urrea, V. Letter to the Editor: Stability of Random Forest Importance Measures. Brief. Bioinform. 2010, 12, 86–89.

[CrossRef]

http://doi.org/10.1016/j.advwatres.2012.11.012
http://doi.org/10.1029/2009JD012292
http://doi.org/10.1175/JHM590.1
http://doi.org/10.1155/2016/3192765
http://doi.org/10.1175/JHM-D-12-0164.1
http://doi.org/10.5194/hess-23-3765-2019
http://doi.org/10.1007/s11269-012-0098-x
http://doi.org/10.1029/2003JD004484
http://doi.org/10.1175/2009JTECHA1332.1
http://doi.org/10.1175/JTECH-D-13-00174.1
http://doi.org/10.5194/amt-8-343-2015
http://doi.org/10.5194/hess-22-2811-2018
http://doi.org/10.3390/w13182576
http://doi.org/10.1175/1520-0493(1980)108&lt;1046:TCOEPT&gt;2.0.CO;2
http://doi.org/10.1016/j.sbspro.2013.12.027
http://doi.org/10.1016/S0731-7085(99)00272-1
http://doi.org/10.1016/j.neunet.2009.08.007
http://doi.org/10.1007/s00217-019-03369-y
http://doi.org/10.1016/j.asoc.2006.03.002
http://doi.org/10.3389/fnagi.2017.00329
http://www.ncbi.nlm.nih.gov/pubmed/29056906
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.3390/w11050910
http://doi.org/10.5194/hess-23-4323-2019
http://doi.org/10.1093/bib/bbr016
http://doi.org/10.1093/bib/bbq011


Water 2021, 13, 3022 23 of 23

46. Casellas, E.; Bech, J.; Veciana, R.; Pineda, N.; Rigo, T.; Miró, J.R.; Sairouni, A. Surface Precipitation Phase Discrimination in
Complex Terrain. J. Hydrol. 2021, 592, 125780. [CrossRef]

47. Manciati, C.; Villacis, M.; Taupin, J.-D.; Cadier, E.; Galárraga-Sánchez, R.; Cáceres, B. Empirical Mass Balance Modelling of South
American Tropical Glaciers: Case Study of Antisana Volcano, Ecuador. Hydrol. Sci. J. 2014, 59, 1519–1535. [CrossRef]

48. Thériault, J.M.; Stewart, R.E. On the Effects of Vertical Air Velocity on Winter Precipitation Types. Nat. Hazards Earth Syst. Sci.
2007, 7, 231–242. [CrossRef]

49. Basantes-Serrano, R.; Rabatel, A.; Francou, B.; Vincent, C.; Maisincho, L.; Cáceres, B.; Galarraga, R.; Alvarez, D. Slight Mass Loss
Revealed by Reanalyzing Glacier Mass-Balance Observations on Glaciar Antisana 15 (Inner Tropics) during the 1995–2012 Period.
J. Glaciol. 2016, 62, 124–136. [CrossRef]

50. Fehlmann, M.; Gascón, E.; Rohrer, M.; Schwarb, M.; Stoffel, M. Estimating the Snowfall Limit in Alpine and Pre-Alpine Valleys: A
Local Evaluation of Operational Approaches. Atmos. Res. 2018, 204, 136–148. [CrossRef]

51. Jomelli, V.; Khodri, M.; Favier, V.; Brunstein, D.; Ledru, M.P.; Wagnon, P.; Blard, P.H.; Sicart, J.E.; Braucher, R.; Grancher, D.; et al.
Irregular Tropical Glacier Retreat over the Holocene Epoch Driven by Progressive Warming. Nature 2011, 474, 196–199. [CrossRef]

52. Mark, B.G.; Bury, J.; McKenzie, J.M.; French, A.; Baraer, M. Climate Change and Tropical Andean Glacier Recession: Evaluating
Hydrologic Changes and Livelihood Vulnerability in the Cordillera Blanca, Peru. Ann. Assoc. Am. Geogr. 2010, 100, 794–805.
[CrossRef]

53. López-Moreno, J.I.; Pomeroy, J.W.; Morán-Tejeda, E.; Revuelto, J.; Navarro-Serrano, F.M.; Vidaller, I.; Alonso-González, E. Changes
in the Frequency of Global High Mountain Rain-on-Snow Events Due to Climate Warming. Environ. Res. Lett. 2021, 16, 94021.
[CrossRef]

54. Campozano, L.; Ballari, D.; Montenegro, M.; Avilés, A. Future Meteorological Droughts in Ecuador: Decreasing Trends and
Associated Spatio-Temporal Features Derived From {CMIP}5 Models. Front. Earth Sci. 2020, 8, 17. [CrossRef]

55. Bradley, R.S.; Vuille, M.; Diaz, H.F.; Vergara, W. Threats to Water Supplies in the Tropical Andes. Clim. Chang. Sci. 2006, 312, 1755.
[CrossRef]

http://doi.org/10.1016/j.jhydrol.2020.125780
http://doi.org/10.1080/02626667.2014.888490
http://doi.org/10.5194/nhess-7-231-2007
http://doi.org/10.1017/jog.2016.17
http://doi.org/10.1016/j.atmosres.2018.01.016
http://doi.org/10.1038/nature10150
http://doi.org/10.1080/00045608.2010.497369
http://doi.org/10.1088/1748-9326/ac0dde
http://doi.org/10.3389/feart.2020.00017
http://doi.org/10.1126/science.1128087

	Introduction 
	Study Area and Data 
	Methods 
	Quality Control of Data 
	Precipitation Phase Forecasting 
	Data Availability Scenarios (DAS) 
	Logistic Models 
	Artificial Neural Networks Models 
	Random Forest Models 
	Metrics of Evaluation 

	Meteorological Drivers 
	Development of LM Models from the Knowledge of Artificial Intelligence Models 

	Results 
	Evaluation of Artificial Intelligence Methods for Precipitation Phase Forecasting 
	Logistic Models 
	ANN Models 
	Random Forest Models 
	Intercomparison of LM, ANN, and RF Models 

	Meteorological Drivers 
	Development of Parsimonious Logistic Models with Predictors Derived from RF Information 
	Implementation of Logistic Models Based on AI Knowledge 
	Evaluation of Logistic Models Derived from MDG Predictors 


	Discussion 
	Models for Precipitation Phase and Predictor Variables 
	Precipitation Phase Trends and Climate Change 

	Conclusions 
	References

