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Abstract: Predictive models of bathing water quality are a useful support to traditional monitoring
and provide timely and adequate information for the protection of public health. When developing
models, it is critical to select an appropriate model type and appropriate metrics to reduce errors
so that the predicted outcome is reliable. It is usually necessary to conduct intensive sampling
to collect a sufficient amount of data. This paper presents the process of developing a predictive
model in Kaštela Bay (Adriatic Sea) using only data from regular (official) bathing water quality
monitoring collected during five bathing seasons. The predictive modelling process, which included
data preprocessing, model training, and model tuning, showed no silver bullet model and selected
two model types that met the specified requirements: a neural network (ANN) for Escherichia coli and
a random forest (RF) for intestinal enterococci. The different model types are probably the result of
the different persistence of two indicator bacteria to the effects of marine environmental factors and
consequently the different die-off rates. By combining these two models, the bathing water samples
were classified with acceptable performances, an informedness of 71.7%, an F-score of 47.1%, and an
overall accuracy of 80.6%.

Keywords: faecal indicator bacteria; E. coli; intestinal enterococci; bathing water quality prediction;
predictive models; neural network; random forest

1. Introduction

Bathing water quality is crucial to prevent the health risks associated with bathing in
coastal and inland bathing waters. According to the Bathing Water Directive 2006/7/EC
(BWD), the main document regulating the management and quality of bathing waters in the
European Union (EU), its main objective is to protect human health and to preserve, protect,
and improve the quality of the environment. As bathing water quality has been recognized
as one of the most important reasons for tourists’ choice of destination [1,2], it is a crucial
factor for island and coastal communities that depend on coastal tourism [3]. The Bathing
Water Directive sets out the guidelines on monitoring, quality assessment, classification,
and quality status of bathing waters and on information to the public. Bathing water
assessment is based on the levels of two faecal indicator bacteria (FIB), Escherichia coli
and intestinal enterococci. According to the BWD [4], the final assessment is based on
bathing water quality data sets compiled for this and the three previous bathing seasons.
The bathing water quality datasets used for the final assessment should always include at
least 16 samples (based on an annual number of four samples) or 12 samples in the case of
a bathing water located in a region with specific geographical constraints. The number of
data during the bathing season depends on the length of the bathing season, which varies
widely across EU Member States, ranging from two months in Sweden to six months in
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Cyprus [5]. This could theoretically lead to no sampling during some months in some
Member States. Since most water quality exceedances are single-day events, even at the
most frequently contaminated sites, there is a low chance (5%) of being detected at such low
sampling frequency [6]. That leads to significant, 15–20% misclassification of bathing water
sites [7]. Therefore, estimating compliance on the basis of such a small number of bathing
water samples is unlikely to fulfill the main purpose of the BWD, which is to protect public
health, as too many poor quality beaches could be classified in the better category [8].
Although the number of samples per bathing season is significantly higher than four in all
Member States, WHO recommends a further increase to 20 samples per season [9]. This
recommendation could lead to an additional financial burden and technical difficulties for
many Member States. Furthermore, it is questionable whether it is justified to increase the
number of samples at sites classified as ’excellent’ over a longer period of time.

To bridge the gap between the high cost of classical monitoring and the need for a
high level of human health protection, additional tools could be used. One of the most
popular is the development and application of water quality prediction models. It is
recognised that predictive models can significantly enhance existing and provide novel
preventive measures to protect human health. This especially refers to timely information
on the quality of bathing water, unlike the current procedure based on the information
on indicator bacteria counts in water samples that takes at least 24 h. The role of bathing
water quality predicting is also recognized by World Health Organization (WHO) [9], who
suggests that the bathing water classification may be upgraded by water quality prediction
’where recreational water is subject to occasional and predictable deterioration (such as after rainfall)
and where users can effectively be discouraged from entering the water during such periods’ [7].
However, prediction of bathing water quality is hardly straightforward as the existing
predictive models are not directly applicable to the described monitoring setup.

The overview of methods and results of predictive models for bathing water quality
is given in [10]. As it can be concluded from the review, the most common model used
is multiple linear regression (MLR) (especially considering literature older than 10 years)
which assumes a linear relationship among parameters. Since the drivers of FIB concentra-
tion in bathing waters are more complex than can be characterized by a linear relationship,
this model usually yields to variable (non-stable) results, deeply depending on the under-
lying data. In the last 10–15 years, other predictive models have been exploited, such as
classification trees (CT), random forest (RF), neural network (ANN), etc. In their paper [11],
the authors compare several models for E. coli prediction (MLR, ANN, CT, etc.) on daily
measurements from Santa Monica beach in Los Angeles. The authors in [12] compare MLR
and CT for E. coli prediction before and after the implementation of the Harbour Area
Treatment Scheme on weekly measurements from three beaches in Hong Kong. The study
on 20 Chicago beaches conducted in [13] exploits RF for prediction of E. coli.

The results of the above studies show high specificity and low sensitivity, which means
that the model in most cases correctly predicts situations in which the bacteria level is low,
but prediction of bacteria exceedance is in most cases poor. Moreover, each of the studies,
naturally, is considering specificities of the sites investigated, resulting with the model,
which is adapted to certain regions and parameters and in most cases cannot be directly
applied to other sites.

In predictive modeling, it is crucial to choose the appropriate type of model (regression
or classification) and appropriate metrics (accuracy, sensitivity, specificity, etc.) to minimize
the errors [14,15]. In scenarios with imbalanced data, with a high proportion of data with a
low level of indicator bacteria, reporting only accuracy yields the misleading conclusions,
since accuracy in those cases can be high, while prediction of the bacteria exceedance
can be poor [16,17]. In [18], the authors compare several models and metrics, stressing
that choosing the best model highly depends on what we want to model. For example,
the best model in their case is the Bayesian network which yields poor overall accuracy
but high accuracy in the prediction of “red days” (days in which bacteria highly exceeds
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the threshold). The process of building the prediction model is nicely described in [19],
although they apply it on estimating water quality index (WQI) not predicting E. coli.

The main objective of this paper is to assess whether a good and reliable predictive
model for coastal bathing water quality can be built using only regular (official) monitoring
data, or whether intensive sampling programs with more data on a spatial and temporal
basis are needed.

2. Materials and Methods
2.1. Study Area

Kaštela Bay is 15 km long and 6 km wide, making it the largest bay in the central
part of the coast of Croatian Adriatic (Figure 1). The bay is connected to the adjacent
channel by a 1.8 km wide inlet. The average water renewal time (time period required
to displace the entire volume of water in the bay) is about one month [20]. Due to heavy
eutrophication and pollution caused by intensive industrialization (meat, cement, and
chemical industries) and uncontrolled urbanization followed by uncontrolled discharge
of wastewater from households, the bay was a hotspot and the most polluted area on
the east coast of the Adriatic in the 1980s. With the construction of sewage systems for
the surrounding cities and the closure of several industrial plants between 1990 and 2009,
pollution in the bay has decreased significantly, especially in the eastern part of the bay [21].
As the sewage system in the most populated part of the bay (the town of Kaštela) has not
yet been completed, this part is still under moderate pressure from faecal waters entering
the bathing waters through many small uncontrolled sewage discharges near the coast.
With many households connected to old leaky septic tanks, streams and groundwater are
an additional source of contamination, especially after periods of rain. This is reflected in
the quality of bathing waters in this area. In the final assessment in 2019, 4 out of 11 bathing
sites in this area were assessed as poor and only four sites as excellent. This represents
33% (4 out of 12) of all Croatian bathing sites assessed as poor in the 2019 final assessment
(http://baltazar.izor.hr/plazepub/kakvoca_detalji10) (accessed on 10 March 2021). Based
on these findings and the fact that this area is susceptible to unexpected and short-term
pollution leading to water quality exceedances and thus higher health risks for bathers, it
is clear that official monitoring could be supported by additional protection tools such as
water quality prediction models.

Although not required by BWD, Regulation on Sea Bathing Water Quality [22] defines
the standards and FIB limits for assessing bathing water quality after each sampling
(Table 1). Bathing water is classified into four quality categories based on the concentration
of indicator bacteria in samples taken at the predefined monitoring point. This is important
because it provides a basis for the assessment of water quality after each sampling.

Table 1. Standards for bathing water quality after each sampling.

Bathing Water Quality
Excellent Good Sufficient Poor

Bacteria Intestinal enterococci ≤60 61–100 101–200 >200
Escherichia coli ≤100 101–200 201–300 >300

2.2. Dataset

Data are from the official monitoring program for coastal bathing waters conducted
by Teaching Institute of Public Health of Split-Dalmatia County at 11 bathing sites in
Kaštela Bay (Figure 1) during the 2015–2019 bathing seasons (n = 612 samples). The data
are freely available to all institutions involved in the official monitoring of coastal waters
in the Republic of Croatia, including Institute of Oceanography and Fisheries. Sampling
for official monitoring was carried out fortnightly in the morning from the end of May
to the end of September. The following features are collected during regular bathing
water quality monitoring by Teaching Institute of Public Health of Split-Dalmatia County.
For each sample, the timestamp and the location where the sample was taken are recorded.

http://baltazar.izor.hr/plazepub/kakvoca_detalji10
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The salinity and temperature of the seawater are measured with a handheld probe directly
at the time of sampling. Wind, precipitation, and weather description are estimated during
sampling. E. coli and intestinal enterococci are determined by the membrane filtration
method, temperature modified ISO 9308-1:2014 [23] for E. coli, and ISO 7899-2:2000 [24] for
intestinal enterococci, respectively. Maximal and minimal tide levels are measured by a
station at the Institute of Oceanography and Fisheries. Sewage outlets visible to the naked
eye are mapped and the distance from the sampling point to the outlet is calculated.

Figure 1. Map of Kaštela Bay and bathing sites where samples were taken.

Air temperature, humidity, pressure, pressure tendency, sea level pressure, wind
speed, wind direction, cloud coverage, and precipitation in the last 24 h are collected from
the Croatian Meteorological and Hydrological Service (https://meteo.hr/) (accessed on
17 March 2020). The values are approximated at the moment of sampling and day before,
i.e., 24 h earlier using spatio-temporal interpolation.

Downward thermal infrared radiative flux, all sky insolation incident on a horizontal
surface, top-of-atmosphere insolation, and insolation clearness index are acquired from the
POWER Project, NASA (https://power.larc.nasa.gov/) as a daily (accessed on 19 March
2020) average all in the same position (center of the Kaštela bay). The number of tourist
overnights for the entire area of the town of Kastela, as an indicator of the load on the area
and consequently of the discharge of faecal waters, for the year 2016, come from the tourist
board of Kaštela (https://www.kastela-info.hr/) (accessed on 2 April 2020). The number
of tourists for other years are replicated data from the year 2016.

Average E. coli and intestinal enterococci levels in the past bathing season at the
same bathing site and in the last sample on the same bathing site are added for both
observed faecal indicators. Quality classes (based on only E. coli, only intestinal enterococci
and combination of both bacteria) are calculated from the level of E. coli and intestinal
enterococci according to the Marine Bathing Water Quality Regulation [22]. An overview
of aforementioned features with their names used in modelling, description, and units is
given in Table 2.

https://meteo.hr/
https://power.larc.nasa.gov/
https://www.kastela-info.hr/
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Table 2. Overview of features in data set. The first four features describing the sample are excluded
from modelling, and the last three features (EC_class, E_class and WQ) are the ones to be modelled
(dependent variables). The other 35 features are used in modelling as independent variables.

Feature Name Description

loc Sampling site (latitude and longitude)
t Sampling timestamp
EC E. coli count (CFU/100 mL)
IE Intestinal enterococci count (CFU/100 mL)

EC_last E. coli count in last sampling (CFU/100 mL)
EC_mean Mean E. coli count in last bathing season (CFU/100 mL)
IE_last Intestinal enterococci count in last sampling (CFU/100 mL)
IE_mean Mean intestinal enterococci count in last bathing season

(CFU/100 mL)
sal Salinity
sea_temp Seawater temperature (°C)
wind_cat Wind (yes/no)
prec_cat Precipitation (present/moderate/absent)
weather Weather description (cloudy/partly cloudy/sunny)
high Highest daily sea level (m)
low Lowest daily sea level (m)
dist Distance to sewage outlet (m)
temp Air temperature (°C)
temp_dbf Air temperature day before (°C)
hum Humidity (%)
hum_dbf Humidity day before (%)
press Pressure at weather station level (mm of mercury)
press_dbf Pressure at weather station level day before (mm of mercury)
press_tend Pressure tendency (mm of mercury)
press_tend_dbf Pressure tendency day before (mm of mercury)
press_rel Relative pressure at sea level (mm of mercury)
press_rel_dbf Relative pressure at sea level day before (mm of mercury)
wind_sp Wind speed (m/s)
wind_sp_dbf Wind speed day before (m/s)
wind_dir Wind direction (compass angle)
wind_dir_dbf Wind direction day before (compass angle)
cloud Cloud coverage (%)
cloud_dbf Cloud coverage day before (%)
prec Precipitation in last 24 h (mm)
prec_dbf Precipitation in last 24 h day before (mm)
thermal_infrared Downward Thermal Infrared (Longwave) Radiative Flux

(MJ/m2/day)
horizontal_srfc All Sky Insolation Incident on a Horizontal Surface (MJ/m2/day)
top_atm Top-of-atmosphere Insolation (MJ/m2/day)
clearness Insolation Clearness Index
overnights Number of tourist overnights

EC_class Exceedance of E. coli according to poor quality threshold—
(positive/negative)

IE_class Exceedance of intestinal enterococci according to poor quality
threshold—(positive/negative)

WQ Exceedance of at least one of bacteria: E. coli and/or intestinal
enterococci—(positive/negative)

2.3. Predictive Modelling Process

The dependent variable we want to model is the class of FIB exceedance—water quality
(WQ). In this context, FIB exceedance is defined as poor water quality (>200 CFU/100 mL
for intestinal enterococci and/or >300 CFU/100 mL for E. coli) as defined in Table 1. In
the classification model, exceeding the selected FIB value is labeled as a positive class and
the other samples as negative; therefore, a binary classification is chosen. According to
BWD and Regulation on Sea Bathing Water Quality, two faecal bacteria are indicators for
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measuring bathing water quality. Two separate models are built for each bacteria (one with
the dependent variable EC_class and another with IE_class). The results of the models
are combined in the bathing water quality prediction model (WQ, illustrated in Figure 2):
If the number of any of the FIB exceeds the sufficient bathing water quality, the quality is
poor. The E. coli and intestinal enterococci levels, sample location and timestamp (loc, t,
EC, and IE) are excluded from the modelling. Other features are considered as independent
variables (Table 2).

IF 
((EC_class
is positive) 

OR 
(IE_class

class is 
positive))

YES

NO

WQ is 
POOR

WQ is 
GOOD

Binary classification 
model for E. coli 

prediction

Binary classification 
model for intestinal 

enterococci 
prediction

EC_class

IE_class

Binary classification model for bathing water 
quality prediction

Figure 2. Scheme of the binary classification model for bathing water quality prediction.

The process of predictive modelling for bathing water quality prediction is shown
in Figure 3. The process follows the best practises of predictive modelling described
in [25]. The process consists of five groups of steps: Data collection, Data preprocessing
(containing four steps), Model training (containing three steps), Model tuning (containing
two steps), and Model evaluation. The steps highlighted in white are performed for the
dataset independently of the indicator bacteria we are modelling, and the steps highlighted
in grey are performed separately for each indicator bacteria.

2.3.1. Data Preprocessing

The collected dataset was split into a training and holdout set. The holdout set was
comprised of the data from the most recent sampling period to ensure the independence of
these two datasets. All features in the training set are centered and scaled to have a mean
of 0 and a standard deviation of 1 in the Data transformation step. Holdout data were fit to
the same scale.

The next two steps are performed separately for each indicator bacteria: A priori
feature selection and Balancing data. The first is required to reduce the number of inde-
pendent parameters and is performed by calculating the correlation of the bacteria with
other parameters and eliminating parameters that are weakly correlated to bacteria level.
The second is required because the data are very imbalanced (with an extremely high ratio
of negative to positive results). There are numerous algorithms to deal with class imbalance,
and their performance also depends on the datasets [16]. In the context of bathing water
quality, we had to combine several methods to deal with an imbalanced dataset due to
the very low proportion of positive class samples. In this step, random under-sampling
was chosen because it avoids the bias of synthetic data generation for extremely small
minority classes, as in our case, and has better overall performance than over-sampling [26].
Random under-sampling randomly discards negative samples to achieve a more favorable
positive/negative ratio. In the next steps, some other mechanisms are used to deal with
class imbalance.
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Data transformation

Data collection

Data preparation

A priori feature 
selection

Balancing data

Model evaluation

Building the model Choosing the class 
probability threshold

A posteriori feature 
selection

Choosing the metrics

Choosing the best 
model

Data preprocessing

Model training
Model tuning

Figure 3. Predictive modelling process for bathing water quality.

2.3.2. Model Training

The results of the modelling are presented in the form of a confusion matrix (Table 3),
where true positive (TP) refers to the number of positive samples correctly classified, true
negative (TN) refers to the number of negative samples correctly classified, false positive
(FP) refers to the number of negative samples incorrectly classified as positive, and false
negative (FN) refers to the number of positive samples incorrectly classified as negative.

Table 3. Confusion matrix format for binary classification, with depicted true positives (TP), false
negatives (FN), false positives (FP), and true negatives (TN) cases.

Actual Value
Positive Negative

Prediction positive TP FP
negative FN TN

There are several metrics used to evaluate classifier performance [25].
The most common metric is Accuracy, which expresses the proportion of correct results

among all cases examined, given by the formula:

Accuracy = TP+TN
TP+TN+FP+FN .

Accuracy, however, is not sufficient to describe how well the model works and may
lead to incorrect conclusions, especially in the case of classification problems and imbal-
anced datasets. Accuracy can be high while mispredicting the minority class, which in most
cases is even more important than the majority class. It is even reported that Accuracy can
mislead the decision on the model—even if the model reports high accuracy, it may still
fail to capture the information that is crucial for certain domain problems [17]. This is the
case with bathing water quality classification—Accuracy can be high, while prediction of
bacterial exceedance can be poor.

The metrics such as Sensitivity (or Recall), Specificity, and Precision could better describe
goodness of fit of the model.

Precision is the proportion of true positives among all cases predicted as positives:

Precision = TP
TP+FP .

Sensitivity (or recall) is the proportion of true positives among all positive cases:
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Sensitivity = Recall = TP
TP+FN .

Specificity is proportion of true negatives among all negatives:

Speci f icity = TN
TN+FP .

Specificity as a metric (as is chosen in most related work such as [11–13]) will result
in very low sensitivity in most cases (meaning that we correctly classify negatives but
poorly classify positives). On the other hand, if we choose only Sensitivity as a metric, this
will lead to very poor Specificity (meaning that we classify positives correctly, but also
have too many false alarms ). The choice of metrics depends on the problem to be solved.
For example, in the context of bathing water quality, one might aim to warn swimmers
when the sea is polluted, or decide not to sample certain locations at certain times that are
predicted to be clean.

Metrics that combine above mentioned metrics are often best choice. Widely used
metric in evaluating classification is F score, which is the harmonic mean of Precision
and Recall:

F = 2∗Precision∗Recall
Precision+Recall .

Another metric that combines Sensitivity and Specificity is Informedness:

In f ormedness = Sensitivity + Speci f icity − 1.

One of the most important evaluation metrics for checking the performance of a binary
classification model is the area under the Receiver Operating Characteristics (ROC) curve,
called AUC. ROC is a probability curve, with 1-Specificity on the x-axis and Sensitivity on
the y-axis (Figure 4). AUC represents the degree or measure of separability between classes.
The higher the AUC, the better the model is able to predict the correct class.

Figure 4. Receiver Operating Characteristics (ROC) curve (blue).

Predictive modeling of bathing water quality could be addressed as generally feasible
if the two classes can be separated in a way that a satisfying trade-off between recognizing
FIB exceedance and avoiding false alarms is obtained. Since our goal is to test the general
feasibility of predictive modeling of bathing water quality, and since the dataset we are
working with is imbalanced, the best performance alternatives are Informedness and Area
under the curve (AUC) [14].

In the step of choosing the best among the different models and tuning the model
through a posteriori feature selection, the AUC metric is used because it maximises the
overall performance of the model and maximises both Sensitivity and Specificity. Later,
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when choosing the threshold for the class probability threshold, the decision is made based
on the best Informedness.

In the Building the models step, several machine learning models are built [27,28] and
for each bacteria the model with the best performance is used for evaluation:

• Random forest is a tree-based model that consists of multiple decision trees. The ad-
vantage of random forest is that it reduces the correlation between trees without
increasing the variance too much. This is achieved by randomly selecting the input
variables for each tree.

• Support vector machines is a nonlinear generalization of linear decision boundaries for
classification. It separates classes by producing nonlinear boundaries, thus construct-
ing a linear boundary (hyperplane) that separates classes in a large version of the
feature space.

• Artificial neural network is a nonlinear model that simulates the human brain by learn-
ing the parameters of the hidden units (simulating neurons) and combining them to
form the output layer (decision).

The models are compared using cross-validation [29] according to the chosen metrics
in the step of Choosing the best model. Since data collected on the same day may be correlated
on a small spatial area [15], predictions might be biased if we perform classical leave-one-
out cross-validation (LOOCV) or k-fold cross-validation (k-fold CV). LOOCV and k-fold
CV were combined in our leave-one-day-out cross-validation (LODOCV). LODOCV is
motivated by Spatial leave-one-out cross-validation (SLOOCV) [30] in which, after selecting
a sample, all other samples that are spatially correlated with the removed sample are
removed. LODOCV forms folds consisting of samples taken on the same day, resulting
in a total of 47 folds. LODOCV is used to compare the performance of different machine
learning algorithms and select the one that best fits the data.

2.3.3. Model Tuning and Model Evaluation

After model selection, another set of steps called Model tuning is applied to the best
models to achieve the best performance of the models: A posteriori feature selection, i.e., the
selection of independent parameters with respect to their importance in the model, and the
step Choosing the class probability threshold.

A posteriori feature selection is conducted according to type of the model and the
guidelines of [28].Generally, features are selected according to their importance in the
model created.

The output of most machine learning classifiers is the probability that a sample belongs
to a positive class, and samples are classified as positive if the predicted probability is
greater than the threshold, otherwise as negative. The choice of this threshold can have a
huge impact on model accuracy, especially for imbalanced datasets [31].

The outputs of the last steps are two models: one model for E. coli and one for intestinal
enterococci, which tends to be the best models, according to tests on training data.

In the final step, Model evaluation, the models are further evaluated on holdout data.
Outputs of the models are combined into a single model for predicting bathing water
quality, as shown in Figure 2.

All parts of the predictive modelling process are performed using the R programming
language and its packages: caret for model training and model building, ROSE for
balancing data, nnet for artificial neural network creation, randomForest for random forest
model creation, and ggplot for visualisation.

3. Results and Discussion

Out of 612 seawater samples collected, 31 (5%) were of poor quality (Figure 5). Most
samples (16) had only exceedance of E. coli, three samples had only exceedance of intestinal
enterococci, and 12 had exceedance of both FIB. This can be seen in both Figures 6 and 7.
Figure 6 depicts variation of both bacteria by months from May to September in the period
from 2015 to 2019 for 11 beaches in Kastela. Poor quality is recorded mainly in July, August,
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and September. Figure 7 shows the variation across years for each sample and also the
samples with poor water quality where only one indicator bacteria exceeded the threshold
(marked with grey lines).

Excellent
66%

Good
17%

Sufficient
12%

Poor
5%

66%

17%

12%

5%

Excellent Good Sufficient Poor

Figure 5. The percentage of bathing water quality categories of all samples collected from 11 beaches
in Kaštela in 2015–2019.
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Figure 6. Summary of FIB levels grouped by months. The blue color represents intestinal enterococci
and the red color E. coli. The line represents median and diamond shape mean values. The dashed
line is the threshold for E. coli exceedance and the dotted line is the threshold for intestinal enterococci.
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Figure 7. FIB level of samples from dataset, sorted by timestamp. Each sample is represented by a
line, the circle being CFU/100 mL of E. coli and plus being CFU/100 mL of intestinal enterococci.
Samples marked red represents poor quality.
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Of all the poor quality samples, most (23) came from the bathing sites in the eastern
part of Kaštela, namely Torac, Kamp and Gojača, indicating that this part of the bay is
still subject to higher pollution pressure. Of the 76 (12.4%) samples that showed suffi-
cient quality, 61 (80%) samples showed the exceedance of only one indicator bacteria.
Although the bacterial levels are correlated, as expected, it is not uncommon for only one
indicator bacteria to exceed the threshold and the other not. One of the main reasons
for this is probably the stricter criteria for upper limits for E. coli in Croatian Regulation
on Sea Bathing Water Quality [22] compared to the values recommended by European
Union Bathing water Dirrective (BWD) [4]. Accordingly, the exceedances are mainly due to
increased E. coli levels. This is in line with the results of the analysis 30,000 data collected
during the official monitoring of bathing water quality at all Croatian coastal bathing sites
in 2015–2018. Of the 779 bathing water samples that were classified in a lower category
based on the counts of only one indicator, 59% were classified based on E. coli and 41%
based on the counts of intestinal enterococci [32]. Another likely reason is the timing of
sampling. Seawater samples for official monitoring are usually collected in the morning
so that the samples can be taken to the laboratory and processed the same day. At this
time of day, solar radiation, which is the most important factor in reducing FIB, is weaker
than during the rest of the day, so it does not have much effect on FIB die-off rates. This is
especially true for E. coli, as it is known that this bacteria, like other coliform bacteria, is
much more sensitive than intestinal enterococci to the negative effects of environmental
factors, especially solar radiation [33–35]. If sampling had been conducted in the afternoon,
the number of E. coli would likely have decreased more than intestinal enterococci, so water
quality exceedances would have been more likely due to increased numbers of intestinal
enterococci. This was the motivation to observe faecal indicators separately and to train
separate ML models.

The future of predictive modelling of water quality will be even more extensive with
more frequent data, by possibly moving from traditional manual methods to technolog-
ically advanced methods employing wireless sensor networks for in situ water quality
management [36,37]. To be used as support to official monitoring program, predictive
models should also satisfy the minimum WHO recommendations that includes: the choice
of model and methods of public information dissemination should be reported, the models
should meet minimum requirements (including an explained variance of at least 50–60%),
and the approach taken should be justifiable and auditable [9].

3.1. Building the Predictive Models

Of the 612 samples collected, 139 are from 2019 and are left as a holdout set, leaving
473 samples for training. It can be seen from Figure 7 that, among all samples in 2019,
13 of them are of poor quality. Only two exceedances of intestinal enterococci are reported,
which could affect the results of the evaluation, but still the results of the cross-validation
on the training set can give information about the model performance.

The number of independent parameters is relatively large compared to the size of the
dataset, which generally leads to unstable learning. To reduce the number of independent
parameters, the correlation with the FIB level on the training set is observed and those with a
correlation coefficient (Spearman correlation coefficient [25]) below 0.2 are considered weak
and discarded [25,38]. This is done separately for each indicator bacteria, resulting in 12 in-
dependent variables for predicting exceedance of E. coli (air temperature—temp, insolation
on horizontal surface—horizontal_srfc, top-of-atmosphere insolation—top_atm, pres-
sure tendency on day before—press_tend_dbf, precipitation on day before—prec_dbf,
humidity—hum, humidity on day before—hum_dbf, both intestinal enterococci and E. coli
count in last sampling—IE_last and EC_last, both the mean number of intestinal entero-
cocci and the mean number of E. coli in the last season—IE_mean and EC_mean and distance
to sewage outlet—dist) and nine independent variables for intestinal enterococci (inso-
lation on horizontal surface—horizontal_srfc, top-of- atmosphere insolation—top_atm,
precipitation on day before—prec_dbf, humidity—hum, humidity on day before—hum_dbf,
both intestinal enterococci and E. coli count in last sampling—IE_last and EC_last, and
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mean number of E. coli in the last season—EC_mean). Correlation plots of the correlation of
12 features for E. coli and nine for intestinal enterococci are shown in Figures 8 and 9.
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Figure 8. Correlation plot of parameters with strongest correlation with E. coli. Description of features
is given in Table 2.
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The standard data balancing to ratio 50:50 for positive:negative samples leads to
a very small dataset in our case (about 40 samples), especially when compared to the
dimensionality of the feature space (as many as 12 features for E. coli). Therefore, under-
sampling is used to bring the dataset to a moderate 10:90 imbalance, as defined by [39].
Furthermore, the metrics of AUC and informedness are used to penalize the majority class
preference [16,40]. In addition, at the end, by knowing that dataset is still imbalanced and
that all of the models we used are sensitive to it, we adjusted the classification threshold,
which is also one of the methods to deal with imbalanced datasets [16].

Each of the models—artificial neural network (ANN), random forest (RF), and support
vector machines (SVM)—is validated. Each model is validated by varying the parameters
of the model: decay and size for ANN, mtry for RF and degree, and scale and C for SVM
as shown in Table 4.

Table 4. Tuning parameters for ANN, RF, and SVM for EC_class and IE_class.

EC_class IE_class

ANN decay 0, 0.1, 0.0001
size 1, 3, 5

RF mtry 2, 7, 12 2, 5, 9

SVM degree 1, 2, 3
scale 0.001, 0.01, 0.1
C 0.25, 0.5, 1

To decide on the best model, the AUC metric is used. For EC_class, the best ANN is
obtained for decay = 0.1 and size = 5, the best RF is obtained for mtry = 2, and the best SVM
is obtained for degree = 2, scale = 0.1, and C = 1. For IE_class, the best ANN is achieved
for decay = 0.1 and size = 5, the best RF for mtry = 2 and the best SVM for degree = 1,
scale = 0.001 and C = 0.5.

The ROC for the best models are shown in Figure 10. The ROC represents the overall
performance of each model (through different thresholds). AUC values for EC_class
prediction for ANN is 0.77, for RF is 0.75, and for SVM is 0.7. AUC values for IE_class
prediction for ANN is 0.76, for RF is 0.88, and for SVM is 0.72. Therefore, the best model
for EC_class prediction is ANN with decay = 0.1 and size = 5, while the best model for
IE_class is RF with mtry = 2. Other metrics can be found in Table 5.
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Figure 10. ROC of different classifiers (ANN, RF, and SVM) for EC_class and IE_class prediction.
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Additional feature selection was performed for the best models for each bacteria. For the
ANN model for EC_class, the less important features (according to feature importance—see
Table 6a) are discarded one by one and the results (AUC) of the ANNs are compared.
The best performance was obtained for ANN with the six most important features (inso-
lation on horizontal surface—horizontal_srfc, top-of-atmosphere insolation—top_atm,
humidity— hum, humidity on day before—hum_dbf, intestinal enterococci count in last
sampling—IE_last, distance to sewage outlet—dist). For the RF model for IE_class,
we manually selected five features by eliminating the least important features that are
correlated with other features, since RF is very sensitive to intercorrelations [28]. The RF
model with five features (humidity—hum, precipitation on day before—prec_dbf, mean
E. coli count in the last season—EC_mean, insolation on horizontal surface—horizontal_srfc,
and intestinal enterococci count in last sampling—IE _last) is compared with the model
with all features, and it performed better on the training data (see Table 6b).

Table 5. Cross validation results of several models before tuning parameters.

Metrics for Default Threshold (0.5)
Model AUC Sensitivity Specificity Informedness F-Score

EC_class
ANN * 0.770 0.267 0.964 0.231 0.333
RF ** 0.754 0.067 0.978 0.045 0.105
SVM + 0.704 0.000 0.978 −0.022 NaN +++

IE_class
ANN * 0.759 0.385 0.963 0.348 0.455
RF ** 0.875 0.077 0.982 0.059 0.125
SVM ++ 0.718 0.000 0.972 −0.028 NaN +++

* decay = 0.1, size = 5; ** mtry = 2; + degree = 2, scale = 0.1, C = 1; ++ degree = 1, scale = 0.001, C = 0.5; +++ can’t
be calculated because model classifies all samples as negatives.

Table 6. A posteriori feature selection for best classification models for each of bacteria. (a) feature
importance for best ANN for EC_class; (b) selected features for best RF for IE_class based on their
correlation with other features. In groups of highly correlated features (≥0.5), the one with the
highest correlation with IE is selected.

(a)

Feature Importance

horizontal_srfc 100.00
top_atm 95.716
hum 40.622
hum_dbf 38.468
IE_last 38.054
dist 32.206

temp 19.240
IE_mean 13.313
pres_tend_dbf 8.544
EC_last 7.422
EC_mean 3.132
prec_dbf 0.000

(b)

Feature Highly corr. with

horizontal_srfc top_atm
hum hum_dbf, temp
prec_dbf -
IE_last EC_last
EC_mean -

temp hum
hum_dbf hum
EC_last IE_last
top_atm horizontal_srfc

The default threshold for the class probability threshold is 0.5, but this threshold needs
to be adjusted to account for the imbalance in the data that still exist after under-sampling
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(as described earlier). The trained model is biased towards the negative class, which
means that the predicted probability of a positive case is underrated. Therefore, the default
threshold for classification by probability is not applicable here.

The threshold with the highest Informedness is taken for each indicator bacteria. For the
EC_class, the best threshold is 0.130 and for IE_class 0.172. The cross-validation results
for the best models can be found in Table 7.

Table 7. Cross validation results of best models (after tuning the parameters—features and
probability thresholds).

Metrics for Best Thresholds
AUC Sensitivity Specificity Informedness F-Score

ANN for EC_class 0.919 0.933 0.899 0.833 0.333
RF for IE_class 0.891 0.846 0.881 0.727 0.200

3.2. Evaluation

The selected models were tested on holdout data using adjusted thresholds.
The results of the evaluation on holdout data can be found in Tables 8 and 9.

The confusion matrix for EC_class (given in the first section of Table 8) shows that the
model correctly predicts 11 out of 13 EC_class positives. The model also correctly predicts
109 out of 126 negatives. EC_class is predicted with Informedness 71.1% and F-score 53.7%.

The confusion matrix for IE_class (in the second section of the Table 8) shows that
the model correctly predicts 1 out of 2 positives. The model also correctly predicts 127 out
of 137 negatives. The confusion matrix for the combined model (in the third section of the
Table 8) shows that the model correctly predicts 12 of 13 WQ positives and correctly predicts
100 of 126 negatives. IE _class is predicted with Informedness 92.1% and F-score 15.4%.
Combining these two models, the samples are predicted with Informedness 71.7%, F-score
47.1% and an overall Accuracy of 80.6%.

Table 8. Confusion matrices for binary classification of E. coli (EC_class), intestinal enterococci
(IE_class), and combined model (WQ).

Actual Value
Positive Negative

Predicted EC_class
positive 11 17
negative 2 109

Predicted IE_class
positive 1 10
negative 1 127

Predicted WQ
positive 12 26
negative 1 100

Table 9. Various metrics for EC_class, IE_class, and WQ prediction.

Accuracy Sensitivity Specificity Informedness F-Score

EC_class model 0.863 0.846 0.865 0.711 0.537
IE_class model 0.921 0.500 0.927 0.427 0.154
WQ model 0.806 0.923 0.794 0.717 0.471

To illustrate the importance of the adjusting probability threshold, samples from the
holdout set with default and selected thresholds are shown in Figure 11 for each bacteria.
It can be seen that the default threshold classifies all samples in the negative class, whereas
the best threshold according to Informedness seems to be a fair trade-off.
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Figure 11. Classification probabilities of samples and probabilities thresholds. Red triangles represent
the actual positive class and blue dots the actual negative class. Horizontal lines represent a default
classification threshold of 0.5 and adjusted thresholds of 0.130 for EC_class and 0.172 for IE_class.

Measures of goodness of fit are given in a variety of ways in related work, and some
of them are not even measurable for the models used in this paper (such as the measure of
explained variance). However, when we compare the results presented in this paper with
related works that are most similar to ours, we can see that the performance of our models
is much better. Although related works report high specificity: 88% and 94% for [11],
from 85% up to 95% for [12] and 98% [13], they achieved very low sensitivity: 18% and
28% for [11], from 37% up to 56% for [12] and 11.2% [13], meaning that a small amount of
poor water quality is correctly classified as poor. Informedness calculated based on the
Sensitivity and Specificity reported in related works are: 12% and 16% for [11], from 22%
up to 51% for [12] and 0.92% [13], which is much lower than the Informedness of 71.7%
obtained by our approach.

4. Conclusions

The use of data from official monitoring of coastal waters in Kaštela bay, collected
during five bathing seasons, resulted in the building of predictive models with acceptable
properties. Testing of several models showed no silver bullet model, and led to the selection
of different models for the two different indicator bacteria, the ANN (Neural network)
model for E. coli and the RF (Random forest) model for intestinal enterococci. This is likely
the result of the different fate of these indicators after entering the marine environment,
the different resistance to the same environmental factors and consequently the different
culturability. Both models showed acceptable performance characteristics when validated,
with an overall accuracy of 80.6% and an informedness of 71.7%. With the properties
achieved, the model can be successfully used as a supplement to regular monitoring. This
means that the model itself, like other models, cannot and should not be the only tool for
monitoring bathing water quality, but that classical monitoring must still be carried out.
First, because the model still needs to be filled with data to check whether the water quality
estimates are correct or whether the predictor variables have changed, the model needs to
be updated. Once built, the predictive model is an easy-to-use tool that only has to be fed
by current data of the most important environmental features (model predictors). Secondly,
the classical methods for determining the concentration of indicator bacteria in bathing
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water are still the only relevant and legally acceptable methods that provide information
on the actual state of bathing water quality. Therefore, as there is not yet a legal basis for
using the model to produce official bathing water quality assessments, the model can be
used to warn bathers of a possible deterioration in bathing water quality. It can also be
used as a tool for official laboratories involved in bathing water quality monitoring
to indicate the need for additional sampling in the period between regular sampling
when predicted bathing water quality is not satisfactory. (e.g., in case of short-term
pollution). The main problem with this modelling approach is to record a sufficient
number of cases where bathing water quality is poor (exceedances) so that the data are
more balanced, i.e., the proportion of poor samples is not too low. More exceedance
data would also result in a greater number of environmental conditions that lead to
poor bathing water quality. This is particularly true for intestinal enterococci, as due
to the inappropriate defined criteria for thresholds for two indicators in the Croatian
legislation, most exceedances are due to the increased E. coli levels. Another problem is
the relatively long period of time required to collect a sufficient number of useful data. More
frequent sampling over a larger area would be hardly feasible for official monitoring due to
the high costs, resources, and technical limitations. Since bathing sites that occasionally exhibit
‘poor’ water quality may be detected during regular monitoring, as is the case in this study,
better data could be provided if the monitoring program is improved on a spatial and temporal
basis only at such sites. This would mean sampling such areas more frequently, including in
the afternoon, and establishing additional sampling sites to better monitor the distribution of
pollution. In this way, the time taken to collect the required amount of useful data could be
significantly reduced. In addition to ’normal’ weather conditions, sampling should also be
carried out in a range of weather conditions, from tides to severe weather such as rain and wind
from the direction of the identified source of pollution. With new data, the predictive modelling
process described could be modified and new procedures and methods could be used.
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