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Abstract: Satellite precipitation products play an essential role in providing effective global or re-
gional precipitation. However, there are still many uncertainties in the performance of satellite
precipitation products, especially in extreme precipitation analysis. In this study, a Global Precip-
itation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG) late run (LR)
product was used to evaluate the rainstorms in the southern basin of China from 2015 to 2018.
Three correction methods, multiple linear regression (MLR), artificial neural network (ANN), and
geographically weighted regression (GWR), were used to get correction products to improve the
precipitation performance. This study found that IMERG LR’s ability to characterize rainstorm
events was limited, and there was a significant underestimation. The observation error and detection
ability of IMERG LR decrease gradually from the southeast coast to the northwest inland. The error
test shows that in the eastern coastal area (zone I and II), the central area (zone III), and the western
inland area (zone IV and V), the optimal correction method is MLR, ANN, and GWR, respectively.
The performance of three correction products is slightly better compared with the original product
IMERG LR. From zone I to V, correlation coefficient (CC) and root mean square error (RMSE) show
a decreasing trend. Zone II has the highest relative bias (RB), and the deviation is relatively large.
The categorical indices of inland area performed better than coastal area. The correction product’s
precipitation is slightly lower than the observed value from April to November with a mean error
of 8.03%. The correction product’s precipitation was slightly higher than the observed values in
other months, with an average error of 12.27%. The greater the observed precipitation, the higher
the uncertainty of corrected precipitation result. The coefficient of variation showed that zone II
had the highest uncertainty, and zone V had the lowest uncertainty. MLR had a high uncertainty
with an average of 9.72%. The mean coefficient of variation of ANN and GWR is 7.74% and 7.29%,
respectively. This study aims to generate a set of precipitation products with good accuracy through
the IMERG LR evaluation and correction to support regional extreme precipitation research.

Keywords: satellite precipitation product; southern basin of China; correction; IMERG; rainstorm;
uncertainty

1. Introduction

Measuring the temporal and spatial distribution of precipitation based on satellite
remote sensing is one of the most challenging scientific research goals in recent years [1,2].
Early satellite precipitation relied on visible light, infrared, and active/passive microwave
sensors on geostationary and low earth orbit satellites. The Tropical Rainfall Measuring
Mission (TRMM), launched in November 1997, carried the world’s first space-borne pre-
cipitation radar, ushering in a new era of global precipitation monitoring [3]. At present,
a series of satellite precipitation products have been released and opened to the public,
such as Precipitation Estimation from Remotely Sensed Information using Artificial Neural
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Networks (PERSIANN) [4], Climate Prediction Center Morphing Technique (CMORPH) [5],
Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) [6], TRMM
Multi-satellite Precipitation Analysis (TMPA) [7], and Global Precipitation Measurement
(GPM) [8]. These products have been widely used in hydrological simulation [9], flood
management [10], drought monitoring [11,12], and climate change analysis [13]. Some
studies have evaluated the accuracy of satellite precipitation products [14–16]. However,
further evaluation of satellite precipitation products is needed to improve the reliability in
estimating extreme precipitation.

Satellite-based precipitation estimation has become a vital data resource and has been
applied in extreme precipitation events worldwide. Tashima et al. [17] confirmed the
effectiveness of Global Satellite Mapping of Precipitation (GSMaP) products in monitoring
extreme precipitation in East Asia and Western Pacific. Kiany et al. [18] evaluated TRMM’s
ability to detect extreme precipitation in southwestern Iran from 1998 to 2016. It showed
that precipitation products could capture the temporal and spatial behavior of most extreme
precipitation indices. The evaluation of extreme precipitation in Tunisia in 2007–2009
demonstrated that satellite precipitation products need to be combined with other near-
real-time data to make a reliable estimation [19]. Lockhoff et al. [20] asserted that satellite
precipitation products could reliably reproduce extreme precipitation characteristics over
Europe. However, some studies had found that satellite precipitation products had limited
ability to characterize extreme precipitation. Palharini et al. [21] found that precipitation
products’ ability to retrieve extreme precipitation in tropical South America depends on
geographical location and large-scale rainfall conditions. Paska et al. [22] measured extreme
precipitation in Malaysia. The correlation between satellite precipitation products and
rain gauge data was usually low in heavy precipitation. Precipitation products showed
an underestimation in terms of the extreme precipitation index results. Evaluation in
the Amazon region of Brazil indicated that satellite precipitation products tended to
underestimate the month’s highest precipitation [23]. Similarly, the evaluation in the
United States suggested that precipitation products are not ideal for detecting extreme
precipitation [24]. With the increase of extreme precipitation threshold, the performance
of precipitation products tended to deteriorate. Some scholars have also used satellite
precipitation products to carry out extreme precipitation evaluation in China. Studies
showed that satellite precipitation products still have limited resolution and accuracy in
their application to extreme precipitation [25–27]. Precipitation products produced a good
estimation of extreme precipitation with 1050 yearly recurrence intervals but exhibited
consistent underestimation in these periods [28]. Moreover, there are spatial and seasonal
differences in precipitation products’ ability to detect extreme precipitation [29].

It is of great significance to improve the accuracy of satellite precipitation products by
using appropriate correction methods [30]. The mean error of the precipitation product is
closely related to the rainfall intensity of the rain gauge data and can be characterized by
polynomial fitting, thus providing useful information for correction [31]. The relationship
between precipitation products and ground observations can correct satellite precipitation
data, showing the spatial variation of precipitation [32]. Lu et al. [33] showed that the
correction product by stepwise regression model had excellent performance in Xinjiang,
China. The correction methods have been tested in French Guiana and the Mekong river
basin [34,35]. The results proved that the correction method can effectively improve the
performance of precipitation products and has the potential to solve the precipitation bias
problem. Previous studies focused on the overall evaluation of precipitation products, and
relatively few regional correction experiments have restricted the application of precipita-
tion products. The comparative studies on multi-satellite precipitation products showed
that Integrated Multi-satellite Retrievals for GPM (IMERG) has good performance in pre-
cipitation monitoring [28,36,37]. However, how IMERG performs in extreme precipitation
requires further study to evaluate and calibrate error.

This study has two main purposes. One is to evaluate the performance of IMERG
under extreme precipitation conditions. The other is to use correction methods to improve
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the precipitation product’s accuracy. The samples with daily precipitation above 50 mm in
the southern basin of China from 2015 to 2018 were selected as rainstorm events to evaluate
the performance of the IMERG and reveal its error characteristics. Three correction methods,
multiple linear regression (MLR), artificial neural network (ANN), and geographically
weighted regression (GWR), were adopted to improve the accuracy of the IMERG product
in measuring precipitation during rainstorms. Then, the precipitation results of correction
products were analyzed, along with the uncertainty associated with each correction method.
This study can refer users to decide whether and how to correct precipitation products to
better use them in specific study areas.

2. The Study Area and Datasets
2.1. The Study Area

The geographical location, elevation, and spatial distribution of rainstorm frequency
in the study area are shown in Figure 1. The study area is the southern basin of China,
including Huaihe river basin, Yangtze river basin, Southeast basin, and Pearl river basin.
The study area is located at 90◦22′–122◦40′ E, 18◦13′–37◦08′ N, with a total area of 2.72 mil-
lion km2. The south of the study area is close to a tropical climate, and the north is a
temperate climate. The mean annual precipitation in the study area ranges from 400 mm in
the western region to 1800 mm in the eastern region. The precipitation mainly concentrated
in summer (June to August) and mostly in the form of rainstorms. Moreover, the temporal
and spatial distribution of extreme precipitation in the study area is uneven. Rainstorm
events in the southeast coast have high frequency, and the frequency gradually decreases
toward the inland area (Figure 1c). The regional division of extreme precipitation and its
related statistical characteristics based on the satellite precipitation products are worthy of
in-depth analysis.
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Figure 1. (a) The location of the study area in China, (b) the study area’s DEM and basins, (c) the rainstorm frequency
distribution in the study area from 2015 to 2018.

2.2. IMERG Precipitation Product

As a new generation of satellite precipitation product, GPM IMERG’s core satellite
was launched in February 2014 and can provide global rain and snow data at an interval
of 0.5 h. GPM IMERG first used a dual-frequency precipitation radar including Ka and
Ku bands to provide physical information about cloud precipitation particles (shape,
intensity, and convective processes of raindrops). This can depict the spatial distribution
of precipitation particles more accurately. GPM IMERG data are verified by precipitation



Water 2021, 13, 231 4 of 17

inversion mechanism based on ground-based observation tests and fusion verification
oriented by hydrometeorological application [38].

GPM IMERG has three run products (early, late, and final run products). This study
uses a daily IMERG late run (IMERG LR) product (https://gpm.nasa.gov/data/directory).
IMERG LR is a quasi real time product with a release delay of 12 h and spatial resolution
of 0.1◦. Compared with early run (ER) product, IMERG LR has backward propagation,
which improves product accuracy. The final run (FR) product reveals the good qual-
ity, but the performance level of LR and FR is comparable according to the evaluation
values [37,39,40]. Moreover, IMERG LR has a better time response than FR product with
3.5 months release delay.

2.3. Rain Gauge Data

The rain gauge daily data provided by the China Meteorological Administration
(http://data.cma.cn/) were used. Rain gauge data have undergone strict quality control,
and are reliable and suitable for satellite precipitation products evaluation [41]. The rain
gauge data were screened in the following two steps. First is to remove gauges with
incomplete observation data; then to select gauges with rainstorm records. Finally, 242 rain
gauges were selected for this study. These rain gauges have passed the uniformity test and
have high accuracy and reliability [42,43]. The criterion for judging a rainstorm is to set the
precipitation threshold (50 mm/day). If the daily precipitation exceeds this value, it will be
judged as a rainstorm.

2.4. Normalized Difference Vegetation Index (NDVI)

The NDVI data were used as the input parameter of the correction methods and were
obtained from the Atmosphere Archive and Distribution System (https://ladsweb.modaps.
eosdis.nasa.gov/search/). The product has a temporal resolution of one month and a
spatial resolution of 1 km. The annual NDVI data were obtained by averaging the monthly
NDVI data.

3. Methods
3.1. Statistical and Categorical Indices

In this study, the correlation coefficient (CC), root mean square error (RMSE), and
relative bias (RB) were used to evaluate the accuracy of precipitation products. CC reflects
the linear correlation between IMERG LR and rain gauge data. The higher the value, the
higher the correlation between them. RMSE describes the difference between IMERG
LR and rain gauge data. The closer the RMSE is to 0, the more accurate the precipitation
product is. RB describes precipitation products’ systematic error, and its positive or negative
value indicates that IMERG LR overestimates or underestimates the rain gauge data. The
calculation formula of each statistical index is shown below.

CC =

n
∑

i=1
(Gi − G)(Si − S)√

n
∑

i=1
(Gi − G)

2
√

n
∑

i=1
(Si − S)2

(1)

RMSE =

√
1
n

n

∑
i=1

(Si − Gi)
2 (2)

RB =

n
∑

i=1
(Si − Gi)

n
∑

i=1
Gi

− 1 (3)

where G is the rain gauge data, and S is the satellite precipitation product. G and S denote
mean value.

https://gpm.nasa.gov/data/directory
http://data.cma.cn/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
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The probability of detection (POD), false alarm ratio (FAR), and critical success index
(CSI) were adopted to reflect the detection ability of precipitation products to the rainstorm.
POD represents the detection hit ratio of precipitation products on whether daily precipita-
tion events occur, and the value range is 0–1. The higher the value, the higher the detection
hit ratio of precipitation products. FAR reflects the probability of precipitation products
misreporting precipitation events, and the value range is 0–1. The lower the value, the
lower the degree of vacancy and false ability of precipitation products. CSI comprehen-
sively reflects the ability of precipitation products to estimate whether precipitation events
occur, and the value range is 0–1. The larger the value, the stronger the comprehensive
performance of precipitation products.

POD =
H

H + M
(4)

FAR =
F

H + F
(5)

CSI =
H

H + M + F
(6)

where H (hit) is the frequency of rainstorm events observed and detected. F (false alarm) is
the frequency of rainstorm events not observed but detected; M (miss) is the frequency of
rainstorm events observed but not detected.

3.2. Evaluation Regional Division Based on Hot Spot Clustering

The spatial clustering factor was used to identify the statistically significant clustering
zones of precipitation evaluation indices. Hot spot clustering analysis can determine the
spatial clustering of high or low value features. According to the z score, when z > 2.58, it
is regarded as the significant high value spatial clustering (hot spot). When z < −2.58, it is
regarded as the significant low value spatial clustering (cold spot). When |z| < 2.58, there
is no significant spatial clustering.

The clustering distributions of statistical and categorical indices were obtained, and
the number of hot and cold spots at each rain gauge was counted. Rain gauges with
the same clustering characteristics were identified as the same type. The spatial region
of the same gauge type was obtained by the processing of Tyson polygon. In this way,
based on the aggregation of spots, the regional division based on evaluation performance
was realized.

3.3. Precipitation Product Correction Methods

Three correction methods were used in this study, including multiple linear regression
(MLR), artificial neural network (ANN), and geographically weighted regression (GWR).
The correction methods aim to eliminate the precipitation difference (the y of Formulas (7)–
(9)) between the observed value and the precipitation product.

MLR contains trend and residual term. The difference between rain gauge data
and precipitation product was taken as a dependent variable, while longitude, latitude,
elevation, and NDVI were taken as multiple independent variables.

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 (7)

where x1–x4 are longitude, latitude, altitude, and NDVI. β0–β4 are the corresponding
parameters.

ANN is an efficient method that can handle the complicated relationship between
different variables and has a powerful nonlinear mapping capability. The ANN used in
this study is a three-layer back propagation network structure, including an input layer, a
hidden layer, and an output layer. The input layer contains four nodes, which are longitude,
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latitude, elevation, and NDVI; the output layer is precipitation data; the number of hidden
layer nodes is determined as ten by trial and error method.

y = ϕ(
2N+1

∑
i=1

ωixi + b) (8)

where x is the input layer parameter, ω is the weight of parameter, b is the bias, and N is
the number of input layer nodes.

GWR uses the idea of local regression to explore the spatial relationship between
independent and dependent variables. GWR selects test samples based on geographical
distance and assigns them different weights. GWR introduces spatial relationship weight
into the operation and establishes the regression model by estimating different spatial
position parameters.

yi = βi0(ui, vi) +
n

∑
k=1

βik(ui, vi)xik + εi (9)

where (ui, vi) is the position of grid i, βi0 (ui, vi) is the constant estimation value, βik (ui, vi)
is the parameter estimation value, which refers to NDVI and elevation. εi is the residual
estimation value.

To avoid multicollinearity and overfitting of the regression equation, the stepwise
regression method was used in MLR construction. No correlation was found between
the four parameters and IMERG LR. Before the training network, ANN preprocessed
the input and output vectors to normalize them to (−1,1), avoiding slow convergence
and long training time caused by inconsistent data units or extensive range. For all
sample data, approximately 2/3 were used as training samples and the remaining 1/3 as
validation samples.

3.4. Correction Method Verification and Uncertainty Evaluation

The mean squared error (MSE), mean absolute error (MAE), and standard deviation
(SD) were used to evaluate the correction methods. MSE is the square of the difference
between estimated and real values. The smaller MSE indicates that the correction method
has better accuracy. MAE is the average of absolute errors. MAE can reflect the actual
level of correction error. SD is the arithmetic square root of the variance. SD can reflect the
discrete degree of a data set.

Through the coefficient of variation, the precipitation evaluation uncertainty by cor-
rection products was studied. The larger the coefficient, the greater the discrete degree of
the correction product, and the higher the uncertainty.

C =

√
n
∑

i=1
(xi − x)/n

|x| × 100% (10)

where xi is the precipitation value of each correction method, and x is the mean value of all
correction methods.

4. Results
4.1. IMERG LR Performance Evaluation for Rainstorm

All daily rainstorm events recorded by rain gauges in the southern basin from 2015
to 2018 were obtained, and the scatter points corresponding to IMERG LR were plotted
(Figure 2). The fitting results showed that IMERG LR significantly underestimates rain-
storms. IMERG LR underestimated 90.72% of the rainstorm events, and only overestimated
9.28% of the rainstorm events. The density center of precipitation scatter point appeared
at (56.8, 10.6) mm, and the IMERG LR precipitation was much lower than the rain gauge
data. In Figure 2, the proportion of rainstorm events in each month is listed. Heavy rainfall
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events were relatively concentrated in summer from June to August, accounting for 58.33%
of the total.
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Figure 2. Precipitation scatter plot of rain gauge data and Integrated Multi-satellite Retrievals for
Global Precipitation Measurement (GPM) (IMERG) late run (LR).

Based on statistical and categorical indices, the performance of IMERG LR for rain-
storm was evaluated. In addition, the evaluation results of all rainfall events (>0.1 mm/day)
were obtained for comparison (Table 1). IMERG LR had a low correlation with rainstorm
(CC was 0.30), RMSE was 7.66 mm, and RB was −0.52 mm. IMERG LR’s POD decreased
from 0.73 for all rainfall to 0.20 for rainstorm. The FAR of IMERG LR in rainstorms was
0.68, and the CSI was 0.18. On the whole, IMERG LR’s evaluation indices for rainstorm are
worse than all rainfall.

Table 1. Performance comparison of IMERG LR in rainstorms and all rainfall events.

Statistical Indices Categorical Indices

CC RMSE (mm) RB (mm) POD FAR CSI

Rainstorm 0.30 7.66 −0.52 0.20 0.68 0.18
All rainfall 0.42 4.41 −0.05 0.73 0.44 0.45

The spatial distribution of IMERG LR statistical and categorical indices is shown
in Figure 3. CC had poor spatial differentiation (Figure 3a). Some rain gauges in the
northern region showed high CC values, and the rainstorm frequency in these regions was
relatively low. RMSE decreased gradually from the southeast coast to the northwest inland
(Figure 3b). The southeast coast was a subtropical monsoon climate zone, where rainstorms
frequently occur, leading to high error results. The spatial distribution of RB shows that
the IMERG LR precipitation is generally lower than the observed value in the study area
(Figure 3c). CSI performs relatively well in the southeast coastal region (Figure 3d). In the
western region, POD is low and FAR is high (Figure 3e,f). The evaluation indices performed
slightly better in the eastern region, but IMERG LR’s detection ability of rainstorms needs
to be further improved.
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4.2. Hot Spot Clustering and Regional Division

According to the evaluation indices, the spatial clustering characteristics of the results
were obtained. Among statistical indices, CC had 15 hot spots clustered in the northern
region of Yangtze river basin. Cold spots appeared in the western Yangtze river basin
and the southeast corner of Huaihe river basin. A total of 80.99% of the gauges had no
significant CC clustering. RMSE showed cold clustering in the western and northern
regions. There was a hot clustering phenomenon in the south through the transition of
non-significant gauges in the central region. RB’s clustering mainly occurred in the west
(hot spot) and south (cold spot).

The categorical indices clustering characteristics were similar in spatial distribution.
POD showed cold spots in the western region and hot spots in the eastern region. FAR
clustering distribution was the opposite, and the range of hot spots was small. The
southeast coastal area was the CSI hot clustering range, indicating that IMERG LR had
the optimal ability to detect rainstorms in this area. Correspondingly, the western inland
showed cold spots, and the central and northern regions of the study area were non-
significant clustering as shown in Figure 4.
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The spatial clustering phenomenon of the evaluation indices reflects the different
performance characteristics of IMERG LR in different zones of the study area. Based on
clustering characteristics, the regional division was considered. The evaluation perfor-
mance of IMERG LR to rainstorm will be improved effectively by exploring a unique
precipitation product correction scheme for different zones.

Therefore, the study area was divided into five zones according to the spatial clustering
characteristics of evaluation indices. The southeast coastal region contained zone I and II.
Zone III was located in the central region. North and west of the study area were Zone
IV and V, respectively. The performance of IMERG LR in zone I and II was satisfactory.
In these zones, correlations were strong (CC 0.39 and 0.37), and the categorical index CSI
showed relatively good performance (0.16 and 0.14) but had high RMSE (both 7.75 mm)
and RB (−0.78 and−0.63 mm). From zone III to zone V, the performance of CSI gradually
decreased from 0.11 to 0.03, and the correlation was relatively weakened (CC was 0.36,
0.25, and 0.11, respectively), see Figure 5.
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4.3. Correction Statistics Results in Different Zones

MLR, ANN, and GWR were used to correct the IMERG LR. Here, the three correction
methods were used in each zone to improve precipitation product performance and com-
pare the correction differences. The error results of correction methods are summarized in
Table 2. The correction errors of MLR in three zones were the smallest, which were zone
I, II, and V. ANN performed relatively better in zone III, and GWR performed relatively
better in zone IV.

Table 2. Error test of precipitation product correction method (the shadow represents the best
performing method of test index in each zone).

Zone I II III IV V

MSE (mm)
MLR 71.85 121.99 101.34 226.53 128.17
ANN 88.96 123.11 90.50 248.59 139.70
GWR 83.68 125.63 103.82 227.06 136.34

MAE (mm)
MLR 6.26 8.47 7.73 11.13 8.91
ANN 7.68 8.52 7.33 11.67 9.36
GWR 7.35 8.63 7.92 11.11 9.15

SD (mm)
MLR 8.47 11.04 10.07 15.05 11.32
ANN 9.43 11.09 9.51 15.77 11.82
GWR 9.05 11.21 10.15 15.07 11.67

It should be noted that in each zone, the errors of the three correction methods were
roughly at the same magnitude. On the whole, MLR correction had the best effect, with
mean MSE equal to 129.98 mm, MAE 8.50 mm, and SD 11.19 mm. GWR mean error results
were: MSE was 135.31 mm, MAE was 8.83 mm, and SD was 11.43 mm. The ANN mean
error results were: MSE was 138.17 mm, MAE was 8.91 mm, and SD was 11.52 mm. The
order of correction error in each zone from good to bad was: I > III > II > V > IV.

The precipitation differences between correction products and observation data were
calculated, and the difference result of the original product of IMERG LR was added for
comparison (Figure 6). It can be seen that in each zone, the precipitation difference of the
correction products was significantly improved compared with the original product. The
difference range of the original product IMERG LR in all zones was 42.48–55.09 mm. After
correction, the mean difference was reduced to −0.42–1.36 mm.
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Figure 6. The precipitation difference of original IMERG LR product (Origin) and three correction
products (multiple linear regression (MLR), artificial neural network (ANN), and geographically
weighted regression (GWR)) compared with observation data.

The mean difference in the original precipitation product from zone I to V increased
gradually. After correction, the differences in all zones were reduced to the same range.
The difference near the zero value means low correction deviation and good correction
effect. The differences of MLR (zone I) and GWR (zone IV) were relatively clustered, similar
to the error test results in Table 2.

Sample gauges were selected to verify the error of correction methods (Figure 7). The
gauge with the highest rainstorm frequency in each zone was selected. The best method
for rain gauge No.59,087 (zone I) and No.58,538 (zone II) was MLR with a difference of
0.37 and 2.26 mm, respectively. The ANN difference of rain gauge No.58,506 (zone III)
was the smallest (0.67 mm). The best method for rain gauge No.57,447 (zone IV) and
No.59,021 (zone V) was GWR with a difference of 5.11 and 4.45 mm, respectively. From a
comprehensive evaluation, MLR, ANN, and GWR is the optimal correction method for
the eastern coastal area (zone I and II), central area (zone III), and the western inland area
(zone IV and V), respectively.
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4.4. Spatio-Temporal Comparison of Correction Products

The evaluation indices results of three correction products in each zone were ana-
lyzed (Table 3). On the whole, the performance of correction products was improved
compared with that of original products. For the statistical indices of the study area,
CC was 0.30 before correction and 0.40 after correction. RMSE decreased from 7.66 to
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5.43 mm, and RB decreased from−0.52 to−0.07 mm. For categorical indices, the correction
products performed well. CSI reached 0.72, POD rose to 0.75, and FAR decreased to 0.13.
Compared with Table 1, it can be seen that the statistical indices of correction products
in rainstorm events were lower than all rainfall events, but the categorical indices had
improved significantly.

Table 3. Evaluation indices results of correction products.

Correction Methods
Statistical Indices Categorical Indices

CC RMSE RB POD FAR CSI

I
MLR 0.48 5.71 −0.04 0.77 0.16 0.71
ANN 0.46 5.75 −0.04 0.76 0.15 0.71
GWR 0.47 5.72 −0.06 0.74 0.16 0.68

II
MLR 0.53 5.78 −0.12 0.63 0.21 0.55
ANN 0.52 5.80 −0.13 0.62 0.20 0.54
GWR 0.46 5.79 −0.12 0.62 0.20 0.54

III
MLR 0.42 5.37 −0.02 0.86 0.08 0.83
ANN 0.48 5.36 −0.02 0.86 0.08 0.83
GWR 0.43 5.38 −0.03 0.84 0.11 0.80

IV
MLR 0.29 5.49 −0.03 0.80 0.09 0.77
ANN 0.29 5.50 −0.04 0.80 0.12 0.76
GWR 0.31 5.50 −0.04 0.83 0.11 0.79

V
MLR 0.16 4.76 0.00 0.84 0.08 0.81
ANN 0.16 4.78 −0.01 0.83 0.06 0.81
GWR 0.17 4.74 0.00 0.82 0.07 0.79

There were some differences in the evaluation indices under different zones. From
zone I to V, CC and RMSE showed a decreasing trend. Zone II had the highest RB, and the
deviation is relatively large. Compared with the coastal region, the inland region had better
performance in categorical indices. The best correction method for each zone was similar
to the statistical conclusions through the evaluation indices. The precipitation product
performance can be effectively improved by selecting the optimal correction method in
different zones.

The absolute precipitation differences between the original product and the correction
products based on rain gauge data were compared, and the results are displayed by gauge
interpolation (Figure 8). The difference of the original product in zone I and II was relatively
low, while zone V was relatively high. The correction product improved the performance
of zone V based on the overall reduction of the difference. The difference results were
relatively high in the southwest area of zone V due to the lack of gauges. The spatial
distribution trend of the absolute difference of correction products was consistent. The
north of zone I and the west of zone III were good correction regions.
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The observation mean value for rainstorms in each month was obtained by rain
gauge data, and the differences of precipitation products before and after correction were
compared (Figure 9). The difference between the original product and the observed value
was large, which showed that the precipitation is significantly underestimated, and the
relative error ranged from 14.24% to 68.93%. After correction, the relative error is reduced
to 2.50–19.64%. The precipitation of the correction products from April to November was
slightly lower than the observed value, with a mean error of 8.03%, which could better
characterize the rainstorm events. In other months, the precipitation of the correction
products was slightly higher than the observed values.
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5. Discussion

Previous studies have shown that IMERG products’ performance in describing pre-
cipitation is highly dependent on regional topography [44,45]. The conclusion of this
study supports that topographic conditions may affect the precipitation product. Figure 8a
showed a large error between the precipitation product and observed data in the western
high altitude region. The main reason may be that the snow covered surface and cloud ice
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mixing meteorological conditions easily lead to signal acquisition difficulty [36]. Compared
with the original product, the correction products have a significant improvement in cate-
gorical indices. This is because the product’s precipitation value can be directly improved
through regression and weighting processing to meet the indices’ statistical requirements.

The correction method of this study is based on latitude and longitude, DEM, and
NDVI data. Satellite precipitation products have regional and seasonal errors [46]. These
errors will disturb the correlation between precipitation and environmental factors, leading
to uncertainty in precipitation correction [47]. With the increase of observed precipitation,
correction products’ uncertainty presented an upward trend (Figure 10). The uncertainty
bandwidth changed steadily in the range of observed precipitation (50.20, 71.72) mm,
increasing from 12.14 to 18.44 mm. With the observed precipitation improvement, the
uncertainty error also increased from 20.23 to 68.90 mm.
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The coefficient of variation was used to reflect the uncertainty of the correction method
in processing precipitation products (Table 4). The mean coefficient in five regions ranged
from 3.87% to 12.95%. Zone II had the highest uncertainty, and zone V had the lowest
uncertainty. The mean coefficients of ANN and GWR were 7.74% and 7.29%, respectively,
showing good correction results. Comparing the correction methods, MLR had a high
uncertainty. The coefficient is 5.83–12.88%, with an average of 9.72%. The mean coefficients
of ANN and GWR are 7.74% and 7.29%, respectively, and the correction results are stable.

Table 4. The coefficient of variation of the correction methods.

Zone MLR ANN GWR

I 12.03% 4.31% 8.80%
II 12.88% 13.06% 12.92%
III 5.83% 8.52% 7.24%
IV 11.37% 9.30% 5.90%
V 6.51% 3.54% 1.57%

There are still some limitations to this study. The study period of IMERG LR was
2015–2018. In terms of the time span, the 4-year data are relatively less, which will bring
errors to the test. In the correction process, only the correlations among precipitation,
DEM, and NDVI were considered. The influence of other factors, such as humidity, wind
speed, and temperature, were ignored. Other environmental factors affecting precipitation
distribution should be considered as much as possible in the follow-up study. The spatial
variation of the rainfall field [48] was not considered in this study. The spatial inconsistency
of the rain gauge (point) and the IMERG LR (area) may cause potential uncertainty to the
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evaluation results. It is of great significance to further quantify and summarize the error
characteristics of IMERG products in a rainstorm.

6. Conclusions

This study evaluated IMERG LR precipitation product’s performance in the southern
basin of China from 2015 to 2018. Furthermore, the regional division was realized based
on the hot spot clustering of the evaluation indices. MLR, ANN, and GWR correction
methods were used to improve precipitation products’ performance and accuracy. The
main conclusions are as follows.

(1) Based on evaluation indices, IMERG LR’s performance ability of reproducing a rain-
storm is limited and needs to be further improved. IMERG LR underestimates heavy
precipitation. The correlation between IMERG LR and rain gauge data is relatively
good in the northern region with low rainstorm frequency. The observation error and
detection ability gradually decrease from the southeast coast to the northwest inland.

(2) The statistical indices performance of correction products in rainstorm events is lower
than that of all rainfall events, but categorical indices have improved significantly.
The precipitation of the correction precipitation product from April to November is
slightly lower than the observed value, with an average error of 8.03%. The correction
product’s precipitation was slightly higher than the observed values in other months,
with an average error of 12.27%.

(3) Through error tests and sample gauges analysis, the optimal correction method in the
eastern coastal area (zone I and II), the central area (zone III), and the western inland
area (zone IV and V) is MLR, ANN, and GWR, respectively. From zone I to V, CC
and RMSE show a decreasing trend. Zone II has the highest RB, and the deviation is
relatively large. The categorical indices of the inland region perform better than the
coastal region. The correction product improves the performance of rainstorms, and
the excellent correction range is in the north of zone I and the west of zone III.

(4) With the increase of observed precipitation, the correction product’s uncertainty
shows an upward trend. The coefficient of variation shows that the uncertainty range
of all regions is 3.87–12.95%. Zone II has the highest uncertainty, and zone V has the
lowest uncertainty. MLR has high uncertainty, with an average of 9.72%. The mean
coefficients of ANN and GWR were 7.74% and 7.29%, respectively.
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