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Abstract: Microplastic contamination has become a problem, as plastic production has increased
worldwide. Microplastics are plastics with particles of less than 5 mm and are absorbed through soil,
water, atmosphere, and living organisms and finally affect human health. However, information on
the distribution, toxicity, analytical methods, and removal techniques for microplastics is insufficient.
For clear microplastic analytical methods and removal technologies, this article includes the following:
(1) The distribution and contamination pathways of microplastics worldwide are reviewed. (2) The
health effects and toxicity of microplastics were researched. (3) The sampling, pretreatment, and
analytical methods of microplastics were all reviewed through various related articles. (4) The
various removal techniques of microplastics were categorized by wastewater treatment process,
physical treatment, chemical treatment, and biological treatment. This paper will be of great help to
microplastic analysis and removal techniques.

Keywords: microplastic distribution; toxicity; sampling methods; pretreatment methods; analytical
methods; removal technology

1. Introduction

In 2018, global production of plastic products reached almost 360 million metric tons/
year [1]. Out of the 2.5 billion metric tons of solid waste generated by 192 countries in 2010,
about 275 Mt consisted of plastics [2]. Once a large plastic item is thrown away in nature, it
degrades into smaller plastics and it becomes microplastics (MPs). Microplastics are small
plastic particles smaller than 5 mm, and plastic particles smaller than 1 µm are defined as
nanoplastics [3–5]. Microplastic particles exist in water, are consumed by living things, and
can affect human health. Currently, microplastics are detected in various areas, such as
streams, rivers, seas, drinking water, and even food in the world [5]. Microplastics can be
divided into two parts: primary microplastics and secondary microplastics [6]. Primary
microplastic is defined as plastic made of 5 mm or less according to a specific purpose,
and it is often included in toothpaste, face wash, cosmetics, industrial abrasives [7,8], and
3D-printer particles [9]. Secondary microplastics were large at the time of production
and manufacturing, but the large plastics were crushed or degraded through physical,
chemical, and biological weathering, due to the environment, and became microplastics,
such as straw foam and mulching vinyl [8]. As such, pollution from microplastics are
becoming a serious problem around the world, and many studies on microplastics such
as distribution, toxicity, analysis, and removal are being conducted by many researchers.
Among the 192 countries of the world, 44 countries have carried out research regarding
microplastics; the studies looking at the impacts on organisms have mostly targeted fish
(38%), whereas few studies on other highly affected organisms, such as turtles (1%), have
been conducted [10].

Commonly used plastics are PET (polyethylene terephthalate), PU (polyurethane), PS
(polystyrene), PVC (polyvinylchloride), PP (polypropylene), polyester, PE (polyethylene),
and PA (polyamide, nylon) [11]. Plastics produced in 2019 are PE 27.2%, PP 19.3%, PVC
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10%, PA 7.9%, PET 7.7%, PS 6.4%, and others 19% [1]. Among these, the main materials
of microplastics are polyethylene (PE), polypropylene (PP), and polystyrene (PS), and
polyester, acrylic [11,12]. Polyamide (PA) is often found on the beach as secondary mi-
croplastics [12]. Plastics, as well as various additives to improve the functionality in the
manufacture of plastics, should be checked. Plastic additives, including plasticizers, flame
retardants, antioxidants, acid scavengers, light and heat stabilizers, lubricants, pigments,
and antistatic agents, can play a role in improving the functional properties of plastics.
Representative plastic additives include bisphenols [13,14], phthalates [15], and adipates,
and it is necessary to confirm the toxicity and removal method of the additives.

The main sources of microplastics in flash water are from domestic and industrial
sewage, sea littering, and runoff water [16]. Household sewage contains many microplastic
particles in cosmetics and detergents used in everyday life, which is mainly introduced
into sewage when washing faces or showers [17]. Industrial sewage mainly flows from the
plastics industry, such as plastic pellets and abrasives used in the manufacture of plastic
products [18]. Many countries around the world treat their sewage using adequate water
treatment methods. The sewage treatment plant removes many microplastics contained
in sewage, but nano-sized microplastics still remains in the treated sewage water [18–22].
Therefore, microplastics are continuously discharged into the surface water by domestic,
industrial, and agricultural processes [16–18]. In Wuhan, China, the concentration of
microplastics generated from surface water samples of 20 urban lakes and urban reaches of
Hanjiang River and Yangtze River of Wuhan was found to be 1600 ± 639 to 8925 ± 1591
MPs/m3, and most of them were identified by PET and PP [23]. Microplastics exposed to
surface water are mainly introduced into the sea through rivers or streams and accumulate
downstream or in sediments, mainly showing a high degree of microplastic pollution [18,
24]. In seawater, plastic fragments are worn out by extreme environments, such as waves
and salinity, and are absorbed in various ways by marine creatures and salt, etc., and are
finally swallowed by humans [24,25].

Microplastics are an environmental problem that only occurs through humans, and
it has spread widely until it becomes a threat to our lives. Compared to the microplastic
pollution situation, the distribution, toxicity, analysis method, removal method, and policy
of microplastic are not clearly established. Accordingly, in this paper, research in various
fields related to microplastics was reviewed on distribution, toxicity, analysis method, and
removal method.

2. Microplastic Distribution

Although it is not possible to know the exact contamination aspect of microplastics,
it has been continuously reported to be detected in seawater, freshwater, food, air, and
soil. Moreover, it is predicted that the contamination of microplastics will become more
serious in the future by several studies [26–28]. A global estimate of plastic emissions from
rivers into the world’s oceans is between 1.15 and 2.41 million tons per year, and most of
the river plastic input is coming from Asian countries with rapid economic development
and poor waste management [29]. The concentration of microplastics is expected to be
250 mg/m3 in 2016 and 500 mg/m3 in 2030, and it is expected to exceed 1000 mg/m3,
which is four times the 2016 amount, by 2060 [28]. As shown in Figure 1, microplastics are
generated in various forms, such as agricultural wastewater, industrial wastewater, litter,
sewage treatment plant, household personal products, road runoff, fishing waste, and
atmosphere decomposition [24]. Figure 1 shows the source of microplastic contamination.
Microplastics in water can be caused by all areas of human life, including agriculture,
industry, landfill, household, and roads. Because microplastics are introduced through
various sources and routes, it is difficult to establish a clear removal plan. Figure 2 shows
the path of contamination and distribution of microplastics in the sea. Microplastics
in the ocean, through rivers, land, and air, are firstly absorbed by marine animals and
plants. Human digests various marine organisms (e.g., fish, salt, clam, seaweed, etc.)
containing microplastics.
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Figure 1. Microplastic-source contamination pathway.

Figure 2. Microplastic contamination distribution pathway in the sea.

Figure 3 is showing the contamination degree of plastics in the world. HYCOM is
used by predicting the size of plastics based on the world’s oceans from 2007 to 2013 as
0.33–1.00 mm, 1.01–4.75 mm, 4.76–200 mm, and >200 mm [26]. Model prediction of global
count density (pieces km−2; see color bar) for each of four size classes (0.33–1.00 mm,
1.01–4.75 mm, 4.76–200 mm, and >200 mm). [30]
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Figure 3. Model results for global count density in four size classes [30].

2.1. Microplastic Distribution in Marine

Research on microplastics started with the ocean contamination in early 2014. Bakir et al.
(2014) concluded that circulated contamination zones are easily formed in semi-enclosed seas,
such as the Mediterranean coast [31]. Since 2014, many studies on microplastics in the ocean
have confirmed the number of microplastic particles in surface water. Research on microplastic
pollution in the ocean has mainly focused on the number of microplastic particles in the
seawater layer, especially surface water. Iosobe et al. (2015) investigated the concentration of
microplastics (<5 mm in size) and mesoplastics (>5 mm in size) in the East Asian sea, around
Japan, in 2014, and the total concentration was 1,720,000 MPs/km2, which is higher than 63,320
MPs/km2 in the world oceans and 63,320 MPs/km2 in the North Pacific Ocean [32]. Ressell
and Webster (2021) collected surface-sea-level samples from the Scottish seas from 2014 to 2020,
using a neuston net, and the concentrations of microplastics ranged from 0 to 91,128 MPs/km2,
and 50 percent of the fragmented plastics were identified as microplastics. Due to the different
geographic and temporal ranges of the data, trends in microplastics could not be identified [33].
Pan et al. (2018) collected microplastics from 18 sites in the Western North Pacific Ocean from
August to September 2017 and found an average of 1 × 104 MPs/km2. The MP type was
identified as polyethylene (57.8%) > polypropylene (36.0%) > nylon (3.4%) [34]. Among these
studies, there are not enough cases in which the total amount of microplastics on the surface
of seawater is comparatively analyzed by region. In addition, among the particle sizes in
reported microplastic studies, few cases of 0.3 mm or less size have been reported. The reason
is that most of the sampling methods for the seawater layer used a mesh size of 333 µm [34,35].
Lindeque et al. (2020) hypothesized that most of the grids used for sampling in the marine
sector are 333 µm in size, which may lead to an underestimation of microplastics. They checked
the concentration of microplastics in each sample after collecting samples, using 100, 333, and
500 µm nets at the same sampling site. As a result, it was confirmed that, under the statistical
significance level, the sample using the grid mesh of 100 µm contained 2.5 and 10 times more
microplastics, respectively, than the samples using the grid mesh of 333 and 500 µm [35]. These
study results confirmed that there is a limit to the scope of microplastic collection depending
on the size of the mesh used for sampling in the microplastic pollution research.

Research on plastic trapping in marine coastal vegetation ecosystems is still in its
early stage. Jones et al. (2020) investigated the behavior of microplastics in intertidal
and subtidal zones planted with marine plants, such as seagrasses. This was known as
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the first study on Z. marina to identify microplastics [36]. Piarulli et al. (2020) confirmed
the presence of microplastics in salt marshes and 96% of the 330 samples analyzed did
not contain microplastics. Suspension and facultative deposit-feeding bivalves (0.5–3%)
contains a little compared with omnivores (95%). Although the incidence of MPs was low,
the distribution of MP size, shape, and polymer was varied [25]. More studies investigated
the presence of microplastics in vegetation, seagrasses and algae in the canopy [37,38].
Cozzolino et al. (2020) divided two intertidal zones and two subtidal zones to determine
the degree of microplastic contamination in vegetation developed in Ria Formosa lagoon
in Portugal. The microplastic abundance in the sediment was assessed. According to the
results of the investigation, the entrapment effect of microplastics in the sediment and
crown layer was higher in the subtidal zone than in the intertidal vegetation zone, and the
presence or absence of vegetation did not affect the microplastic concentration [39]. As the
current research focuses on only one type of vegetation zone, there is a limit to ascertaining
the degree of contamination of microplastics according to the vegetation characteristics.

As research on microplastics in the marine sector expands and research cases are
accumulated, additional research on the occurrence, distribution, and characteristics of mi-
croplastics considering climate and spatial differences in the marine environment is needed.

2.2. Microplastic Distribution in Land

The research on microplastic contamination on land has been relatively insufficient
compared to the ocean research. Research studies on freshwater and wastewater treatment
plants, using water as a medium among terrestrial environments, are evaluated to be
relatively numerous compared to soil and air. Tibbetts et al. (2018) conducted a microplastic
survey from a heavily urbanized catchment, the River Tame, and four of its tributaries,
which flow through the city of Birmingham, UK [40]. All sediment sampled was found
to contain microplastics with an average abundance of 165 MPs/kg [40]. Park (2020)
investigated the distribution of microplastics in surface water, fish, and sediment near a
sewage treatment plant (STP) in the Tanchon stream, one of the main tributaries flowing
into the Han River, Korea, and they found that microplastics concentrations in water varied
spatially and temporarily, ranging between 5.3 and 87.3 MPs/m3 (31.4 ± 28.5 MPs/m3).
In fish, the concentration in upstream and downstream sites was 7.3 ± 7.3 MPs/ kg and
12.4 ± 17.9 MPs/kg. In sediment, microplastic concentration in upstream and downstream
sites was 493.1 ± 136.0 MPs/kg and 380.0 ± 144.2 MPs/kg [41]. Kosuth et al. (2018)
tested the presence of anthropogenic particles in 159 samples of globally sourced tap water,
12 brands of Laurentian Great Lakes beer, and 12 brands of commercial sea salt. A total
of 81% were found to contain anthropogenic particles in the tap water. They indicated
that the average person ingests over 5800 particles of synthetic debris from these three
sources annually, with the largest contribution coming from tap water (88%) [42]. Mason
et al. (2018) investigated eleven globally sourced brands of bottled water, purchased in 19
locations in nine different countries, and found that 93% of them contained microplastic
synthetic polymer particles among the 259 total bottles [43].

Recent studies have highlighted the discussion that freshwater serves as a major route
and source of microplastics between land and ocean [44–46]. Freshwater serves as a major
route and source of microplastics transport between land and ocean. Ockelford et al. (2020)
pointed out that up to 80% of plastic in the oceans comes from river networks, especially
during periods of flooding [44]. Galloway et al. (2017) found that most of microplastics are
accumulated in the ocean, and that land is one of the primary sources of microplastics in the
ocean [45]. Therefore, microplastic pollution by freshwater is highly dependent on human
activity, and factors such as population density and industrialization in the river area can
be a major factor affecting marine microplastic pollution [46]. Newly noteworthy research
resulted in terrestrial freshwater research that rainfall, such as river overflow or heavy
rains due to flooding, affected the movement of microplastics on land [47]. Lebreton et al.
(2017) observed that between 1.15 million and 2.41 million tons of plastic waste currently
enters the ocean every year from rivers, with over 74% of emissions occurring between
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May and October [29]. Hitchcock (2020) emphasized the effect of storms on microplastic
pollution in aquatic ecosystems. He measured the abundance of microplastics during the
storm and found that the abundance of microplastics was more than 40 times higher during
the storm than before the storm. The maximum microplastic abundance in this study was
about 17,833 particles/m3 during the peak of the storm. During the two days of heavy rain,
the concentration of microplastics increases from 400 particles/m3 before the storm to a
maximum of 17,383 particles/m3. The study results may be influenced by microplastics
present in the atmosphere, or it may be influenced by the concentration of microplastics in
the ocean at the point of occurrence of heavy rain clouds [48]. However, it is difficult to
estimate the specific route and source based only on the research. Accordingly, freshwater
is more accessible to humans than the ocean, so if it is adjacent to an industrialized or
urbanized area, a higher degree of microplastic pollution than the ocean might appear.

The migration of microplastics through the soil has been attributed to the recycling
of sewage sludge [49], the use of plastic mulching vinyl [50], the use of organic fertiliz-
ers [51], and land application from wastewater treatment plant discharges [41], and other
irrigation methods using contaminated river water [52,53] have contributed to the trans-
fer and accumulation of microplastics in agricultural and natural soils. Studies on land
contamination of microplastics include a study on open land in an industrial area [54], a
study on the concentration of microplastics in soil samples in an open land of flood area
in Switzerland [55], and a study on mixed agricultural land [56]. Microplastics, which are
confirmed at a high rate, are found more in sludge than in treated wastewater, so reuse of
sludge can serve as a source of microplastics in soil. Corradini et al. (2019) confirmed the
presence of microplastics in land-use areas which are closely related to human activities. In
relation to agricultural soil, research continues to be published that soil is a major storage
area for microplastics due to the use of fertilizers recycled from wastewater treatment plant
sludge [56]. Regarding the distribution of microplastics in soil, Dioses-Salinas et al. (2020)
explained similarities in the morphological type and size of the microplastics in terms of
the product purpose. They considered that the characteristics of the source of microplastics,
the topography of the surrounding area, hydrological properties, the presence of currents,
and the extraction and identification methods used in the survey analysis could affect the
difference in microplastic concentrations in individual surveys [52]. Sediment is a particle
accumulated in the environment by a medium, and it is difficult to explain it independently
as soil [57]. In this regard, sediment should be considered as the main environment in the
soil sector, considering the characteristics of the medium of solid particles [57]. Harris (2020)
also argues that plastic particles are a solid and transportable material, so it is desirable
to look at them as one of the sediments physically [57]. To summarize the above content,
microplastic research is being actively conducted in the soil field, especially on agricultural
land. Since sludge deposited with microplastics in wastewater treatment facilities can
diffuse into the soil, it is necessary to check the use of sludge recycling fertilizers used in
agricultural land.

2.3. Microplastic Distribution in Air

As freshwater is considered to be a major part of the migration of microplastics to
the ocean, studies on the degree of microplastic pollution in the air field are insufficient
compared to the water and sediment fields. However, light microplastics can easily be
transported through the air to other environments on land and in the ocean. Yukioka et al.
(2020) investigated the abundance of microplastics in road dust in three cities to identify the
occurrence and characteristics of microplastics in surface road dust in Kusatsu City, Japan;
Danang City, Vietnam; and Kathmandu City, Nepal [58]. The abundance of microplastics
among road dust in the three cities surveyed was 0.10 to 39.6 MPs/m2, and the color, shape,
and polymer type of microplastics were all different by region. The proportion of rubber-
like microplastics was higher in the dust samples taken from the road than in the samples
extracted from the dust present in the general environment of the surveyed areas [58]. It
can be inferred that vehicle tires, hoses, shoes, and electrical insulation may be potential
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microplastic sources of road dust [59]. These findings are also consistent with the findings
of Vogelsang et al. (2018), who estimated that the main source of microplastics from road
dust would include the surface wear of automobile tires and paint for pavement road
markings [60]. However, detailed information to explain the occurrence and distribution
of microplastics in road dust in this study was lacking, and it was difficult to specify the
source of microplastics in road dust. In order to explain the occurrence of microplastics
distributed in the air and to estimate the distribution and pollution level of microplastics by
region or environmental characteristics, more research investigations should be conducted.
In the study of Liu et al. (2019), the condition of microplastics among indoor and outdoor
dust in 39 cities in China was investigated and the daily human exposure due to indoor
dust intake was estimated. They determined that the indoor dust concentration was
1550 to 120,000 mg/kg, the outdoor dust concentration was 212 to 9020 mg/kg, and the
daily human exposure by indoor dust intake was 6480 ng/kg-bw/day, estimated to be
17,300 ng/kg-bw/day of PET MPs in children [61]. To summarize, it is only possible to
confirm that air is one of the pathways contributing to the movement and diffusion of
microplastics. Accordingly, more research should be conducted in order to identify the
clear source of origin, migration route, spatial distribution characteristics, and toxicity to
the human body.

Microplastic contamination is being studied in all areas of the environment as it
includes most parts, such as water, soil, and air. Eriksen et al. (2018) provided sources and
potential mitigation measures, as shown in Table 1 [62].

Table 1. Sources, measurements, and strategies for upstream mitigation of microplastics [62].

Category Source Potential Mitigation

Production
Microplastics in additives Removing them from products.

Replace with benign alternatives

Mismanaged preproduction pellets Regulate pellet handling. Operation clean
sweep

Commerce

Industrial abrasives Improve containment and recovery and
require alternatives

Laundromat exhaust Improved filtration

Agriculture-degraded film, pots, and
pipes Improve recovery, biodegradable plastics

Consumer

Tire dust Technological advances, road surface

Littering of small plastic items (cigarette
filters, torn corners of packaging, small

film wrappers, etc.)

Enforcement of fines for littering,
Consumer education, EPR on design

Domestic laundry. Wastewater effluent
Wash with top-load machines,

wastewater containment, single-filter
woven textiles, textile coatings

Waste management

Fragmentation by vehicles driving over
unrecovered waste Improved waste management

UV and chemically degraded terrestrial
plastic waste Improved waste management

Sewage effluent (synthetic fibers) Laundry filtration, textile industry
innovation

Combined sewage overflow (large items) Infrastructure improvement

Mechanical shredding of roadside waste
during regular cutting of vegetation

(mostly grass)

Better legislation and law enforcement;
valorization of waste products
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3. Microplastic Toxicity

Microplastics are themselves a problem, but organic contaminants adsorbed on mi-
croplastics can also be a problem [23]. The recent research on microplastic toxicity has
begun considering the mixed toxicity with other substances. Zhou et al. (2020) studied that
microplastics and pharmaceutical and personal care products (PPCPs) could be toxic to
organisms when they were exposed in a mixed form [63]. Microplastics could play a role of
carrier to mediate PPCPs. Weber et al. (2021), mixed toxicity experiments of microplastics
and copper were performed on Lymnaea stagnalis (water snails) and showed no change in
toxicity [64]. Gao et al. (2019) checked the capability and characteristics of heavy metals on
microplastics in marine environment and found that polyvinyl chloride, polypropylene,
polyethylene, polyamides and polyformaldehyde could adsorb lead, copper and cadmium
and the heavy metals showed higher absorbance on PVC and PP particles compared with
PA, PE and POM [65]. Xu et al. (2021) performed a mixed toxicity test with zebrafish (Danio
rerio) and microplastics, although they did not find any lethal effect, but it was reported
that the mixed exposure was correlated with the concentration of microplastics in survival,
body length, and heart rate [66]. This may be supported by a study by Lu et al. (2018), who
reported that microplastics increase cadmium accumulation in the liver, intestine, and gills
of zebrafish and cause oxidative damage and inflammation [67]. Yang et al. (2020) showed
that Chlorella pyrenoidosa exhibits antagonism when nonylphenol and microplastics are
mixed [68]. Although the results of mixed toxicity are diverse, it is worth that the smaller-
size plastics could aggravate with prolonged exposure time on algal growth. Stock et al.
(2019) performed in vivo experiments in mice and in vitro experiments, using human cells.
An oxidative stress response was observed in male mice, suggesting an effect on intestinal
immune cells. However, no histological lesions were observed. Experiments using cells con-
firmed that fine particles can be absorbed into cells. However, the study concluded that oral
exposure to microplastics did not cause serious health effects in mammals [69]. Wang et al.
(2020) also investigated the effect of microplastics, using human Caco-2 cells, and reported
that nanoscale microplastics could increase cytotoxicity [70]. Pop et al. (2021) concluded
that bisphenol A (BPA) had a direct or indirect effect on chlorophyll in water microorgan-
isms, and it was confirmed that it was a problem for cell-membrane division, integrity,
and survival [14]. Bhatnagar and Anastopoulos (2016) reported that BPA was used as an
endocrine disruptor as a major raw material in cosmetics and was found in surface water,
groundwater, wastewater, and landfill runoff [15]. Wang and Qian (2021) confirmed that
phthalates negatively affect the endocrine system and various organ functions, especially
the reproductive organs, such as pregnancy, child growth, and child development [71].
Since there are few experimental studies on microplastic metabolism in the human body, it
is judged that caution is needed in the interpretation of the results. In addition, studies
related to the toxic effects of microplastics, using organisms and cell lines, are being actively
conducted, and many research papers on toxicity have been published recently.

Recently, several studies have been conducted to evaluate the risk of microplastics in
ecosystem. Adam et al. (2019) calculated the predicted-no-effect concentration (PNEC) as
the fifth percentile of the probabilistic species sensitivity distribution, based on 53 values
from 14 freshwater species and found that ecological risks cannot be entirely excluded in
Asia, where 0.4% of the RCR values were above 1 [72]. Besseling et al. (2019), preliminary
sensitivities for each species of marine water, estuary water, and freshwater were derived
and risk assessment was performed. In this study, 168 toxicity data from a total of 66
studies were reviewed, and the HC5(Hazardous Concentration for 5% of the species) value
was determined to be 2.0 ng/L. Based on the species sensitivity distribution, it was found
that there is a potential for harm to sensitive species in some hotspot areas [73].

Xu et al. (2018) performed an initial exposure assessment to surface water in the
estuary of the Changjiang River in China and the nearby East China Sea. In this study,
microplastic sampling was performed at 29 points, and the shape, size, color, and type of
microplastics were measured [74]. In addition, they established the risk level criteria for
microplastic pollution, using PLI (Pollution Load Index) shown in Table 2.
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Table 2. Risk-level criteria for microplastic pollution [74].

Value of polymer index <10 10–100 100–1000 >1000

Value of pollution load index <10 10–20 20–30 >30

Risk category I II III IV

Although risk assessments for microplastics are continuously being conducted on
humans and ecology, it is considered that more research is needed for a standard of
concentration, and accuracy in microplastic risk.

4. Microplastic Analysis

Scientific methods to quantify and differentiate microplastics are needed to more
systematically understand the impact of microplastics on the environment [75]. The
measurement and analysis technology for microplastics has not yet been established, and
the currently used analysis technologies have limitations in terms of detection limit and
speed [76]. Accordingly, many researchers are actively working on developing more
accurate microplastic analysis [75]. The analysis process of water microplastics can be
roughly categorized into sampling, pretreatment, and analysis. Figure 4 is the procedure
for sampling and analyzing microplastics.

Figure 4. Microplastic analysis steps in water and sediment.

4.1. Sampling

There are various types of microplastic sampling methods, and they are applied
differently, depending on water (freshwater and seawater), sediment, soil, cosmetics,
and living organisms. However, this paper deals with the most widely used water and
sediment sampling.
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4.1.1. Water Sampling

Sampling of microplastics in water is highly dependent on the density, shape, prop-
erties, water flow, and depth of the microplastics [77]. In particular, the floating state of
plastics depends on the salinity density according to the location and depth of sampling,
so it is important to understand the density according to the salinity before collection.
For microplastic sampling in water, net sampling and bulk sampling are widely used.
Nets used for the sampling are manta trawl, neuston net, bongo net, and microplastic
traps [77,78]. In bulk sampling, a specific volume is sampled using a water collection
container [78]. Figure 5 shows the types of nets for a net sampling.

Figure 5. Types of microplastic sampling device for water.

A net sampling method provides the pros of a large area sampling and large volume
sampling by a boat [79,80]. At this time, a flow meter should be attached to the net so
that the amount of water can be clearly expressed in m3. However, cons are the size of
collected microplastics that limited depending on the size of the mesh [81]. The mesh of
manta trawl is generally 330 µm mesh, so it is impossible to collect fine plastics smaller
than this [78]. Using a nylon net (100 µm), more microplastics can be collected, but if
the size of the mesh is less than 100 µm, it can be quickly clogged by plankton, so it is
important to collect it at a low speed to avoid from fast clogging [80]. Vermaire et al.
(2017) confirmed the difference between 0.1 MPs/L by nylon net and 0.00135 MPs/L by
manta net, in which nylon nets (100 µm) collected microplastics almost 100 times higher
than manta nets (330 µm) [82]. Nevertheless, manta net, neuton net, and bongo net mesh
sizes (330~350 µm) are widely used, because they can collect a large volume of water. If
a plankton net with a small mesh is used, a higher concentration of microplastic can be
collected than other nets, but sampling is possible only within 1 min, ensuring a low flow
rate [83]. A bulk sampling or grab sampling is collected as much as a fixed volume, and the
sampling range is narrower than the net sampling. As an alternative technology, SubCtech
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developed a microplastic sampler based on a pump on a ship. It provides sampling at
high vessel speed and instantaneous size separation, using low power water pump [84].
These represents that the measured amount of microplastics could vary depending on the
sampling methods [77]. To summarize the above, net sampling is mainly used to collect the
amount of microplastics in a large area, and a net of 100–350 µm is used depending on the
size of the microplastics. When collecting microplastics in a limited space or in a narrow
area, grab sampling or bulk sampling is recommended, and a large number of samples is
recommended.

4.1.2. Sediment Sampling

The distribution of microplastics in the sediment is uneven and can vary greatly
depending on the collection point, number of collections, and depth of extraction [85]. For
example, when sediment is collected from a tidal line with high microplastic accumulation,
a high concentration of microplastic can be observed [86]. When the depth of sampling
is low, the concentration of microplastics can be high, and when the depth of the sample
is 15 cm or more (subsoil), it can show low concentration [87]. Accordingly, the standard
method used for soil collection is recommended for the sampling method. Soil sampling
is limited to the topsoil layer (0~15 cm), and in general, 5 to 10 samples are collected in
a zigzag pattern, or 1 representative point of collection and 4 points are selected, and a
total of five samples are mixed and tested [88]. Sediment sampling equipment is a general
shovel, grab sampler, sediment core sampler, and auger sampler, as shown in Figure 6.

Figure 6. Types of microplastic sampling device for sediment.

In addition, the weight g or volume L of the sample has a great influence on the
representativeness of the sample, so 300–500 g is recommended, as with the soil sampling
method [89]. The samples collected in this way are sealed in glass bottles of 300 g or more,
tested in a refrigerated state at 0 to 4 degrees, and transported to the laboratory [89]. The
sample transported to the laboratory is dried at 40 ◦C for 72 h to correct the moisture
content and the moisture content is checked. For soil samples, Tomas et al. suggested
sieving to 1, 2, and 5 mm in compliance with standard mesh sizes of commercially available
test sieves [90]. Standard sieve sizes vary from 37.5 to 0.075 mm, so 0.5 or 0.15 mm sieve is
recommended to collect smaller microplastics.

4.2. Pretreatment

The collected samples contain microplastic particles and various other particulate
materials, such as sand, clay, and microorganisms. These samples with other pollutants
rather than plastics require pretreatment. The method of pretreatment is largely divided
into two parts as density separation and oxidation. The density separation use NaCl
or other chemicals to separate microplastics from other materials. The oxidation uses
H2O2 or other chemicals to remove natural organic matter [91]. The density separation
and oxidation can be performed first or later depending on the type of samples and
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degree of contamination. For high contaminated microplastic samples, a pretreatment
process is required to prevent interference with the measurement of inorganic particles
before instrument analysis [92]. Microplastics and inorganic particles are very small in
size and are difficult to remove with the naked eye, so separation is mainly used using a
difference in density [92]. Many chemicals, such as NaCl, NaBr, NaI, CaCl2, ZnCl2, and
Na6[H2W12O40], have been used for the density difference separation of microplastics.
The solution concentration of the density difference for the separation of various plastics
is NaCl solution with a density of 1.2 kg/L, sodium polytungstate with a density of 1.4–
1.8 kg/L, CaCl2 with a density of 1.3–1.5 kg/L, NaI with a density of 1.6–1.8 kg/L, ZnCl2
with a density of 1.5–1.7 kg/L, ZnBr2 with a density of 1.7 kg/L [92–94]. Separation
by using the difference in density has a problem, in that the recovery rate is as low as
40% when the particle size of the microplastic is less than 1 mm [95]. Recently, with the
development of a method to increase the microplastic recovery rate, even small plastic
particles can be recovered at the level of 96–99% [92,96]. Density difference separation takes
a long time, such as treatment time (2–5 h) and settling time (24–72 h), so some studies are
being conducted to save time, such as centrifugation and air bubbling [94,97]. However, a
standardized recovery method for microplastic is not established, and so it is necessary to
develop a standardized method for microplastic density separation.

In order to remove natural organic matter (NOM) on the surface of microplastics after
separating plastics from inorganic particles, 30% hydrogen peroxide, Fenton oxidation,
acid decomposition, base decomposition, and enzyme decomposition are used alone or
in combination [91,95]. Hydrogen peroxide is excellent in removing organic matter, but it
is not suitable for the pretreatment of plastics made of polyethylene and polypropylene;
mixed hydrogen peroxide, sulfuric acid, or hydrochloric acid are often used [90,92,95].
The H2O2 oxidation results corroborated the findings from previous studies, in that there
was polymer degradation despite the effective removal of organic matter from the samples
(sludge, 80–86%; soil, 96–108%) [91]. When using acids, low pH can lead to microplastic
damage [95]. NaOH alkaline digestion resulted in significant degradation of PET and PC
particles but removed 61–67% of the organic matter from the sludge samples and 64–68%
from the soil samples. KOH alkaline digestion had minimal impact on the plastic particles;
however, it only removed 57% of the organic matter from the sludge samples and 35%
from the soil samples [95]. Another method for decomposing organic matter is using
enzymes. Cloe M. et al. (2014) used enzymatic digestion techniques, which removed >97%
of plankton in seawater, without any damage to the microplastic [98]. However, the method
using the enzymatic digestion techniques requires a pretreatment time of about 6 days, and
oxidation of NOM removal of microplastics may take 24 h–30 days, depending on the type
of sample. Accordingly, it is necessary to standardize a method that can minimize plastic
damage and reduce time during pretreatment. Figure 7 shows a simple pretreatment step
before analysis.

4.3. Analysis Method

Among the microplastics analysis, the simplest method is to determine the number
of microplastics by staining them with 10 ug/mL Nile Red reagent in 10% dimethyl sul-
foxide, with a 10 min incubation time and using a counting program [88]. However, it
is not easy to consistently dye microplastics of various properties, it is difficult to iden-
tify the types of microplastics, and the pretreated samples may contain substances other
than microplastics, so the accuracy is low [99]. Kang et al. (2020) compared the Nile
Red method to FTIR, with an accuracy of 78% [99]. Shim et al. (2016) found that the
recovery rate of polyethylene (100–300 µm) spiked to pretreated natural sand was 98%
in the NR stating method, which was not significantly different with Fourier-transform
infrared spectroscopy (FTIR) identification [100]. The NR staining method was suitable for
discriminating fragmented polypropylene particles from large numbers of sand particles
in laboratory experiment [100]. Another easy method is to find the number of moles of
solute in a sample by using Beer’s law based on the UV–Vis measurement result [101].
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This method is capable of quantitative analysis of microplastics to some extent, but quali-
tative analysis is not possible. In addition, if the microplastic sinks to the floor or jumps
on the surface, it can cause various errors. Accordingly, the types of methods that are
currently widely used can be broadly divided into two types, namely non-destructive
methods and destructive methods [85]. Non-destructive analysis includes microscopy,
microscopy with spectroscopy, microscopy with FTIR, and microscopy with Raman spec-
troscopy [102–105]. Destructive analysis includes liquid chromatography with mass spec-
trometry (LC/MS/UV) [106,107], gas chromatography connected with mass spectrometry
(GC/MS), subsuming pyrolysis/gas chromatography/mass spectrometry (Pyr/GC/MS),
and thermal desorption gas chromatography (TD/GC/MS) [108–110]. Among them, the
most commonly used methods are a microscopy with FTIR, Raman, and Pyr/GC/MS.
The analysis of microplastics is not clearly defined, so many methods are still being used
and studied. Tables 3 and 4 review the currently used analysis methods. Recently, for
rapid analysis of microplastic, a charge-coupled device (CCD) camera, photodiode [111],
dynamic light scattering (DLS) [112], nanoparticle tracking analysis (NTA) [113], fluores-
cence spectroscopy [114], and atomic force microscopy (AFM) [115] are often used with
FTIR, Raman, Pyr/GC/MS, and LC/MS. Asamoah et al. (2019) used photodiode and
CCD to measure PET and LDPE among microplastics to determine the type, size, and
non-planarity [111]. According to the analysis of microplastic studies, FTIR-microscope
and Pyr or TD/GC/MS are the most-used analysis methods. LC/MS/UV and the Nile
Red method are often used. The unit used in the result by FTIR-microscope and the Nile
Red method is expressed as the number of MP/L or m3, and the unit used in the result by
GC/MS, LC/MS is expressed as weight (ng, g)/L or m3.

Figure 7. Simple pretreatment steps.
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Table 3. Non-destructive analytical method for microplastic analysis.

Methods for Microplastics Analytical Method Type of Source Pretreatment Particle Size Types of Polymer Identification References

Non-Destructive method

FTIR Wastewater in Derby, UK
Density separation,

oxidation (30% H2O2) for 7
days

>5 mm PE, PP, PVC, PS, nylon-6
Reproducible identification rate:

98.33%
50 MPs/10 L

[116]

ATR (Attenuated Total
Reflection)-FTIR

Agricultural soil in Middle
Franconia, Germany

Density separation
oxidation (30% H2O2) 1 to 5 mm PE, PS, PVC, PET, PMMA 0.34 ± 0.36 MPs/kg dry soil [117]

µFTIR Sediment of the lagoon in
Italy Density separation - - Up to 2175 MP/kg [104]

µFTIR Air in Denmark Sonicate, dry 11 µm PE 9.3 ± 5.8 MPs/m3 [104]

FTIR

Sediment,
Snow,

Ice core in the lake in
Finland

Filtration, density
separation >1.2 µm PA, PE, PP, cellulose, wool 395.5 ± 90.7 MPs/kg, 117.1 ± 18.4

MPs/L, 7.8 ± 1.2 MPs/L [118]

Synchrotron-based FTIR Beach Sediment in Taiwan Density separation ≥1 mm PE, PP 4–532 MPs/0.0125 m3 [119]

FTIR 25 Beach Sediments in
India Sieving, density separation <5 mm PE, PP, PS 178 ± 261 mg/m2 (low tide)

1323 ± 1228 mg/m2 [120]

FTIR 79 fishes in India Density seperation,
oxidation (30% H2O2) - - 10.1% with 79 fishes [120]

FTIR Treated wastewater,
Sediment in Germany

Density separation,
sieving, filtratrion ≤500 µm PE, PP, PET, PS, PVC, PC,

PUR, PA

39–37,223 MPs/m3 (wastewater)
8–20 MPs/m3 (surface water)
143–1151 MPs/kg (sediment)

[109]

Raman Standards from
Sigma-Aldrich -

74 µm PE
37–74 µm PS
27–45 µm PE

PE, PS-DVB <1 µm visible [105]

Raman Air in London, UK Density separation, ≥2 µm PE, PET, PP PE:2467.9 MPs/m3, PP:22.4
MPs/m3, PET:11.2 MPs/m3 [121]

Raman Sea snow in CT, USA Density separation, 15%
H2O2

63–600 µm PP, PET 59 MPs/4 L [122]
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Table 4. Destructive analytical method for microplastic analysis.

Methods for
Microplastics Analytical Method Type of Source Pretreatment Particle Size Types of Polymer Identification References

Non-destructive
method

Pyr/GC/MS Wastewater in Germany Filtration Filter
(100 µm, 50 µm, 10 µm) PE, PS PE: -

PS: 0.072 mg/m3 [123]

Pyr/GC/MS Treated wastewater,
Sediment in Germany

Density separation,
Sieving, Filtration ≤500 µm, PE, PP, PET, PS, PVC,

PC, PUR, PA

6–2525 µg/m3

(wastewater)
4.2–5.5 µg/m3 (surface

water)
8–144 µg/kg (sediment)

[109]

TD or Pyr/GC/MS
Standards from BS

Partikel GmbH,
Sigma-Aldrich

Density separation PS: 78 nm, 41 µm,
PMMA, PEL: 48 µm PS, PE, PMMA

Sorption of
phenanthrene

(PMMA << PS 40 µm <
41 µm < PE < PS 78 nm),
α-cypermethrin (PS 41
µm < PS 40 µm < PE
<PMMA < PS 78 nm)

[110]

Pyr/GC/MS Lake water in Western
Lake Superior, Canada Density separation <5 mm PP, PS, PVC, PET

Recovery rate: mean
77%

PVC (1.38–1.41 g/cm3)
PET (1.38–1.41 g/cm3)
PP (0.85–0.92 g/cm3)

[124]

Pyr/GC/MS Fish in the Texas Gulf
Coast in US Oxidation, Filtration 43 particles PVC, PET, silicone,

nylon, epoxy

PVC, PET 44.1%,
nylon 9.3%, silicone

2.3%, epoxy 2.3%
42% samples are not

classified

[125]

LC/UV Soil, dust, sewage water
in Germany

KOH (1 g/100 mL) in
1-pentanol solution - PET

3.85–3.99 mg/kg (soil)
12,500–57,000 mg/kg

(indoor dust)
1430 mg/kg (sewage

water)

[106]

LC–MS/MS Sludge, sediments, dust,
calm, salt in China

KOH in 1-pentanol
solution - PC, PET

Indoor dust: 248 mg/kg
(PC),

430 mg/kg (PET)
Calm:63.7 mg/kg (PC),

127 mg/kg (PET)

[107]

LC–MS/MS Indoor dust from 12
countries

KOH in 1-pentanol
solution 150 µm PC, PET PET: 38–120,000 µg/g

PC: <0.11–1700 µg/g [126]
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4.3.1. FTIR Spectroscopy

FTIR spectroscopy is a non-destructive testing method that analyzes a polar functional
group such as a carbonyl group by using the degree of scattering of a substance, using
infrared rays of a specific wavelength [127,128]. Previously, it was difficult to analyze
microplastics under 500 µm and contaminated plastics with FTIR spectroscopy, but recently,
microplastics as small as 10 to 5 µm can be analyzed by using a new micro(µ)-FTIR
microscopy [104]. FTIR spectroscopy can quickly measure all the frequencies of the infrared
source at the same time through pretreated filter paper [117]. However, this method still
takes a long time to count small size plastics with irregular shapes and is difficult to
apply to samples less than 20 µm [116,117]. Although the condition setting of the FTIR
spectroscopy differs depending on the analytical device and microplastic analysis items,
the general settings are shown in Table 5.

Table 5. FTIR setting condition for microplastic analysis.

Methods for
Microplastics Pretreatment Sample

Preparation Settings Result References

FTIR

Sieving and
flushing with

ethanol,
Freeze and oxidize
with H2O2 or other
chemicals, Density

separation,
Sonification

>80 µm use
infrared reflective

glass slide,
<80 µm use CaF2

infrared
transparent

window and dried

Focal plane array
size: 128 × 128
mm, Objective:

15×,
IR Pixel size: 5.5
µm, Number of

scans per tile: 30,
Number of mosaic

tiles: 16 × 16,
Total measurement
area: 9.8 × 9.8 mm,
Spectral resolution

8 cm−1,
Spectral range:
3850–850 cm−1,
Total scanning

time: 3 h,
Total number of

spectra: 4,200,000

Conform both by
mass and by

particle count.
Use standards to
find recovery rate

[116,129–131]

4.3.2. Raman Spectroscopy Method

Raman spectroscopy is a method to determine the presence and type of plastic by
scattering light generated when the molecules of microplastic particles are excited in
vibrational, rotational, and other states [132]. Micro-Raman spectroscopy can analyze
microplastics with a large area and high resolution [133], and it offers high selectivity
and reproducibility and requires low sample amounts with a minimal sample preparation
and shot data collection time [132,133]. This method is effective, but when the sample is
contaminated by organic matter, it acts as an interfering factor for fluorescent materials,
so it must be completely removed during pretreatment [96]. Raman spectroscopy is often
used with FTIR spectroscopy, because it is difficult to measure a sample of 1 to 50 µm in
FTIR. Raman spectroscopy is often used to identify below 10 µm and is capable of resolving
particles down to 1 µm or less [132]. Primpke et al. (2020) measured seawater by using
FTIR and Raman spectroscopy, and Raman confirmed the number of microplastics by about
23% higher than that of FTIR, and, in particular, it showed a high microplastic discovery
rate at ≤500 µm [109]. General Raman spectroscopy settings are offered in Table 6.
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Table 6. Raman setting condition for microplastic analysis.

Methods for
Microplastics Pretreatment Sample

Preparation Settings Result References

Raman

Sieving and
flushing with

ethanol
Freeze and oxidize

with H2O2,
Density separation
with NaCl, ZnCl2,
NaI, salt removal,

sonification,

Calcium fluoride
slide, samples on

disk window
placed in a
desiccator

Slit: 50 µm
Grating blazed:

700 nm with 0.61
nm spectral
resolution.

Recording spectra:
200–4000 rel./cm
(polymer spectral
region:2800–3600

rel./cm)
Signal to noise

ratio: 300:1
Readout rate: 1.8

ms/scan
Wavelength: 785

nm, 532 nm

Conform both by
mass and by

particle count.
Use standards to
find recovery rate

[102,103,105,121,
132]

Currently, a Laser Direct Infrared (LDIR) chemical imaging system [134] has been
developed that improves the analysis time and resolution, which are the disadvantages of
FTIR and Raman spectroscopy, and improves the analysis speed.

4.3.3. GC/MS Method

A GC/MS method is a destructive method to determine sample of microplastics by
heat-treating the sample and analyzing the gas [104]. There are two types of GC/MS
analysis of microplastics: Pyr/GC/MS and TD/GC/MS. In both cases, the amount of
microplastics is analyzed by the number of ions released through pyrolysis or thermal
desorption [110]. Advantages of GC/MS over FTIR and Raman spectroscopy can analyze
both qualitative and quantitative analysis of small microplastics size (<10 µg) with a small
sample volume of microplastics, because of its high sensitivity [135]. However, GC/MS
is destructive, resulting in the total loss of the particle and subsequently eliminating
further particle analysis [125]. Plus, GC/MS allows the analysis of a whole MP particle,
in contrast with Raman and FTIR (in reflection mode), which only analyze the surface of
the MP particle, being sensitive to interference caused by additives such as pigments [124,
136]. Table 7 shows general setting conditions for microplastic analysis using TD and
Pyr/GC/MS

Table 7. TD and Pyr/GC/MS setting condition for microplastic analysis.

Methods for
Microplastics Pretreatment Sample Preparation Settings Result References

TD/GC/MS,
Pyr/GC/MS

Sieving and flushing
with ethanol,

freeze and oxidize with
H2O2,

freeze-drying of
polymers

Application of particles
into the pyrolysis tubes,

SIM or scan mode
(recommended SIM

mode operation)

Pyr temperature: 600–800 ◦C
CIS temperature: −50 ◦C

Mode: split or splitless
TD temperature: initial, 20
◦C, 0.3 min delay time, 1.0

min hold time
End: 60 ◦C/min, hold time 5

min
GC/MS: Column: DB-5MS
ultra, optima initial: 40–50
◦C, hold time 2–4 min, heat
10 ◦C/min to 300–320 ◦C

maintain for 3 min
Split mode <10 µg, splitless

mode: >10 µg
Mass rage: m/z 10–550

Scan time: 0.2~0.5 s

Conform each m/z
result.

Use standards to find
recovery rate

[123,137–139]
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5. Microplastic Removal Technology
5.1. Wastewater Treatment Plants (WWTP)

Industrial wastewater, domestic wastewater, agricultural wastewater, and livestock
wastewater contain many microplastics, and wastewater treatment plants cannot remove
all microplastics. These wastewaters include micro pellets from cosmetic preparations,
especially facial scrubs and textile fibers, the latter due to the shedding of particles during
the textile washing process [123]. The wastewater is moved to a municipal wastewater
treatment plant, where large plastics are removed; however, microplastic or nanoplastic
particles still remain after several water treatment processes, and some of microplastics
are still discharged to the final effluent [140]. Accordingly, the efficiency of removing
microplastics in wastewater treatment plants has emerged as an important issue, and many
studies are being conducted.

Typical WWTP processes are divided into preliminary treatment, primary treatment,
secondary treatment, and tertiary treatment, and the process chart is as shown in Figure
8. Preliminary treatment consists of a screen and a sedimentation tank, mainly removing
large and large plastics. Primary treatment mainly consists of aeration and sedimentation,
and it removes light plastics or heavy plastics by skimming and sedimentation. Secondary
treatment is mainly biological treatment to remove organic material. Biological treatment
consists of an anaerobic tank, anoxic tank, an aerobic tank, and a settling tank, and most of
the microplastics >500 µm are removed [137,141,142]. Tertiary treatment is mainly used as
an option in WWTPs and consists of a process of removing phosphorus and nitrogen by
using chemicals. At this time, it is possible to increase the removal rate of microplastics by
using several coagulants [76,137]. Table 8 confirmed the MPs’ removal rate according to
the process of WWTPs.

Figure 8. Microplastic-removal process in WWTP.
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Table 8. Microplastic-removal reviews in WWTP.

Treatment Process Removal
Technologies

Inlet
Concentration

Outlet
Concentration MP Removal Rate References

Preliminary and
primary treatment

Screening, grit
removal,

pre-aeration,
sedimentation

567.8 MPs/L 11.7 MPs/L 82 % [143]

Screening, grit
removal,
primary

sedimentation

1737 MPs/L 337 MPs/L 80.6 % [123]

Screening, grit
removal,

physic-chemical
lamellar
settling

183 MPs/L 43 MPs/L 76.5 % [123]

Screening, grit
removal, primary

sedimentation
35 MPs/L 8 MPs/L 76.9 % [144]

Secondary
treatment

Membrane
bioreactor 0.6 MPs/L 0.004 MPs/L 99.3% [145]

Biofiltration 43 MPs/L 12 MPs/L 72.1 % [146]

A2O process 128 MPs/L 12.8 MPs/L 90 % [123]

A2O process 1.32 MPs/L 1.1 MPs/L 16.6 % [140]

Tertiary treatment

Membrane
bioreactor (UF) 0.5 MPs/L 0.2 MPs/L 60 % [147]

Membrane
bioreactor (UF) 0.48 MPs/L 0.28 MPs/L 41.6% [143]

Denitrification and
UF 12.3 MPs/L 0.59 MPs/L 95 % [148]

The size and concentration of microplastics in the wastewater entering the wastew-
ater treatment plant require more research depending on the location of the wastewater
treatment plant, the type of wastewater, and the purpose of treatment. The concentration
of microplastics in the effluent from the wastewater treatment plant was 1 MPs/L or less in
many studies when the primary, secondary, and tertiary treatments were completed. In
addition, it is difficult to ascertain a clear average removal rate of the reviewed studies
because the microplastic treatment rate varies at each treatment stage, but the concentration
of the inlet is different. Most of the high concentration of microplastics is removed from
the primary treatment and contained in the sludge, so the use of recycled fertilizers by the
sludge can cause secondary pollution of microplastics.

5.2. Physical Removal Technology

Physical methods for removing microplastics include flotation, sedimentation, and
filtration, but filtration is a representative method. Filtration includes various methods,
such as screening, diskfilter, sandfilter, and membrane filtration (microfiltration, MF;
ultrafiltration, UF; nanofiltration, NF; dynamic membrane, DF; and reverse osmosis, RO).
Screening is used in both general WWTP and drinking-water treatment plants (DWTP). The
screening method generally removes large plastic particles by filtering and sedimentation.
The microplastic removal rate by the screening method was confirmed to be from about 40%
to about 80% [134,141,142]. Diskfilter is often used in WWTP. Simon et al. (2019) showed
that the diskfilter removed up to 89.7% of microparticles less than >10 µm [149]. A sandfilter
is used in both WWTP and DWTP. Wolff et al. (2021) showed microplastic removal rates of
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99.2% ± 0.29% and 99.4% ± 0.15% by a rapid sandfiltration [150]. Most of the microplastic
removal using the membrane filtration shows an efficiency of more than 90%, and it appears
to be particularly effective in removing microplastics larger than 10 µm [88,99,101–103,119].
However, when microplastics are effectively removed by using the membrane method,
membrane contamination can be accelerated by the deposition of microplastics, which can
accelerate contamination of other organic matters in the membrane [130]. Accordingly,
when using a membrane, a pretreatment process must be installed in order to prevent
excessive membrane contamination of organic matters and microplastics. Table 9 provides
a positive physical removal technology for microplastic removal

Table 9. Physical removal technology for microplastics.

Removal Methods for
Microplastics Technology Summary Result References

Membrane bioreactor (MF) Source: wastewater
MPs: 480 MPs/L

MP removal: 79.01% by MBR
MP removal: 75.49% by rapid

sandfilter
[151]

Dynamic Membrane (UF)

Source: polycarbonate, cellulose
acetate, polytetrafluoroethylene

Membrane: 5 µm mesh
PMs size: PA, PS (20~300 µm)

MP removal: 94% [152]

Membrane bioreactor (UF)

Source: wastewater, sludge
MPs: 0.1–124.7 MPs/L

(wastewater)
8.2–3014 MPs/g (sludge)

MP removal: 99.4% by MBR
MP removal: 98.3% by CAS [147]

Glass membrane Pore size: 1 µm
Plastics: PS, PMMA MP removal: 90.7% [153]

RO membrane
Pore size: 0.1->0.005 µm

Plastics: PE (0.1 g), PP (0.1 g),
PE/PP mixture (0.1 g)

MP removal: >85%
Organic removal: >99% [138]

MF membrane
Source: wastewater

Pore size: 0.1 µm
Influent MPs: 94–206 MPs/L

MP removal: 98% [139]

Disk filter
Source: wastewater
Plastic size: 10µm

Effluent MPs: 3 MP/L
MP removal: 89.7% [154]

5.3. Chemical Removal Technology

The method of using chemicals for microplastics has been studied in various ways,
but in general, the most representatively used method is coagulation/precipitation in water
treatment. In particular, there are many differences in the amount of microplastics removed,
depending on the type of coagulant, the amount of coagulant, and coagulation retention
time. Accordingly, many studies are being conducted to find the optimal coagulant type
and conditions, and more clear studies for microplastic removal are needed in the future. In
Figure 9, Lapointe et al. (2020) compared the removal rates of polyester (PEST), weathered
PE, and pristine PE through a Jar test, using aluminum-based coagulants and polyacry-
lamide (PAA). When aluminum-based coagulants 2.73 mg Al/L and PAM 0.3 mg PAM/L
coagulants were administered to 500 MPs/L water, the optimal removal rates were similar.
The removal efficiency of microspheres was PE = 82% of 140 µm, PS = about 80% of 140
µm, PE = about 88% of 15 µm, and PEST fiber = 99% [155]. Table 10 presents a microplastic
removal by chemical removal technology.
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Figure 9. Microplastic removal by coagulation and flocculation [155].

Table 10. Chemical removal technology for microplastics.

Removal Methods for
Microplastics Technology Summary Result References

Alum and PAM coagulant
Source: 500 MPs/L

Dose: 2.73 mg Al/L, 0.3 mg
PAM/L

PE removal: 82% of 140 µm
PS removal: 80% of 140 µm
PE removal: 88% of 15 µm

PEST fiber: 99%

[155]

Electrocoagulation

Source: microbead wastewater
Condition: pH 7.5, NaCl
concentration: 0–2 g/L,

current density: 11 A/m2

Microbeads: 99.24% [156]

Fe- and Al-salt coagulation
with plant derived tannic acid

Source: PS/PE beads mixed
water

Dose: 3 mM coagulant (0.5
mL)/1.5 mL (microbead)

PS/PE removal: 95% [157]

AlCl3 coagulation with and
without PAM

Source: PE beads
Dose: 5 mM (AlC3·6H2O)

PE removal: about 28%, pH
6.0

PE removal with PAM: about
46%

[158]

FeCl3 with PAM coagulation
Source: wastewater with < 10

µm MPs
Dose: 5 mM (FeCl3·6H2O)

MPs removal: up to 99.4%, pH
7.3 to 6.5 [154]

The review results were found to be able to efficiently remove microplastics by combin-
ing PAM with Al-based and iron-based coagulants up to 99% dependent on the microplastic
size, number, and water conditions, and it was confirmed that electrocoagulation was also
effective in removing microplastics.

5.4. Biological Removal Technology

Among the microplastic removal methods, biologic methods include activated sludge
treatment, aerobic and anaerobic digestion, lagoons, and septic tanks. In activated sludge
systems, bacteria are known to trap microplastics <0.5 mm [158]. However, the activated
sludge system only plays an imposing role of trapping microplastics in water, and it is
difficult to degrade plastics with a short residence time (7–14 h) in WWTPs [158]. Liu et al.
(2019) virgin microplastics do not significantly affect the activities of ammonia oxidizing
bacteria, nitrite oxidizing bacteria, and phosphorus accumulating organisms [159]. Cunha
et al. (2020) used 10 mg/L of fresh Cyanothece sp. and found microplastic removal rate
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of up to 47% [160]. Canniff and Hoang (2018) confirmed the growth rate by exposure to
PE beads, using Daphnia magna, and confirmed that the PE intake rate increased as the
particle concentration and exposure time increased. In particular, it was confirmed that R.
subcapitata exposed to PE beads grew more than those without exposure [161]. As such,
the removal of microplastics by using a biologic method is generally low in efficiency, and
secondary contamination of microplastics in sludge or sedimentation can be increased.
The effect of microplastics on the performance of the bioreactor system should not be
overemphasized [162]. Therefore, it can be concluded that high microplastic removal
efficiency by biological methods is not very positive.

6. Conclusions

As worldwide plastic production has been increasing, plastic contamination has
caused global deterioration of the environment, due to the long plastic-decomposition
time [3,4,160]. As a result, microplastic contamination is becoming a global issue, but
monitoring, toxicity, analysis, and removal technology are still insufficient for researchers.
Therefore, this paper reviewed the distribution, toxicity, analysis method, and removal
technologies of microplastics and summarizes the results as follows.

- Microplastics with the high contamination were reported as PET, PU, PS, PVC, PP, PE,
and PA.

- Contamination paths of microplastics include agricultural wastewater, industrial
wastewater, litter, sewage treatment plant, household personal products, road runoff,
fishing waste, and atmosphere decomposition, which finally flow into the sea to
pollute sea creatures and are absorbed by humans.

- The pollution of microplastics around the world is sharply increasing, and it is ap-
pearing in drinking water, sewage water, rivers, seas, soil, and everywhere. Finally,
microplastics will cause a huge problem in the near future.

- Although the toxicity of microplastics has not been studied much, plastics, such as PS,
PVC, PP, etc., could still cause problems in human health, and several researchers are
conducting research on the risk of microplastics.

- Analysis of microplastics were divided into sampling, pretreatment, and analysis
parts. Water sampling and sediment sampling were discussed in the sampling part.
In the pretreatment part, how to deal with the density difference separation and how
to remove other contaminants rather than microplastics were discussed in detail. In
the analysis method part, most of used microplastic analytical methods and methods
for a possible application for a microplastic analysis were summarized in detail.

- Non-destructive analytical methods of FTIR and Raman methods were summarized
by instrument settings and analytical results from other researchers. Destructive ana-
lytical methods of Pyr/GC/MS and LC/MS are summarized by instrument settings
and analytical results from other researchers.

- The various techniques for the removal method of microplastics were summarized in
WWTP, physical, chemical, and biological technologies. Each technique for microplas-
tic removal rate was summarized in several tables. In particular, the microplastic
removal rate in WWTP was found to be more than 70% after secondary treatment,
although there was a difference depending on the research papers.

In conclusion, microplastic contamination is scattered around the world and directly
affects human life. Accordingly, research on microplastic contamination, analysis, mon-
itoring, and removal technology is insufficient, so deeper interest from researchers and
national policies are urgently needed for overcoming microplastic contamination.
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