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Abstract: The effects of borate ions on the reactivity of peroxymonosulfate (PMS) during organic
degradation in the presence of metal oxides were examined. The metal oxides exhibited catalytic
abilities for the degradation of carbamazepine (CBZ) but not for phenol (PN). Scavenging experiments
revealed the absence of radical generation during PN degradation in the presence of the various
metal oxides and borate buffer. This indicated that the borate buffer hindered the catalytic abilities of
the metal oxides for producing radicals via the PMS oxidant, especially during the faster degradation
of compounds such as PN. Various concentrations of borate ions were assessed for enabling pH
control and permitting catalytic activity. Fe2O3 was found to accelerate and inhibit PN degradation at
borate-ion concentrations of 2 mM and 5–20 mM, respectively. Only the 20 mM borate-ion solutions
were successful at maintaining the initial pH for 2 d. Phosphate buffer, which was examined as an
alternative, also disrupted radical formation but not as considerably as that of the borate ions with
metal oxides. This study demonstrates the significance of enabling pH control and permitting the
catalytic activity for ensuring the effective use of oxyanions as buffers.

Keywords: borate ions; peroxymonosulfate; metal oxides; radicals; buffer solution

1. Introduction

Advanced oxidation processes (AOPs) which use potent reactive oxygen species such
as hydroxyl radicals and sulfate radicals have been widely applied in water treatments to
destroy various contaminants [1,2]. AOPs are classified as hydroxyl radical-based, ozone-
based, UV-based, Fenton-related, sulfate radical-based, and others [1,3]. Since the 1980s,
hydroxyl radical-based AOPs have been actively investigated due to their high efficiency
in destroying organic and inorganic contaminants. However, recently, sulfate radical-based
AOPs such using peroxymonosulfate (PMS) or peroxydisulfate (PDS) have received a great
attention due to their higher oxidation potential (SO4

•−; E◦ = 2.5–3.1 V, OH•; E◦ = 1.9–2.7 V)
and longer lifetime than hydroxyl radicals (SO4

•−; t1/2 = 30–40 µs, OH•; t1/2 ≤ 1 µs) [4–6].
Also, a more liberal approach towards operating parameters such pH, dosage of oxidants,
and constituents of environmental matrices due to their reactive selectivity, leads to a wide
range of applications [5,7,8].

Among the sulfate radical-based AOPs, PMS oxidants have been actively utilized
for in situ subsurface remediation owing to their high solubility and reactivity, decent
stability, and sustainability [9–13]. PMS can be activated by external energy (e.g., heat,
UV radiation, and ultrasound) [9], chemicals [14–16], transition metals [17], and carbon-
based catalysts [18,19] to produce free sulfate and/or hydroxyl radicals; these radicals
are highly reactive toward most organic compounds such as acids, alcohols, aldehyde,
aromatics, amines, ethers, and ketones [20–22]. Recent studies have proposed that PMS can

Water 2021, 13, 2698. https://doi.org/10.3390/w13192698 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w13192698
https://doi.org/10.3390/w13192698
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13192698
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w13192698?type=check_update&version=1


Water 2021, 13, 2698 2 of 11

independently generate the reactive species such as SO4
•−, OH•, superoxide (O2

•−), and
singlet oxygen (1O2) via self-degradation and without activation, especially under slightly
alkaline pH conditions [23–25].

Several studies have used borate ions as a typical buffer solution to mimic groundwater-
relevant pH conditions (6.0–8.5) owing to their pH buffering capacity being in a range of
8.0–10.0 [26,27]. Borate ions were recently found to stimulate PMS activity or induce PMS
depletion resulting in accelerating or decelerating the degradation of target compounds
depending on its concentrations [24,28].

The in situ presence of naturally occurring minerals such as Fe(II/III)- (1–20%, avg.
3%) and Mn(IV)-containing oxides (20–3000 mg/kg, avg. 600 mg/kg) [29–31] in subsurface
systems can presumably enable the activation of injected PMS [32,33]. Although the effects
of borate buffer on PMS activation in the absence of catalysts have been systematically
investigated, the interactions between borate buffer and PMS in the presence of catalysts
such as metal oxides have not yet been explored. Therefore, the present study was aimed at
investigating the effects of borate buffer on organic degradation by the PMS oxidant in the
presence of various metal oxides, identifying the major reactive species of PMS oxidation
in the presence of metal oxides and borate ions, and optimizing the concentration of borate
buffer solution to maintain a target pH and ensure indifference toward PMS reactivity.

2. Materials and Methods
2.1. Reagents

Chemicals such as carbamazepine (CBZ; C15H12N2O; ≥99.0%), phenol (PN, C6H5OH;
≥99.0%), nitrobenzene (NB; C6H5NO2; 99%), benzoic acid (BZA; C6H5COOH; ≥99.5%),
iron(II) sulfate heptahydrate (Fe(II)SO4•7H2O; ≥99.0%), sodium tetraborate (Na2B4O7;
99.998%), boric acid (H3BO3;≥99.5%), OXONE® monopersulfate compound (KHSO5·0.5KHSO4
·0.5K2SO4; >4.0% active oxygen basis), and sodium carbonate (Na2CO3; 99.999%) were
purchased from Sigma-Aldrich. Four types of pure metal oxides, iron(III) oxide (hematite,
Fe2O3; <5 µm, ≥99%), iron(II/III) oxide (magnetite, Fe3O4; <5 µm, 95%), ferric hydroxide
oxide (goethite, FeOOH; 30–63% Fe), and manganese(IV) oxide (MnO2(s); 10 µm, ≥90%)
were obtained from Sigma-Aldrich. In addition, isopropanol (IPA, (CH3)2CHOH; 99.7%)
and tert-butanol (TBA, (CH3)3COH; ≥99.5%), which were used as quenching agents, were
purchased from Sigma-Aldrich. Hydrochloric acid (HCl; 37%) and sodium hydroxide
(NaOH; 10.0 N standardized solution) obtained from Sigma-Aldrich and Thermo Fisher
Scientific, respectively, were used for pH adjustment.

2.2. Experimental Procedure

The sample preparation and treatments were all conducted using 125-mL crimped
amber bottles with airtight butyl-rubber stoppers in an anaerobic chamber (>95% N2,
<5% H2) to mimic the anaerobic conditions of aquifer systems. All solutions were purged
with N2 gas for 1 h prior to use. The pH of borate buffer solution (~25 mM) was adjusted
to 7.5–8.0 using 0.1 M HCl and 0.1 M NaOH, accordingly, and 25 mL of the borate buffer
solution (25 mM) was added to separate vessels containing 0.006 g of the respective metal
oxides. In addition, 15 mL of CBZ (90 µM) or phenol (90 µM) solution was added in
accordance with the specific experiments. Finally, the addition of PMS stock solution
(20 mL, 600 µM) initiated the experiments. Additionally, the effects of borate buffer
concentration on PMS reactivity were examined by varying the borate-ion concentration.
Moreover, the identification of the predominant reactive species during PMS oxidation in
the presence of the borate buffer solution and the metal oxides was conducted using 0.5 mL
of scavengers such as TBA (10.46 M) and IPA (13.07 M), which are known to eliminate •OH
and SO4

•−, respectively, with a 500:1 molar ratio of the scavenger to the PMS oxidant [34].
In addition, NB (9.71 M) was used to detect •OH (k•OH = 3.9× 109 M−1 s−1) [35]. The effect
of the borate buffer solution on PMS reactivity in the presence of catalysts was elucidated
using Fe(II)SO4 as a positive control instead of the metal oxides. Triplicate samples were
mixed using an end-over-end rotary shaker (45 rpm) during the reaction. Seven milliliters
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of the samples were periodically drawn using a syringe and filtered using 0.22 µm nylon
filter and stored prior to analysis.

The degradation rates of each target compound were described using the pseudo-first-
order reaction or second-order reaction, with the reaction rate constant (k) being determined
using Equation (1) or (2), respectively.

k[target compound] = −d[target compound]
dt

(1)

kobs[target compound][PMS] = −d[target compound]
dt

(2)

2.3. Analytical Methods

The concentrations of CBZ, PN, and NB were quantified using an ultra-performance
liquid chromatography apparatus (Agilent Technologies-1260 Infinity) equipped with a UV
detector (UPLC/UV). Samples were diluted with MeOH (1:1, v/v) to quench the reactions
and reduce the matrix effects. Ultrapure water (18 MΩ water, solvent A) and MeOH
(solvent B) were used as mobile solutions, with chromatographic separation being achieved
using an Eclipse XDB-C18 column (5 µm, 4.6 × 150 mm) at an injection volume of 20 µL.
For CBZ analysis, the gradient was initiated at 20% of solvent A, ramped to 70% in 12 min,
maintained for 8 min, returned to 20% at 25 min, and maintained for 30 min at a flow
rate of 1.0 mL min−1 under 286-nm UV radiation. PN and NB were analyzed using an
isocratic mobile phase with 45% and 40% of solvent A at wavelengths of 254 nm and
275 nm, respectively, and a flow rate of 0.8 mL min−1.

The analysis of SO4
2− ions generated via PMS oxidation was conducted using an

ion chromatography system (DIONEX ICS-1000, Dionex/Thermo Scientific, Waltham,
MN, USA) equipped with Dionex IonPacTM AS9-HC RFICTM (4 × 250 mm) and Dionex
IonPacTM AG9-HC RFICTM (4 × 50 mm) columns. Na2CO3 solution (9 mM) was used as
the mobile phase at a flow rate of 1 mL min−1.

3. Results and Discussion
3.1. Organic Degradation by the Peroxymonosulfate (PMS) Oxidant in the Presence of Metal
Oxides and Borate Buffer

The effects of borate buffer on organic degradation by PMS were assessed in the
presence of various metal oxides. Two different organic compounds, CBZ and PN, were
individually applied, and their degradation rates were quantified. The contents of the
metal oxides were optimized by conducting CBZ degradation experiments in the range of
0.1–100 g L−1 of metal oxides (Figure 1). The metal oxides appear to exhibit the highest
removal of CBZ at 0.1 g L−1 among the investigated concentrations (1–100 g L−1), which
contradicts the results obtained in the previous studies that revealed a positive effect
of metal oxides on the degradation of target compounds in a concentration range of
0.1–2.0 g L−1 which showed the accelerated degradation of contaminants as the dosage of
metal oxides increased [36,37]. This is presumably because of agglomeration of the excess
metal-oxide catalysts, which decreases the number of active sites and consequently reduces
the catalytic activity. In addition, a large quantity of catalysts can possibly reduce the
amount of PMS available for the reactions [38–41]. Therefore, a metal-oxide concentration
of 0.1 g L−1 was selected for the subsequent experiments. The degradation rates of CBZ
and PN can be adequately described using the first- and second-order kinetics models,
respectively; the rapid degradation reaction of PN enabled the latter (Figure 2). Figure 2a
shows that the presence of metal oxides accelerates CBZ degradation rates, with FeOOH
exhibiting the fastest degradation, followed by Fe3O4, Fe2O3, and MnO2. The Fe(III)
component of FeOOH possibly exhibits enhanced catalytic activity for PMS activation
compared to that of the other metal oxides, and/or the surface-hydroxylated FeOOH may
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be readily accessible for reacting with PMS by generating radicals in accordance with
Equations (3)–(7), because of their crystalline structures [42,43].

≡Fe(III)
FeOOH-OH + HSO5

− →≡Fe(III)
FeOOH-O(O)SO3

− + H2O (3)

≡Fe(III)
FeOOH-O(O)SO3

− + H2O→≡Fe(II)
FeOOH-OH + SO5

−• + H+ (4)

≡Fe(II)
FeOOH-OH + HSO5

− →≡Fe(II)
FeOOH-O(O)SO3

− + H2O (5)

≡Fe(II)
FeOOH-O(O)SO3

− + H2O→≡Fe(III)
FeOOH-OH + SO4

−• + OH− (6)

≡Fe(II)
FeOOH-O(O)SO3

− + H2O→≡Fe(III)
FeOOH-OH + SO4

2− + •OH (7)
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[borate buffer] = 18.75 mM, [pH] = 7.5~8.0, sampling time = 0, 7, 14, and 21 d).
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decomposition and (b) PN decomposition ([CBZ] = 10 µM, [PN] = 10 µM, [PMS] = 200 µM, [metal oxide = 0.1 g/L, [borate
buffer solution] = 18.75 mM, [pH] = 7.5~8.0, sampling time = 0, 7, 14 and 21 d for CBZ decomposition, 0, 0.25, 1, 2, 4 and 7 d
for PN decomposition).

However, optimal PN degradation was found to occur in the absence of metal oxides,
with values of 0.29, 0.21, 0.19, and 0.14 × 10−2 M−1d−1 corresponding to Fe2O3, MnO2,
Fe3O4, and FeOOH, respectively (Figure 2b). This indicates the potential of metal oxides
as PMS activators for CBZ treatment, and their insignificant catalytic capability for PN
degradation. Figure 3 suggests that the FeOOH-PMS treatment for CBZ degradation yields
the highest concentration of SO4

2− ions, indicating the ability of FeOOH to effectively
activate PMS by producing SO4

2− ions as products of PMS oxidation. Given that PN can
be degraded relatively faster than CBZ by PMS-based technologies owing to its selective
reactivity toward phenolic compounds [23], the amount of PMS added in the present study
is presumed to be sufficient for independently decomposing PN, thereby not requiring
additional catalytic assistance. Alternatively, this result indicates that the presence of
borate buffer possibly obscures the capability of metal oxide catalysts during the relatively
easier/faster PN degradation by the PMS-metal oxide systems.

3.2. Identification of the Major Reactive Species in PMS Oxidation Systems in the Presence of
Metal Oxides and Borate Buffer

The predominant reactive species during PN degradation by the PMS-metal oxide
systems in borate buffer were determined by conducting scavenging experiments to clarify
the role of borate buffer (Figure 4). The addition of TBA, which is known to efficiently
eliminate •OH radicals (k•OH = 3.8–7.6 × 108 M−1 s−1), does not affect PN degradation,
except with FeOOH (Figure 4a–d); moreover, no NB degradation occurs in any of the metal
oxide systems (Figure 4e), which implies the lack of •OH radical generation in the assessed
systems. Figure 4a–d suggest that the spiking of IPA, a scavenger for both •OH and SO4

•−

radicals (k•OH = 1.9 × 109 M−1 s−1 and kSO4•− = 8.5 × 107 M−1 s−1) [20,21], also does
not cause any changes with respect to the PN degradation rates achieved without IPA.
Therefore, the scavenging experiments reveal that the •OH and SO4

•− radicals are not the
primary reactive species produced in the PN-PMS systems with four different metal oxides
and borate buffer. This observation contradicts previous studies that have confirmed
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•OH and SO4
•− to be the significant reactive species participating in PN degradation

by the PMS oxidant with additional catalysts such as CeVO4, coal-fly-ash-supported
Co3O4, and α-Mn2O3 [44–46]. This discrepancy can be attributed to the inhibition of
the catalytic capability of metal oxides owing to the presence of borate buffer solution.
This was confirmed by conducting a positive-control scavenging experiment using an
Fe(II)SO4 catalyst instead of the metal oxides. Figure 5 shows a clear difference in the
degrees of PN degradation achieved in systems without the scavenger and the samples
with TBA/IPA without the borate buffer system; however, the impact of the scavengers on
the degree of PN degradation in the borate-buffered systems is insignificant. According to
previous studies [24,28], it has been known that borate ions can stimulate PMS reactivity
accelerating the degradation of target compounds at certain range of borate concentration
(<100 mM) [28]. However, above 200 mM of borate ions hindered the degradation of
contaminants since borate ions function as a consumer of PMS rather than a catalyst of
PMS [24,28]. Based on the results in this study, it is hypothesized that borate ions (XOn

m−)
may react with Lewis acid of metal oxides (Mn+) instead of reacting with PMS [47]. Thus,
when borate ions and metal oxides co-exist, metal oxides disable to exhibit its catalyst
capability due to the interaction of metal oxides with borate ions.
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3.3. Optimization of Borate Buffer Concentration

The optimal concentration of borate ions for enabling their use as a buffer solution and
simultaneously not affecting PMS reactivity was determined by comparing the rates of PN
degradation with respect to the presence and absence of metal oxides (Figure 6a–d) and
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monitoring changes in pH in terms of the various concentrations of borate ions investigated
(Figure 6e). Borate-ion concentrations of 2 mM and 5 mM result in systems with Fe2O3
exhibiting accelerated PN degradation or no differences compared to that in systems
without it, respectively. However, an increase in the borate-ion concentration from 10 mM
to 20 mM leads to the metal-oxide-deprived systems exhibiting accelerated degradation
compared to that of systems with metal oxides. With respect to changes in pH during the
reaction, the investigated borate-ion concentrations fail at maintaining the initial pH for
2 d, except for the borate concentration of 20 mM (Figure 6e). Therefore, while the catalytic
activity of the metal oxides is not hindered at a borate-ion concentration of 2 mM, it cannot
function as a buffer solution, which necessitates the use of an alternative buffer solution in
PN-PMS degradation to avoid experimental artifacts. In addition, the ability of phosphate
buffer solution (PBS), which is ubiquitously used to control pH in the range of 5.8–7.4, to
maintain the target pH during the BZA decomposition reaction and permit PMS reactivity
was investigated (Figure 7). Although the presence of phosphate ions appears to hinder
BZA degradation at a PBS concentration of 0.02 mM, the degree of reduction is not as
significant as that with the borate buffer solution (Figure 7a). PMS and phosphate anions
are known to react with each other and produce •OH radicals as the predominant radicals,
thereby allowing the generation of radicals, unlike the behavior of borate buffer [48]. With
respect to the time-evolution of pH, a PBS concentration of 0.2–2.0 mM can maintain the
target pH for 2 d (Figure 7b). Therefore, the impact of oxyanions, such as borate and
phosphate ions, on PMS reactivity must be considered in their application as a buffer
solution with the PMS oxidant and metal oxide catalysts.
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4. Conclusions

This study investigated the effects of borate buffer on the degradation of organics
(CBZ and PN) by the PMS oxidant in the presence of various metal-oxide catalysts. The
metal oxides acted as catalysts of PMS in CBZ degradation; however, they failed to exhibit
catalytic activity for PN degradation. Scavenging experiments revealed that neither •OH
nor SO4

•− radicals were generated in PN degradation by the PMS oxidant in the presence
of the borate buffer and metal oxides. This observation meant that the borate buffer solution
was hypothesized to hinder radical generation by the PMS oxidant in the presence of metal
oxides, especially during the relatively faster/easier degradation of target compounds
such as PN. It is likely that borate ions may react with Lewis acid of metal oxides, thus,
both borate and metal oxides disable playing a role as an activator of PMS. The optimal
concentration of borate ions for controlling the pH and simultaneously facilitating catalytic
activity was determined. Starting at 2 mM, borate ion already showed hindering PN
degradation in the presence of Fe2O3 and only 20 mM borate buffer solution was able to
maintain the initial pH; thus, we failed to find the optimal borate concentration controlling
pH simultaneously not affecting PMS reactivity. Phosphate ions were used as an alternative
buffer, and exhibited a similar trend by affecting radical formation to an extent not as
significant as that of the borate ions. Therefore, the use of an optimal concentration of
oxyanion buffer (borate and phosphate ions) was found to be vital for maintaining a target
pH and simultaneously permitting the catalytic activity of metal oxides in PMS oxidation,
especially during the faster/easier degradation of target compounds.
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