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Abstract: Natural occurrence and anthropogenic practices contribute to the release of pollutants,
specifically heavy metals, in water over the years. Therefore, this leads to a demand of proper water
treatment to minimize the harmful effects of the toxic heavy metals in water, so that a supply of
clean water can be distributed into the environment or household. This review highlights several
water treatment methods that can be used in removing heavy metal from water. Among various
treatment methods, the adsorption process is considered as one of the highly effective treatments
of heavy metals and the functionalization of adsorbents can fully enhance the adsorption process.
Therefore, four classes of adsorbent sources are highlighted: polymeric, natural mineral, industrial
by-product, and carbon nanomaterial adsorbent. The major purpose of this review is to gather
up-to-date information on research and development on various adsorbents in the treatment of heavy
metal from water by emphasizing the adsorption capability, effect of pH, isotherm and kinetic model,
removal efficiency and the contact of time of every adsorbent.
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1. Introduction

Globally, environmental pollution has been the main cause of many deaths and
illnesses [1]. Its consequences have been intensely felt by all mankind and its surrounding
environment since the beginning of civilization, either consciously or not [2]. At first,
pollution was not seen as a major issue because of the wide abundance of space for
people to live in [3]. Eventually, it became a global concern and a serious threat to human
life due to the rapid industrialization and geometrical development, mostly in urban
cities [4]. Until recent years, it was studied that pollution accounts for 16% of all deaths
globally and 9 million deaths nationwide, with a comparison of three times the deaths as
malaria, tuberculosis, and acquired immunodeficiency syndrome (AIDS) put together [5].
Environmental pollution is undeniably responsible for more than one in four deaths [1]
and the Earth is continuously threatened with the increasing anthropogenic or man-made
activities causing severe damage to the Earth.

Water occupies 71% of the Earth chemically, 95.6% of which is kept in oceans that are
not readily available for human consumption, unless a complicated desalination procedure
is conducted [6]. According to an estimation from the World Health Organization (WHO),
access to treated drinking water supplies is still lacking for 1.1 billion people worldwide,
while about 2.4 billion people do not have access to proper sanitation [7]. In industries such
as pharmaceuticals, food, electronics, etc.; clean water also serves as an essential feedstock.
It should be acknowledged that accessibility to safe and accessible water is considered one
of the most significant humanitarian priorities but continues to be a problem due to the
rapid anthropogenic activities and population growth that also contribute to the release of
pollutants, especially heavy metals particular to water bodies in particular [8,9].

Heavy metals have been one of the major contributing sources to water pollution
throughout the decades. Water supplies may have naturally occurring ores rich in harmful
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metals, which leach into water causing pollution. These ores are associated with occur-
rences of high arsenic and lead contamination [10]. One research has studied geological
structures of various water source areas, which led to the findings of different heavy metals
concentration in particular regions that can cause water pollution [11]. These heavy metals
will not go through a decay process to non-toxic form [12], and therefore it creates an
imbalance condition between the aquatic fauna and flora which later affects the human’s
health [13]. Adverse effects of heavy metals toward humans include stomach aches, vom-
iting, diarrhea, typhoid, cancer, hormonal imbalance, reproductive failure and serious
damage to the liver and kidneys [14].

There are several common methods used in treating heavy metals from polluted
water, such as phytoremediation, ion exchange, electrolysis, precipitation, ultrafiltration,
coagulation, flocculation, reverse osmosis membrane and adsorption [15]. Therefore,
this study will discuss how heavy metals affect the water bodies by reviewing several
water treatments for environmental sustainability. In addition, a variety of adsorbents
have been studied and utilized in the removal of heavy metals from water, along with
their mechanisms in many research and review studies. The type of adsorbents can be
classified into four categories: polymeric adsorbents, natural-based adsorbents, industrial
by-product adsorbents and carbon nanomaterial-based. Hence, the summary of various
recently studied adsorbents based on the adsorption capacity, the ideal pH and the suitable
isotherm and kinetic model that fit the equation is reviewed.

2. Heavy Metals Pollution

Although there is no precise definition of what a heavy metal is, it has been described
by literature as a naturally occurring element with a high atomic weight and high density
equal to 5 g/cm3 or more, which is at least five times greater than that of water [9].
Manganese, vanadium, chromium, iron, cobalt, nickel, copper, zinc, arsenic, molybdenum,
silver, cadmium, lead, and mercury are several of the common heavy metals [10]. Heavy
metals infuse into the environment through several activities such as industrialization,
agricultural field, wastewater plant, runoff, metallurgical processes, mining and much
more [12]. The toxicity of these metals will then be exposed to humans and animals
via respiratory system, food consumption or direct ingestion of water containing heavy
metal [9]. For various biochemical processes, there are heavy metals such as arsenic, cobalt,
copper, iron, manganese, vanadium, and zinc that are considered essential elements since
the body requires them in trace amounts; nonetheless, high concentrations of metals such
as lead, mercury and cadmium without a doubt pose a significant threat or risk toward
one’s body [16].

2.1. Sources, Toxicity and Risk of Heavy Metals

Generally, the main sources of heavy metals in water can be classified into two
categories, which are natural occurrence and man-made or anthropogenic activities [9].
Natural processes produce numbers of metal ions from geographic phenomena such as
volcanic eruptions, rock weathering, leaching into rivers, lakes, and oceans due to water
action [17]. It can also be explained that these heavy metals have been present naturally on
the surface of the Earth since the beginning of Earth formation. The remarkable rise in the
use of heavy metals has resulted in increasing heavy metals in the terrestrial and marine
environments which has turned to become a major environmental challenge [18].

Conversely, heavy metal pollution has also emerged significantly due to anthropogenic
activities, which is studied to be the prime cause of pollution. Mostly, such anthropogenic
activities that contributes to increment of heavy metals include runoff, operation to mine
and metal smelting, vehicles and roadworks, foundries and other industries that are metal
based, coal combustion metal leaching from various sources, such as landfills, dump
sites, excretion, manure from livestock, farm, and household [12]. In wind-blown dust,
metals are mainly released from industrial areas. The secondary cause of heavy metal
contamination also comes from the use of heavy metals in the agricultural sector, such as
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the pesticides, insecticides, and fertilizers usage. It has become concerning since certain
high concentrations of heavy metals have been observed to be threatening [9]. The heavy
metals from natural occurrence or anthropogenic activities will distribute by diffusing into
the air, immersing in soils or water, eventually reaching out to humans and animals as
shown in Figure 1. Generally, metals deposited into the environment through atmospheric
deposition, erosion of geological or anthropogenic activities.
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Figure 1. The heavy metal sources and their pathway into the environment and humans.

Table 1 represents the possible sources that might contribute to the increment of certain
heavy metal ions in the water bodies, with respective harmful effect to humans and the
permissible limit for each metal in order to be classified as safe water [16].

Table 1. Several heavy metal ions, with its respective possible source, health hazard and WHO (World Health Organization)
permissible limit for water drinking. Adopted from reference [16] (copyright reserved Elsevier, 2020).

Metal Ions Sources Harmful Effect Allowed Limit (ppm) *

As(V)
Volcanic activity, industries,
paints, drugs, dyes and textile,
agriculture, smelting, mining

Severe arsenicosis, pigmentation
problems, nausea, skin, and
kidney cancer

0.01

Mo(II)
Industrialization, pesticides,
catalysts, alloys, non-corrosive
agents

Mineral imbalance, increment of
serum ceruloplasmin, urinary
copper excretion, gout-like
symptoms

0.07

Zn(II) Steel production plant, coal fire
stations, galvanized metal pipes

Fever, vomit, nausea, cramp in
stomach, diarrhea 3.00

Mn(II) Mining, dumping sites,
agriculture, fertilizers, soil

Nerve system failure, mutagenic
and hepatic encephalopathy 0.10

Cd(II)

Electroplating plant, metal
smelting, paints, batteries
production, fertilizers, alloy
industry

malfunction of renal, pulmonary
troubles, bone cancer, high blood
pressure, Itai-Itai disease, bone
abnormalities

0.01

Co(II)
Metallurgy, mining, electroplating
industry, paint manufacturing,
nuclear power factory, tanning

Skeletal defects, diarrhea,
hypotension pulmonary,
paralyzed

1.30 **

Ni(II) Nickel plating, alloys, production
of batteries

Carcinogenic, losses of hair, skin
toxicity 0.10 **
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Table 1. Cont.

Metal Ions Sources Harmful Effect Allowed Limit (ppm) *

Cu(II) Battery manufacturing, plumbing
corrosion Headache, depression, low IQ 1.30

Pb(II)
Plumbing fixture, cable cover,
ceramic, batteries, paints,
wielding, extraction of lead, glass

Liver failure, neurological system
damage, gastrointestinal tract
impairment, high blood pressure,
infertility, arthralgia

0.05

Hg(II)
Volcanic activity, mining
operation, tanning, electroplating
industries

Minamata disease, cancer 0.002

Remarks: * The permissible limit for drinking water consumed are as stated by World Health Organization (WHO), except for Cobalt and
Nickel statistics. ** The permitted Cobalt and Nickel limit for safe drinking water presented are referred from United State Environmental
Pollution Agency (USEPA).

2.2. Heavy Metals Removal from Water

Natural occurrence and anthropogenic activities have been the main cause for the
drastically rising concentration of heavy metals in the environment which caused severe
health issues and permanent disabilities on living things when exposed [8]. Heavy metals
that exceed its permissible limit are considered carcinogenic and lethal toward the en-
vironment as the effects will prolong until it can be noticeable in humans, animals, and
plants, including at low intensity [10]. Therefore, throughout the decades, researchers
and scientists have been developing numerous technological methods of remediation in
order to prevent the surge of heavy metals contamination. Since heavy metals pollution is
concerning, studies regarding elimination and reduction of heavy metals concentration
have always sparked the interest of researchers in related environmental fields [8]. Thus,
the environmental assessment for water pollution is summarized in Table 2 that leads to
the creation of an ideal remediation method [15,16,19].

Table 2. The environmental assessment of water pollution.

Assessment Water Pollution References

Source of Pollution

Industrialization, solid and liquid waste discharge, septic tanks system,
eutrophication, mining, bio-solids, acidification, agricultural field,
landfills, oil, and gas salt-water pits, neglected well sites, brine
disturbance, combustion, impoundment of water, hydrocarbons.

[16]

Type of Pollutant

Heavy metals, industrial wastes, WWTPs, brewery, milk
manufacturing plants, suspended solids, pathogens, Pharmaceutical
and Personal Cosmetic Care (PPCPs), Persistent Organic Pollutants
(POPs), toxic and nontoxic substances, pathogenic parasites,
bio-concentrated metals, crop wastes, fertilizers, pesticides, plastics,
shipwrecks, paper mills.

[19]

Risks
Cholera, kidney and heart dysfunction, terrible blood circulation,
nauseous, nervous system problems, aquatic ecosystem impairment,
death, diarrhea, typhoid.

[16]

Remediation Method

Source prevention actions, nutrients monitoring and control,
disinfection, thermal treatment, bioremediation, phytoremediation,
sewer, and proper septic tank usage, strengthened sustainable water
quality and environment policies, water treatment method.

[15]

2.3. Heavy Metals Removing Methods

Water pollution caused by heavy metal ions will eventually lead to high accumulation
and concentration of the heavy metals that can severely affect public health. Therefore,
in advance to reduce heavy metals’ content in water, proper effluent treatment is needed
so that a supply of clean water can be distributed into the environment or the household.
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Furthermore, an environmental restoration field was introduced with several conventional
procedures that can accomplish the objective of eliminating heavy metals ions from the
environment. The methods that can be used to remove heavy metals include electrolytic
based extraction, chemical precipitation, evaporation, reverse osmosis, ion exchange,
electrochemical, membrane process and adsorption [20]. In general, there are three main
classification of remediation methods which are by physical, chemical, and biological
procedure. Table 3 shows the list of general methods that are applicable for removal of
heavy metals [15].

Table 3. Common method for heavy metals removal in water. Adopted from reference [15] (copyright
reserved Elsevier, 2021).

Classification Methods

Physical

Adsorption
Ion exchange
Nanofiltration
Reverse osmosis membrane
Solvent extraction
Ultrafiltration

Chemical

Electric flocculation
Electrodeposition
Electrodialysis
Electrolysis
Ferrite precipitation
Insoluble salt precipitation
Neutralization precipitation

Biological

Bio-flocculation
Bio-sorption
Phytoremediation
Bio-precipitation
Biotransformation

Throughout the years, pollutants, especially heavy metals have been eliminated using
various physical, biological, and chemical treatment procedures by researchers. Among
these treatment processes, coagulation/flocculation-sedimentation (CFS), ion-exchange,
adsorption, membrane filtration and microbial degradation are noteworthy [6,15]. Each
method has its respective strengths and weaknesses in dealing with the certain metal ions.
Therefore, Table 4 summarizes the benefits and limitations of various water treatment
processes [20–23]. Amongst the known methods, adsorption is usually considered as
one of the most favored methods for heavy metals removal since it is a relatively simple
techniques, numerous adsorbents availability, high efficiency, simple operation, good
reversibility, affordable cost, and the regenerative ability of adsorbents [6]. In order to
support the goal of discovering the most efficient water treatment system, the adsorption
process fits the criteria to optimize the removal of heavy metals. Finding the perfect
selection of a component termed as adsorbent is the key to any adsorption process. The
basic characteristics of a good adsorbent should pose broad adsorption power, rapid rate
of adsorption and easy separation and recovery.
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Table 4. Summary of conventional wastewater treatment processes. Adopted from reference [22] (copyright reserved
Elsevier, 2019).

Method Benefits Limitations Reference

Adsorption
A wide range of adsorbent,
excellent adsorption capacity,
simple and low cost.

Difficult regeneration of adsorbent
and sludge, different adsorption
capacity for different type of
adsorbent.

[6]

Microbial degradation
Short process time, economically
safe and produce non-hazardous
product.

Toxic metal hinders microbial
activity and possibility of clogging
of pumping and injection wells.

[15]

Membrane filtration
Higher removal efficiency, No
pollution loads, Removal of
different contaminants.

Capital and running cost are high,
Operation and Maintenance
requirement cost, Toxic waste as
product, Membrane fouling.

[20]

Ion exchange High metal recovery, fewer sludge
volume and limited pH tolerance. Costly and high on maintenance [21]

Coagulation/Flocculation

Quick process, inexpensive,
straightforward process and
coagulating agents are easily
accessible.

Produce waste, low efficiency
removal and required extra process
such as sedimentation and filtration

[23]

3. Remediation by Adsorption

The adsorption method has attracted the most interest to supply clean water in
ancient cultures and is still commonly used in today’s world because of its design and
operation flexibility, low cost, simple and convenient to operate while still giving an
excellent treatment efficiency [24]. Adsorption in general is a separation process that
involves the removal of a substance (pollutants) from one phase (liquid or gas) followed
by its accumulation at the other surface (adsorbent). In industries such as paper, dyes,
textile, cosmetics and others, adsorption has been used to extract harmful organic such as
endocrine disruptors, pharmaceutical ions and organic or inorganic contaminants from
water [12]. Table 5 shows several adsorption mechanisms [25–27] that used adsorbents to
remove targeted adsorbates.

Table 5. Several common adsorption mechanisms of adsorbent toward adsorbate. Adopted from reference [25] (copyright
reserved Elsevier, 2020).

Adsorption Mechanism Mechanism Description and Illustration References

Physical adsorption

Interaction between adsorbate and adsorbent
surface through weak bonds, for instance weak
van der Waals forces, hydrogen bonding or
hydrophilic interactions.
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Table 5. Cont.

Electrostatic interaction

Attraction between the ion and the surface of the
opposite charge, e.g., positive charged ions with a
negative surface of an adsorbent.
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from cattle manure (CM) utilization since it was found that CM had better adsorption
characteristics than rice husks, indicating that CM has an excellent adsorption capability.
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a new kind of cattle manure resource utilization. The utilization of biochar can be seen
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difference of each mechanism, an overview of how each mechanism is applied using
biochar toward Methylene Blue (MB) is shown in Figure 2 [28].
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Figure 2. Interaction mechanisms involving adsorption in the biochar-MB system. Reproduced with
permission from [28]. (Copyright reserved Royal Society of Chemistry, 2018).

3.1. Overview of Adsorption Phenomenon

The word adsorption was initially made known in 1881 by Heinrich Kayser, a German
physicist at the time [29], and the term is currently used today. Adsorption is a surface
phenomenon or a separation process wherein certain substances are removed from the fluid
phases, known as gases or liquid, and it usually includes gas, liquid or solid molecules,
atoms or ions attached to the surface, in a dissolved state. To simply describe, the ions or
molecules are isolated via adsorption from aqueous solution onto surfaces of the solids
(adsorbent) [24]. The process of adsorption is not to be mistaken with absorption as
absorption conversely is a bulk phenomenon related to the uniform penetration and
dispersal of one item into another.

Adsorption is studied to be reversible; thus, the reversed reaction of adsorption is
known as desorption, where it releases the adsorbate [30]. Desorption is necessary for a
material to serve as a good catalyst so that the products produced on the surface separate
(desorbed) after the reaction to provide free surfaces for other reactant molecules to repeat
the process again [30]. This is important in order to ensure that the process will continue to
undergo adsorption within the free spaces. The rate of change in the adsorbate can also be
written as a difference between adsorption and desorption [31]. The general mechanism of
adsorption–desorption process with its terminologies is illustrated in Figure 3.
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3.1.1. Classification of Adsorption

For the adsorption process, it can be classified according to two categories of adsorp-
tion, which is chemical adsorption (chemisorption) and physical adsorption (physisorp-
tion) [24,32]. There will be cases where bonds of both types may be occurring at a time [31].
In chemisorption, adsorption occurs only in the area where chemical bonding between
adsorbent and adsorbate such as ionic and covalent bonds are operating since chemisorp-
tion is highly specific and can only be achieved by the possibility of chemical bonding
formation. The chemical bonding between both adsorbent and adsorbate leads to the
enthalpy of the chemisorption to be within 200 to 400 kJ/mol. Chemisorption is strongly
related to the surface area and temperature, as it will affect the adsorption efficiency [24].

Conversely, physisorption usually occurs in weak interactions such as weak van
der Waals’ forces. It is an exothermic process, where the enthalpy of the adsorption is
lower, between 20 to 40 kJ/mol [24]. Unlike chemisorption, physisorption is not specific
as the adsorbate can be adsorbed in all solids to the same extent. The overall physical
adsorption is also affected by surface area and temperature variables, where it favors larger
surface area but lower temperature. Table 6 compares the properties of chemisorption and
physisorption [31] and Figure 4 shows the pathway before chemisorption and physisorption
process can occur. To create an effective adsorbent, we need to identify the type of adsorbent
to ensure that the proposed adsorbent has high selectivity and affinity toward the adsorbate.
The diffusion potential is where the motion of adsorbate molecules at the adsorbent surface
occurs. In physisorption, one of the diffusion transport steps acts as a rate-limiting step,
while in the case of chemisorption, the adsorption step acts as the rate-limiting step [33].
After every aspect is fulfilled only then adsorption can occur, either physically or chemically.

Table 6. Comparison between chemisorption and physisorption.

Description Chemisorption Physisorption

Activation energy Required Not required

Temperature High Low

Enthalpy 200–400 kJ/mol 5–50 kJ/mol

Common adsorption formation Unimolecular layer Multimolecular layer
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3.1.2. Factors Affecting Adsorption

The performance of the adsorption process is strongly related to several of these
important parameters, which are pH, the pH at the potential of zero-point charge (pHzpc),
adsorbent dosage, temperature, pressure, surface area and coexisting ions [35]. First and
foremost, pH is one of the most significant parameters that influences the effectiveness of
pollutants or adsorbate removal by adsorbents. The ionization, speciation of adsorbate in
solution and the surface nature of the adsorbent are heavily influenced by pH due to the
interaction of hydrogen ions (H+) and hydroxide ions (OH−) at the active site of adsorbent.

The next factor affecting the adsorption process is the pH at the potential of zero-point
charge, also known as pHzpc where adsorbent surface charge plays a key role in the batch
processes and helps in understanding the mechanism of sorption [33]. The pHzpc is the pH
at which the surface charge of the adsorbent is equal to zero. The theory of it will allow
the hypothesizing that material surface is positive below the point of zero charges and
will allow negatively charged contaminants or pollutants to be adsorbed. The electrostatic
attraction will increase the rate of adsorption among oppositely charged adsorbent species
thus increasing the process efficiency. Two common techniques in determining the pHzpc
are mass technique and immersion technique [33]. The next affecting factor is the adsorbent
dosage. Since adsorbent requires an active site for the adsorption to occur, therefore having
a higher dosage of adsorbent will increase the active adsorption sites will be more effective
in removing the contaminants or pollutants [35]. Despite that a higher dosage will create
more active sites, the increasing dosage will also indirectly reduce the total uptake of
pollutants (qe) per unit mass of an adsorbent since the presence of unsaturated sites are
also present in the process [35].

The following key factor is temperature, where specifically in the batch process, the
temperature will alter the adsorbent characteristics, adsorbate stability and the adsorbate-
adsorbent interaction [33]. The viscosity of the solution eventually decreases as temperature
increases, which helps to move contaminants from the bulk solution to the surface of
the substance. Thermodynamic studies help to estimate the characteristics of the batch
adsorption process, whether it is exothermic or endothermic, spontaneous or random
type and also suggest the favorable temperature batch adsorption process. The negative
values of Gibbs free energy (∆G0) are responsible for the spontaneity of adsorption and
the enthalpy (∆H0) implies the principle of the phase, whether it is an exothermic or
endothermic process. Le Chatelier’s principle can be applied to explain the magnitude of
adsorption for both chemisorption and physisorption as shown in Figure 5 [33].
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From the aspect of adsorption isotherm that involves the principle of pressure, an
increasing pressure will also intensify the adsorption process to a higher level until the
adsorbent becomes saturated [33]. However, when the adsorption has reached the equilib-
rium level, the pressure will no longer play an important role in making the adsorption
process more effective, no matter how much pressure is being applied on the process.
Therefore, the general graph with pressure as a function is shown in Figure 6.
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Figure 6. Graph of adsorption capacity against pressure in batch adsorption.

Surface area also plays an important role in affecting the overall adsorption process.
Since adsorption is categorized as a surface phenomenon, it is strongly related with the
specific surface, where adsorption by smaller particles is relatively better compared to
the larger particles. This can be achieved by breaking up larger particles into smaller
ones that open certain small scales, hence increasing their surface area for greater adsorp-
tion [33]. Lastly, the presence of co-existing ions will also affect the uptake capacity of
the adsorbent as increasing active sites will also increase the competition of the material
surface within themselves. Since water typically consists of various component types, the
mixture of compounds sometimes increases the mechanism of adsorption and at certain
times interferes with another one. Competition between adsorbates in mixed solutions
depends on the molecular size of the adsorbents, the concentration of the solutes and their
relative affinity [33]. Table 7 summarizes the roles of each parameter in affecting the overall
adsorption process.
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Table 7. Summary of factors that are affecting the overall adsorption’s process.

Factor Affecting Adsorption Effect on Adsorption Process

pH
The presence of hydrogen ions (H+) and hydroxide ions (OH−)
will react with the activated site of the adsorbent depending on
the pH value.

pH at the potential of zero-point charge (pHzpc)
Assuming that the adsorbent’s surface is positive below the
point of zero charges, it will allow negatively charged
contaminants or pollutants to be adsorbed in batch processes.

Adsorbent dosage
Increase the active adsorption sites will be more effective in
removing the contaminants or pollutants, although too much
dosage will reduce the total uptake of pollutants (qe)

Temperature
Higher temperature reduces the viscosity, which helps the
mobility of contaminants from the bulk solution to the surface
of the substance.

Pressure Intensify the adsorption process up to a higher level until the
process reaches equilibrium.

Surface Area Smaller particles have bigger surface area compared to the
larger particles, allowing greater adsorption to occur.

Co-existing ions Lesser co-existing ions in the solution will have a better
adsorption process.

3.2. Chelating Resins

It is studied that adsorption is a good remediation method due to its effectiveness,
simple operation method, broad range of sorbent availability and reusability that help the
environmental protection [6]. Additionally, at the same time, functionalization of chelating
resins into various types of adsorbents are widely experimented for the metal ions removal
since these resins have high selectivity and capacity to adsorb which enhances adsorption
process while still being a low-cost and simple method [36,37]. The main chain (parent) of
chelating resins are crosslinked polymers, usually grafted with special functional groups
for certain unique purposes. The nature of these polymers is associated with the presence
of phosphate, oxygen, nitrogen, and sulfur chelating groups with absorbability features.
Chelating resins prove a greater adsorption selectivity compared to conventional small
molecule chelating agents due to the good synergy, electrostatic, stereo, and polymeric
effect such as concentration and dilution of chelating resins’ functional groups [38].

In addition, the molecular framework and the three-dimensional molecular structure
of the resin body are insoluble in solvents that are organic such as alkali, acid, and water,
thus making the separation easier. It also has rapid adsorption toward metal ions, high
selectivity, high capture capacity and resource recovery [39]. In late 1970s, the possibility
for a resin to be applied to any complexation process in analytical chemistry was studied,
conducted, and concluded that the main obstacle of this study is to prevent any ligand
groups such as thiol or primary amino groups from losing during the coupling reaction [40].
A study has successfully proved analytical applications of resins containing amide and
polyamine functional groups to make sure it is selective for one particular metal ion or one
from which several metal ions until it can be retained and eluted [41]. Currently, a broad
range of chelating resins such as iminoacetate, amino phosphonate, hydroxamic acid and
amidoxime has been utilized to efficiently remove the metal ions [42,43]. The amidoxime
and hydroxamic acid groups have an excellent chelation reaction against many rare earth
elements and heavy metal which explains why chelating adsorbent carrying amidoxime
groups and hydroxamic acid groups attract interest in the recovery, enhancement and
removal of rare earth and heavy metal elements [44,45].
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Application of Chelating Resin in Removing Heavy Metals

The existing chelating resins with its dual functionality can access a variety of applica-
tions due to their inherent properties of air-water interfaces adsorption capability, adsorb
ability and high affinity of complexation for metal ions of higher valency. Chelating resins
is widely used to separate the certain metal ion from its aqueous solution, water bodies or
from the soil efficiently, either to remove or to retrieve the metals for other uses [39]. The
chelating resins that contribute to several applications that are summarized in Table 8, with
their respective purpose, along with the highlighted methods and chelating resins [39–42].

Table 8. Highlighted applications of chelating resins with their respective method and chelating resins examples. Adopted
from reference [32] (copyright reserved Elsevier, 2019).

Application Purpose Method Chelating Resins Reference

Pollution Control

To remove any metal ions contaminant that
degrades the environment.
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3.3. Removal of Heavy Metals by Various Adsorbents

In the past several decades, adsorbents have been developed from various materials
for the removal of pollutants, in this context heavy metals from water and wastewater.
The adsorbents can be generally categorized into two main classes, organic and inorganic,
where the classification refers to the base material used for the fabrication of adsorbents.
Figure 7 illustrates the categorization of adsorbents, and Table 9 lists several commonly
used or studied examples for each categorization [34,50].
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Adsorbent Classification Examples

Polymeric based

• Poly(acrylic acid) (PAA)
• Poly(amidoxime)
• Poly(hydroxamic acid)
• Polycyclic Aromatic
• Cellulose Nanofiber
• Polymeric Dextran
• Bifunctional Resins

Industrial By-product

• Metal Hydroxide Sludge
• Fly Ash
• Red Mud
• Bio-solids
• Waste Slurry

Natural Minerals based

• Silica
• Zeolite
• Alumina
• Kaolinite
• Bentonite
• Montmorillonite
• Layered double Hydroxide (LDH)
• Clays
• Chitosan
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Table 9. Cont.

Adsorbent Classification Examples

Carbon Nanomaterial based
• Graphene Oxide (GO)
• Carbon Nanofiber
• Carbon Nanotubes (CNTs)

3.3.1. Polymeric Adsorbent

Polymeric adsorbents have become a major adsorption research focus on recent years.
This is due to their appealing characteristics such as physical and chemical stability and
rigidity, along with the heat and environmental resistance. Furthermore, due to their
flexibility in synthesis and functionalization, polymeric adsorbents have a high adsorption
capacity for eliminating a wide range of contaminants with varying properties, especially
heavy metals [50]. Incorporating two distinct polymers or permanently scattering inorganic
nanoparticles within polymer supports has resulted in polymer–polymer hybrids and
polymer–inorganic hybrids. Across the combination of two counterparts at a nanoscale
range, the formed composites not only maintain the intrinsic features, but also typically
demonstrate higher processability, more stable stability and fascinating advances produced
by the interaction of nanoparticles–matrix [51]. Surface functional groups such as amino
and hydroxyl groups that mostly exist on polymers, have a strong affinity for heavy metal
ions [24]. Therefore, Table 10 represents various polymer-based adsorbents with all related
heavy metal adsorption capacities, with the optimum pH, preferred kinetic and isotherm
model [52–57].

Table 10. Heavy metal adsorption capacities of various polymer-based adsorbents.

Adsorbent Target
Metal

Optimum
pH

Adsorption
Capacity (mg g−1) Kinetics Model Isotherm

Model * Reference

Poly(amidoxime)-
palm

cellulose

Cu 6 260.0 Pseudo-first order F

[52]
Fe 6 210.0 Pseudo-first order F
Co 6 168.0 Pseudo-first order F
Ni 6 172.0 Pseudo-first order F
Pb 6 272.0 Pseudo-first order F

Poly(amidoxime)-jute
cellulose

Cu 6 310.0 Pseudo-second order F

[53]
Co 6 295.0 Pseudo-second order F
Cr 6 227.0 Pseudo-second order F
Ni 6 175.0 Pseudo-second order F

Poly(amidoxime)-
waste

cellulose

Cu 6 298.4 Pseudo second order L

[54]
Co 6 289.6 Pseudo-second order L
Cr 6 217.0 Pseudo-second order L
Ni 6 168.7 Pseudo-second order L

Poly(hydroxamic
acid)-kenaf cellulose

Cu 6 305.3 Pseudo-second order L

[55]

Fe 6 275.6 Pseudo-second order L
Mn 6 258.5 Pseudo-second order L
Co 6 256.6 Pseudo-second order L
Cr 6 254.3 Pseudo-second order L
Ni 6 198.5 Pseudo-second order L
Zn 6 190.1 Pseudo-second order L

Poly(hydroxamic
acid)-palm cellulose

Cu 6 325.0 Pseudo-first order F
[56]Fe 6 220.0 Pseudo-first order F

Pb 6 300.0 Pseudo-first order F
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Table 10. Cont.

Adsorbent Target
Metal

Optimum
pH

Adsorption
Capacity (mg g−1) Kinetics Model Isotherm

Model * Reference

Poly(hydroxamic
acid)-jute cellulose

Cu 6 352.0 Pseudo-first order F

[53]
Co 6 318.0 Pseudo-first order F
Cr 6 230.0 Pseudo-first order F
Ni 6 188.0 Pseudo-first order F

Poly(hydroxamic
acid)-waste fiber

Cu 6 346.7 Pseudo-second order L

[57]
Co 6 315.0 Pseudo-second order L
Cr 6 227.6 Pseudo-second order L
Ni 6 181.4 Pseudo-second order L

Remarks: * Freundlich isotherm (F) or Langmuir isotherm (L).

3.3.2. Industrial By-Product Adsorbent

Industrial wastes, also known as the by-products of industries, can be also considered
as adsorbents for the heavy metals removal from water and wastewater. This is because
these sources have the capability to adsorb the heavy metals from water. Most industrial
by-products will not be used for any other purposes, except in the adsorption process [58].
Industrial by-product adsorbents are certainly beneficial in terms of the availability and
economical. Therefore, these industrial wastes have been discovered to be effective ad-
sorbents [58]. Adsorptive capacity of these wastes could be increased followed by slight
processing and modification as well. Table 11 shows several studies that use industrial
by-products as its adsorbent for the removal of heavy metals [59–61]. Recent studies have
a better fit with the pseudo-second order kinetic model and Langmuir isotherm model.
The alumina refining business produces red mud (RM), which is a solid by-product [59].
Another industrial by-product, which is fly ash, that is obtained from coal power plants
is studied to be effective as an adsorbent in the heavy metal removal as well. However,
there is recent research that retrieved fly ash and bottom ash produced by biomass-based
thermal power plants for removal of heavy metals and the study is observed to have high
affinity toward heavy metals too [60].

Table 11. Heavy metal adsorption capacities of various industries by product-based adsorbent.

Adsorbent Target Metal Optimum pH Adsorption
Capacity (mg g−1) Kinetics Model Isotherm

Model * Reference

Red mud
Pb 5 128.53 Pseudo-second order N/A

[59]Zn 5 35.70 Pseudo-second order N/A

Fly ash

Pb 6 194.70 Pseudo-second order L

[60]
Cu 6 151.40 Pseudo-second order L
Cd 6 143.10 Pseudo-second order L
Zn 6 92.60 Pseudo-second order L

Bottom ash

Pb 5-6 53.20 Pseudo-second order L

[60]
Cu 5-6 32.40 Pseudo-second order L
Cd 5-6 23.60 Pseudo-second order L
Zn 5-6 15.80 Pseudo-second order L

Biochar supported
zero-valent iron
nanocomposite

As 4.1 124.5 Both PFO and PSO F and L [61]

Remarks: * Freundlich isotherm (F) or Langmuir isotherm (L), N/A is no data available.

3.3.3. Natural Mineral Based Adsorbent

Another source of adsorbents that has been attracting researchers’ interest is natural
mineral based. This is because most natural mineral based adsorbents are low-cost, abun-
dant, making it easier to be retrieved, besides its excellent adsorption capability [34,62].
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Although there are many existing natural minerals on this Earth: chitosan, silica, zeolite
and clays including kaolinite, bentonite, montmorillonite are studied to be effective in
heavy metal removal. In recent studies, chitosan and clays are frequently altered and
modified with other adsorbents to improve its effectiveness. Using the co-condensation
approach, a study by Yin et al. [63] focused on synthesizing a silica sorbent functional-
ized with amidoxime groups. With a maximum uranium extraction capacity of 3.36 to
3.94 mg g−1, the functionalized silica sorbent is proved to be able to remove uranium from
saline lake brine. Table 12 highlighted several recent studies that used natural mineral
based adsorbent for the removal of heavy metals, by using the adsorption process with its
respective targeted metals, kinetic and isotherm model [64–66].

Table 12. Heavy metal adsorption capacities of various natural mineral-based adsorbents.

Adsorbent Target
Metal

Optimum
pH

Adsorption
Capacity (mg g−1) Kinetics Model Isotherm

Model * Reference

Carboxymethyl
chitosan–hemicellulose

Cu 6 362.30 Pseudo-second order L

[64]

Cr 4 909.10 Pseudo-second order L
Hg 4 333.30 Pseudo-second order L
Ni 4 42.00 Pseudo-second order L
Cd 4 28.20 Pseudo-second order L
Mn 4 49.00 Pseudo-second order L

Poly(amidoxime)-silica Cu 6 172.00 Pseudo-first order F
[46]Fe 6 168.00 Pseudo-first order F

Carboxylate
functionalized-chitosan

co-polymer

Pb 6 127.91 Pseudo-second order L

[65]
Cu 6 123.50 Pseudo-second order L
Cd 6 108.42 Pseudo-second order L
Zn 6 92.27 Pseudo-second order L

Synthetic NASO Zeolite
(Na6Al6Si10O32.12H2O)

Cd 5 649.00 Pseudo-second order L
[66]Pb 5 210.00 Pseudo-second order L

Remarks: * Freundlich isotherm (F) or Langmuir isotherm (L).

3.4. Heavy Metals Removal Efficiency by Several Common Functionalized Adsorbents

To ensure the efficiency of the adsorption process can be utilized to the maximum,
a precise selection of adsorbent is the key factor. In general, the basic characteristics of a
good adsorbent should exhibit broad adsorption capacity, rapid rate of adsorption, easy
to separate or recover from the water [7], high porosity and small pore diameter, since
higher surface area exposure leads to higher ability of adsorption [67]. Overall, numerous
types of materials have been applied as adsorbent for many applications such as water
treatment, catalysis, desiccants, indicators, and catalyst [67]. As mentioned from the
previous subsection, certain commonly used adsorbents are activated carbon, cellulose,
natural minerals, silica, biopolymers, and nanomaterials [15,50,68,69].

Adsorbents such as silica, zeolite and activated carbon are favorable since they are low-
cost and can be retrieved from natural compounds, besides having excellent adsorption
ability [15]. Activated carbon (AC) is the commonly used and popular adsorbent for the
decontamination wastewater due to its high surface area and high tolerance for heavy
metals and dye molecules. There are several types of activated carbon used for removal of
pollutants from water, which are granular activated carbon (GAC), powdered activated
carbon (PAC) and activated carbon cloth (ACC) [34]. Conversely, zeolites that take the
form of aluminosilicates or other interrupted structures of zeolite-like materials, such
as aluminophosphates, also could adsorb heavy metals [68]. Natural zeolites are rated
as the cheapest alternative adsorbents among the current commercial adsorbent prices
in comparison to other commercial-grade products, making zeolite a great alternative
adsorbent other than its high porosity [68].

Lastly, silicas also have received extensive attention as promising sorbents and have
opened a wide field of applications. This is due to how the silica can be functionalized
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into silica gels with large specific area, strong mechanical characteristic, also good chemical
and thermal stability [70] or mesoporous silicas such as Mobil Composition of Matter
No. 48 (MCM-48) and No. 41 (MCM-41), hexagonal mesoporous silica (HMS) and Santa
Barbara Amorphous-15 (SBA-15) that are considered superior in adsorption since it has
wide surface area, regulated pore sizes and small pore-size distributions [71]. These
functionalized silicas can be used efficiently as adsorbents to extract heavy metal ions and
other harmful pollutants [72]. Despite that silica alone has good adsorption ability, it still
has few downsides in adsorbing soft metals such as lead, tin, zinc, aluminum, thorium,
copper, and bronze [73]. To fully distinguish each adsorbent, a pore size scheme of zeolites,
mesoporous silica, and metal-organic framework (MOFs) is shown in Figure 8 [74], and
a comparison study of the adsorption capability between activated carbon, zeolites and
silica on several targeted contaminants from water is presented in Table 13 [75].
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Another alternative to evaluate the adsorption capacity of various adsorbents is by
observing the removal percentage (%) of the heavy metals by the adsorbent. The percentage
of adsorbate removal will describe the ability of the adsorbent to adsorb heavy metals.
Table 14 highlights the removal efficiency of several commonly used adsorbents, along
with the conditions used on respective adsorption processes [76–80]. Most functionalized
adsorbents have an excellent adsorption ability toward targeted heavy metals (>90%),
when enhanced with optimum pH condition, contact time and concentration. Certain
adsorptions prefer an alkali condition although most adsorbed metals recorded the highest
adsorption capacity in an acidic environment. However, most of the studies conducted
were performed in a laboratory scale and the full potential, while being used in actual
wastewater treatment remains uncertain [76–80].

Table 13. The concentration of pollutants before and after adsorption of silica, zeolite and activated carbon [75].

Pollutant
Initial Pollutant
Concentration

(mg/L)

Final
Concentration

with Silica
(mg/L)

Final
Concentration
with Zeolite

(mg/L)

Final Concentration
with Activated

Carbon
(mg/L)

Permissible Level
in Drinking Water

(mg/L)

Ammonium 5.50 4.70 1.50 3.50 1.50

Iron 0.55 0.10 0.50 0.35 0.3

Phosphate 4.0 2.80 1.20 2.50 N/A

COD 200 70.0 180 21.0 0

Turbidity 100 * 8.1 * N/A 9.7 * 5 *

Remarks: * is in NTU (nephelometric turbidity unit), N/A is no data available.
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Table 14. The removal efficiency of several commonly used adsorbents toward heavy metals.

Adsorbent Target
Metal pH

Initial Metal
Concentration

(mg/L)

Contact Time
(min)

Adsorption
Capacity
(mg/g)

Removal
Percentage

(%)
Reference

Activated carbon from
African palm fruit

Cd 8 1820.00 60 N/A 99.23

[76]Cu 3 1520.00 60 N/A 96.71
Ni 8 3240.00 60 N/A 95.34
Pb 3 2620.00 60 N/A 97.75

Magnetic graphene oxide

Pb 5 60.00 25 200.00 89.61

[77]
Cr 6 60.00 35 24.330 92.03
Cu 6 60.00 25 62.89 92.43
Zn 7 60.00 35 63.69 90.38
Ni 8 60.00 25 51.02 92.23

Silica oxide encapsulated
natural zeolite

Pb N/A 10.00 30 186.00 99.30

[78]
Cu N/A 10.00 480 10.30 98.90
Cd N/A 10.00 60 12.30 98.30
Zn N/A 10.00 60 9.00 97.10
Mn N/A 10.00 30 4.20 54.00

Plasma polymer
functionalized silica

Cu 5.5 15.00 60 25.00 >96.70 [79]Zn 5.5 15.00 60 27.40 >96.70

Polyaniline grafted
cross-linked chitosan beads

Cd 6 40.00 60 145.00 99.60
[80]Pb 5 40.00 60 114.00 99.30

Remarks: N/A is no data available.

4. Conclusions

In conclusion, the heavy metal remediation method is an interesting field to study
and explore. This review highlighted several water treatment methods that can potentially
remove heavy metals from water effectively. The adsorption process is reviewed to be the
preferrable remediation method since it offers numerous benefits in removing the heavy
metals. The efficiency of the adsorption process is influenced by several parameters such
as pH, adsorbent dosage, temperature, pressure, surface area and coexisting ions. The
fabrication and functionalization of various adsorbents has been an emerging approach
to ensure greater adsorption process. It can also be seen that most adsorbents fitted the
Langmuir or Freundlich isotherm, indicating that they are either monolayer or multilayer
adsorption. Most of these emerging adsorbents have excellent adsorption capacity when
enhanced with the ideal pH, contact time and concentration. Although many efforts have
been taken to remove the heavy metal ions from water, the upcoming challenge is to expand
the application of the adsorbent from a laboratory scale to fit the industrial scale purpose.
In order to fully prove the sustainability of various adsorbents in water treatment, a detail
study for every aspect in the adsorption study should be covered in the future involving
comparison between pH and pHzpc, effect of contact time, regeneration of adsorbents,
removal ratio of adsorption process, difference of concentration and considering having a
broader isotherm model.
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