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Abstract: Water losses in Water Distribution Networks (WDNs) are inevitable. This is due to joints
interconnections, ageing infrastructure and excessive pressure at lower demand. Pressure control
has been showing promising results as a means of minimising water loss. Furthermore, it has been
shown that pressure information at critical nodes is often adequate to ensure effective control in the
system. In this work, a greedy algorithm for the identification of critical nodes is presented. An
emulator for the WDN solution is put forward and used to simulate the dynamics of the WDN. A
model-free control scheme based on reinforcement learning is used to interact with the proposed
emulator to determine optimal pressure reducing valve settings based on the pressure information
from the critical node. Results show that flows through the pipes and nodal pressure heads can be
reduced using this scheme. The reduction in flows and nodal pressure leads to reduced leakage flows
from the system. Moreover, the control scheme used in this work relies on the current operation of the
system, unlike traditional machine learning methods that require prior knowledge about the system.

Keywords: water distribution networks; pressure control; leakage minimisation; reinforcement learning

1. Introduction

The existence of leakages in water supply systems is inevitable. The nature of their
interconnection renders them susceptible to wear and tear and therefore resulting in water
losses. Management of these leakages now becomes a critical task considering the scarcity
of the resource, mostly in sub-Saharan Africa.

For water distribution networks (WDNs), leakage minimisation has been the subject
of research dating from the early 80s [1]. With the ageing water supply infrastructures,
water utilities and municipalities are faced with more frequent occurrences of pipe breaks
and increased leakages. In South Africa, it is estimated that annually, 7 billion ZAR is lost
as a result of leakages on the nodes, pipes or valves [2,3]. Furthermore, the United State of
America experiences almost 20% of water loss due to leakages [4].

Globally, the demand for water supply has increased due to steady population
growth [5]. However, a significant portion of water is lost as a result of leakages in
WDNs [6]. However, it is asserted in [7] that reducing the leakage component to zero is
neither technically nor economically feasible. Water loss may pose a great threat to the
availability of this important scarce resource [8]. The quantity of water lost due to leakages
varies from different networks. The operation, state of the network and the location of the
network determine the quantity of water lost.

To date, pressure management is a strategy under research for effective leakage
minimisation [9–12]. Installation of pressure reduction valves (PRVs) and their appropriate
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setting has the potential to reduce the pressure profile of the network [13]. In addition,
this intervention was shown to not affect the water age and quality [14]. However, the
type of the PRVs and the control strategy to be used may need to be carefully selected,
given that the laboratory tests in [15] showed some pressure oscillation when using the
piston-actuated PRVs. Furthermore, it was shown in [16] that model formulation of the
said PRVs bears relevance in the solution of the nonlinear programming (NLP) formulated
for pressure control.

Consequently, various strategies are being proposed to determine the appropriate
setting of PRVs based on hydraulic simulation of the network. Radical advances in control
theories are unlocking the potential for effective leakage management in a water distri-
bution network (WDN) and enhanced efficiency in their operation. The foundation for
applications of control theories is based on fixed outlet pressure control (FOPC), time-
modulated pressure control approach (TMPC), flow modulated pressure control (FMPC),
closed-loop pressure control (CLPC) [5,17,18].

Various strategies ranging from classical [19] to more recent advanced [20] control
laws are being used for PRVs settings. The shortfall of control precision of classical control
laws was raised in refs. [21,22]. As a result, efforts to mitigate the shortfalls are evident
in [21] where the fuzzy-based system was integrated into the classical PID controller
for pressure control. Furthermore, Page et al. proposed a parameter-less P controller
to adjust the pressure in WDN instead of classical P-controller. Further improvements
could are considered in [23] and the stability of the controller, approaches for stability
improvements are put forward. The strength of the proposed improvement relates to their
performance as the demand offset becomes higher. Advanced control schemes, such as
model predictive control [24,25] and adaptive reference control [26,27], were also applied
for pressure regulation in water distribution. The strength of these schemes lies in the
fact that they re-develop a control problem into an optimisation problem [28]. Different
optimisation formulations exist for pressure regulation in water supply systems. More
recently, a nonconvex NLP-based control scheme was proposed in [29]. This scheme was
seen to be superior to the state-of-the-art global optimisation solvers Without a consensus
in optimisation formulation, this area has been left open to further development. In
addition, the Water 4.0 [30] imperatives could lead to a need for further improvement in
the optimisation formulation given that the possibilities of sensing and communication are
opening up. An extension of the work is presented in [31], whereby the grey-box model
developed from simulated step response experiments consists of sum of transport delays.

An inherent problem in pressure is the availability of adequate measurements. How-
ever, it was shown in [26] that partial pressure information from a critical node could be
used to effectively control the system’s pressure. In [32], a graph theory approach was
adopted to identify vulnerable components of the WDN. It was observed that 77% of the
identified critical links are connected to the actuator node. Kazeem et al. identify critical
links as pipes with leakages above the given threshold [2].

This work proposes the utilisation of a model-free scheme to control pressure via
settings of PRVs. The model-free scheme comprises the water network emulator based on
a quadratic approximation of the hydraulic simulation. A reinforcement learning scheme
is put forward as a controller, interacting with the hydraulic simulation’s emulator and
providing an optimal setting for pressure-reducing valves in water distribution networks.
The strength of this scheme could be attributed to its ability to generate control settings
without interaction with the model. This could be useful in case that an ageing infrastruc-
ture needs to be managed in order to reduce water and prevention of introduction of a
harmful agent into the water network. In addition, this work put a novel greedy algorithm
for the identification of the critical node in WDNs. The significance of the identification of
these nodes stems from the fact that they could be easily experienced under or overpressure
as the demand varies and special treatment must be given by the control agent.

The rest of the paper is organised as follows: In Section 2 the model for the hydraulic
simulation of the WDNs is presented. In addition, the procedure for the determination of
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critical nodes is also given in Section 2. Section 3 gives the formulation of of the quadratic
approximation and the reinforcement learning approach used for PRVs control. The leakage
flow model is given in Section 4. The results of the numerical experiment and their discus-
sions are presented in Section 5, while some concluding remarks are given in Section 6.

2. Water Distribution Network Modelling

Ordinarily, the solution (hydraulic simulations) of the water distribution networks
(WDNs) is obtained by solving the system of equations in (1)

ClQ + L = 0

AQ− CT
s hs − CT

l hl = 0
(1)

In Equation (1), Q and L are the flows through the pipes and the quantity of water
withdrawn at the demand nodes. The known pressure head at the supply nodes is denoted
by hs, while hl represents the pressure head at the demand nodes. A is the diagonal matrix
of head losses along the pipes. Cs and Cl represents the components of the decomposed
incidence matrix. The incidence matrix is defined as:

Cij =


+1, if flow in branch j leaves node i
−1, if flow in branch j enters node i
0, if branch j is not incident to node i

(2)

Identification of Critical Node

A critical node in WDNs is commonly referred to as the sensitive node (i.e., the node
with highest pressure head variation as the demand changes) [33,34]. This node could
easily encounter under or over pressure as the varies over the day. To identify the critical
node, this work expresses the sensitive index as

S =
∂hi
∂Li

(3)

and
∂hi
∂Li
≈

hre f − hi

∆L
(4)

where hre f is the reference head pressure. For the demand at period i, a vector ranking
nodes in descending order of the head variation could be written as

Si =
[
S1 S2 . . . Sn

]
(5)

where S1 is the node with the highest variation and Sn has the lowest variation. Given the
variation threshold as Θ, nodes with a variation that is less than Θ could be eliminated to
have a vector S̄ with length z. The number of critical nodes z is predetermined and remains
the same for all variations (i.e., for each variation, only z nodes are taken as critical). For m
demand variation, the critical node’s index (CNI) matrix is obtained as

CNI =


S1,1 S1,2 ... S1,z
S2,1 S2,2 ... S2,z

...
...

...
...

Sm,1 Sm,2 ... Sm,z

, ∀S > Θ ∈ S̄ (6)
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A vector ¯CNI could be obtained by reshaping CNI. ¯CNI1 will be the node with the
highest appearances in CNI and the one having the largest variations. The solution to the
critical node identification can be obtained using a greedy algorithm in Algorithm 1.

Algorithm 1: Greedy Algorithm for Identification of Critical Nodes.
Input: Network Parameters
Input: Define base demand over a period
Result: Critical Node

1 Initialization;
2 CNI ← 0;
3 Convergence← False;
4 while !Convergence do
5 Run hydraulic simulation (Equation (1));
6 Si =

[
S1 S2 . . . Sn

]
;

7 do if Length of Si > z then
8 S̄i ← Si(rows = 1; column = 1 until z) ;
9 else

10 S̄i ← Si

11 CNI(row = i, column = all)← S̄i;
12 if all demands has been used then
13 Convergence← True

14 Reshape CNI to be vector ¯CNI, ¯CNI1, the node with the highest variation ;
15 return ¯CNI1;

3. Model-Free Approach

Determination of optimal settings of the PRVs has been widely used to control the
pressure in WDNs. However, in most cases, only limited measurements are available to
make a judgement on the state of affairs. However, it has been shown that the information
on the critical node could be sufficient to give an overall picture of the pressure in the
system [26]. In addition, control based on these selected nodes can affect the excessive
pressure in other nodes [35].

Given a set of measurement of pressure at a critical node (hcn,i) with corresponding
demand Li, the control problem would be to determine optimal PRVs settings to regulate
the pressure within the given bounds. Using model-based approaches, these settings
could be determined and the generated dataset be used to develop an emulator for the
process [31]. The emulator could be in the form of a function p, such that,

p ≈ hcn,i (7)

In view of the quadratic nature of the WDN in Equation 1, this work uses a quadratic
function as

p = γx2 + βx + c (8)

where x is a vector of comprising of a set of control inputs and the demand (i.e., x =
[
U L

]
).

γ and β are the matrices of coefficients of the quadratic formula and c is the constant. In matrix
form, Equation (8) can be expressed as

p =
[
U L

]
γ

[
U
L

]
+ β

[
U
L

]
+ c (9)

Optimal PRVs Control

In this work, a reinforcement learning approach to determine the optimal control of
the PRVs is presented. As a subset of machine learning, reinforcement learning differs
from the supervised and unsupervised scheme in that it interact with the agent that is
controlling and therefore makes it more suitable for dynamic environments.
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In Figure 1, the state (s) and action (a) are the demand (L) and the proposed PRV
settings (U). The reward r is given to the agent, and it is based on the effectiveness of the
proposed action (i.e., based on the value function V(s)). The agent is rewarded with a
positive integer if the actions proposed yield satisfactory results and a negative integer for
the opposite. To avoid undesirable conditions, the actions are constrained to be 0 < a ≤ 1,
0 being a fully closed valve and 1 as a fully open valve. The resulting r and a are used to
update the control policy π of the agent. A value iteration algorithm is used in this work to
update the policy of the agent. The flowchart of the algorithm is shown in Figure 2.

Figure 1. Reinforcement learning controller.
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Figure 2. Value Iteration Algorithm.

4. Leakage Flow Model

Leakages in WDNs occur in both the nodes and along the pipes. The leakage flow
along the pipe could be expressed as

qi =

{
βili H

p
i , if Hi > 0

0, if Hi ≤ 0
(10)

where β and l are the leakage discharge coefficient and length of the pipe, respectively.
The mean pressure along the pipe in Equation (10) is represented by H. For Nb number of
pipes, Equation (10) can be written in vector format as

q̄ =

{
β̄l̄ H̄p, if H̄ > 0
0, if H̄ ≤ 0

(11)
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The topological matrix in Equation (2) may be used to describe the H as

H̄i =
1
2

ΨT Hi (12)

where
Ψ = |C| (13)

It can be seen in Equations (10) and (11) that the pressure along the pipes and the actual
length of the pipes have a directly proportional relationship to the quantity of water leaks
along the pipes.

5. Results and Discussion

Figure 3 presents a schematic of the test case used. The network has 108 pipes and
70 nodes. Three nodes (1, 69, 70) are the fixed head nodes or supply nodes. Seven (7) PRVs
are installed in pipes 1, 3, 5, 20, 46, 99 and 102 of the WDN. Parameters of the case study
network can be found in Appendix A.

Figure 3. Case Study Water Distribution Network.

Application of Algorithm 1 with the maximum and minimum residential demand
pattern in [36] identified node 59 as the critical node. The sensitivity index rankings are
presented in Table 1 for maximum and minimum demand.

Table 1. Ranking of the nodes for minimum and maximum demand.

Minimum Demand Maximum Demand

Node Sensitivity Index Node Sensitivity Index

59 2.168 59 2.409
64 2.145 64 2.384
61 1.917 61 2.130
48 1.836 48 2.040
56 1.741 56 1.935
21 1.252 21 1.391
50 1.216 50 1.352
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Evidently, it can be seen that the maximum demand yields the highest sensitivity
index. This can be attributed to a dip in pressure head and therefore leading to a higher
∂hi. The flow in normal pipes and leakage flows are shown in Figure 4.

Figure 4. The actual flow and the leakage flow through the pipes.

It can be seen that the leak is in fact a fraction of the total flow. However, given the
scarcity of water resources, these losses cannot be afforded. Furthermore, since it occurs
continuously over time, the effect of this loss could be detrimental. Moreover, these leaks
could introduce infections into the network should the pressure not be properly managed
and if there are inflows through the orifices [11].

Figure 5 shows the effect of the implementation of the control scheme proposed.
Evidently, the flow through the pipes is reduced. This can be attributed to the fact that
pressure-reducing valves (PRVs) reduce the effective diameter of the pipes where they
are installed. The reduced flow in the pipes leads to reduced leakage flows. Moreover,
unnecessary flows are alleviated and therefore reduce the stresses commonly confronting
the pipes with low nodal withdrawals. Nodal leakage flows are presented in Figure 6.
It can be seen that the leakage flows through the nodes are reduced. This is the direct
evidence of pressure control interventions. The results support various studies carried
out in the literature [12,13,35,37,38]. It can further be seen that nodes with the highest
leakages prior to pressure control have the greatest reduction in leakage flow post the
implementation of the proposed scheme. The largest reduction from Figure 6 stands at
10.64% while the lowest is at 1.71%. As expected, the node with the highest leakage flow
reduction is at a lower stream of the PRV (Pipe 102). The node with the lowest decrease
(Node 18) has no PRV connected to it. Nevertheless, this shows that few PRVs connected
in the network affect the operation of the system.

Among the methods reviewed in [39,40], it was evident that machine-learning-based
techniques would play a huge role in the future of WDN management. Nevertheless,
the methods then relied heavily on the existence of the huge dataset of measurements to
build the model. The reinforcement learning scheme applied in this work does not require
previous information (flows along the pipes and pressure heads at withdrawal nodes)
to operate the network optimally. The scheme relies heavily on the interaction with the
system and the reward receives. The model-free emulator for WDNs applied in this work,
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also provides an avenue to resolve the computational issues commonly raised by various
authors [41,42].

Figure 5. Pipe leakages prior to and post pressure control.

Figure 6. Nodal leakages prior to and post pressure control.
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6. Conclusions

In this work, the impact of pressure control on leakage flows is investigated. A
novel model-free control scheme was proposed and implemented in a simulated WDS.
An emulator is used to avoid the computational complexities raised previously in the
literature. Evidently, the method proposed in this work has the capacity to emulate and
produce PRV settings to control the pressure. The pressure control scheme applied in
this work has effectively reduced the leakages in the water supply system. This could
be attributed to the relationship between water and pressure at the withdrawal points.
It was found that the highest percentage reduction peaked at 10.64% for a node that is
directly connected to the PRV. The proposed is also effective for nodes that are remote to
PRVs, with a minimum 1.71% leakage reduction recorded for these nodes. In addition, the
minimisation of the leakages could reduce the rate at which the orifices expands. Moreover,
the scheme proposed in this work does not rely on prior knowledge of the system to
propose the control settings. Unlike the supervised and unsupervised learning schemes,
reinforcement learning learns and improves as it interacts with the system under control.

Future research could be directed on the development of the quadratic approximation
on measurements obtained from a real network and the application of a reinforcement
learning controller.
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Appendix A

Table A1. Pipe data for case study network 2.

Pipe ID Start Node End Node Length (m) Diameter (mm) Chw Pipe ID Start Node End Node Length (m) Diameter (mm) Chw

1 1 15 1000 0.6 120 55 26 35 600 0.15 100
2 15 28 1000 0.45 120 56 27 33 1100 0.25 120
3 28 27 894 0.45 120 57 33 34 400 0.15 100
4 28 30 1020 0.45 120 58 30 35 1400 0.15 100
5 30 31 500 0.45 120 59 33 32 400 0.15 100
6 31 45 800 0.45 120 60 31 32 600 0.15 100
7 45 51 800 0.45 120 61 30 29 400 0.15 100
8 51 57 800 0.2 120 62 29 44 1100 0.15 100
9 57 58 800 0.2 120 63 44 46 400 0.15 100

10 15 14 500 0.25 120 64 46 47 1077 0.15 100
11 15 4 949 0.25 120 65 48 47 600 0.15 100
12 4 5 300 0.25 120 66 47 50 800 0.15 100
13 11 5 500 0.25 120 67 49 50 600 0.15 100
14 14 11 400 0.25 120 68 49 48 800 0.15 100
15 14 16 400 0.25 120 69 51 48 600 0.15 100
16 16 27 104 0.25 120 70 51 52 600 0.25 120
17 14 13 400 0.25 120 71 52 43 800 0.20 120
18 13 12 700 0.25 120 72 45 43 600 0.15 100
19 12 9 400 0.25 120 73 43 32 800 0.20 120
20 9 8 500 0.25 120 74 33 42 825 0.25 120
21 8 5 1100 0.25 120 75 42 43 600 0.15 100
22 8 7 600 0.15 120 76 53 52 600 0.25 120
23 6 7 1400 0.15 120 77 42 53 800 0.25 120
24 4 6 600 0.15 100 78 41 42 600 0.25 120
25 3 4 800 0.15 100 79 41 36 800 0.25 120
26 3 2 1300 0.15 100 80 37 39 800 0.25 120
27 16 2 1100 0.20 120 81 39 40 800 0.15 120
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Table A1. Cont.

Pipe ID Start Node End Node Length (m) Diameter (mm) Chw Pipe ID Start Node End Node Length (m) Diameter (mm) Chw

28 2 29 1600 0.15 100 82 41 39 800 0.15 100
29 16 17 400 0.20 120 83 39 64 2400 0.25 120
30 17 13 400 0.20 120 84 70 41 2262 0.45 120
31 13 10 400 0.20 120 85 41 54 1600 0.15 100
32 10 11 400 0.15 120 86 55 54 400 0.20 120
33 10 9 700 0.15 100 87 53 55 825 0.25 120
34 18 17 700 0.15 100 88 56 55 800 0.20 120
35 12 18 400 0.15 100 89 52 56 800 0.20 120
36 19 12 800 0.15 100 90 57 56 600 0.20 120
37 69 19 806 0.45 120 91 57 49 600 0.20 120
38 19 21 700 0.25 120 92 49 59 800 0.20 120
39 21 20 1200 0.15 100 93 58 59 600 0.15 100
40 21 22 800 0.15 100 94 59 60 800 0.15 100
41 22 23 700 0.15 100 95 60 61 1200 0.15 100
42 21 24 700 0.25 120 96 68 61 300 0.15 100
43 20 26 700 0.20 120 97 62 68 500 0.15 100
44 17 20 424 0.20 120 98 58 62 600 0.15 100
45 27 26 400 0.25 120 99 56 62 900 0.20 120
46 26 25 400 0.25 120 100 63 62 1000 0.15 100
47 24 25 800 0.25 120 101 66 68 1000 0.15 100
48 24 23 800 0.25 120 102 63 66 500 0.25 120
49 23 38 1118 0.25 120 103 66 67 600 0.25 120
50 38 37 600 0.25 120 104 63 64 1100 0.25 120
51 24 37 1100 0.15 100 105 66 65 1100 0.15 100
52 37 36 800 0.15 100 106 55 63 825 0.25 120
53 34 36 400 0.15 100 107 64 65 500 0.15 120
54 34 35 500 0.15 100 108 25 36 1100 0.25 120

Table A2. Node data for case study network 2.

Node ID Elevation (m) Demand (L/s) Node ID Elevation (m) Demand (L/s)

1 90 Source Node 36 57 0
2 78 5.00 37 55 0
3 72 5.00 38 56 15.0
4 63 15.0 39 62 10.0
5 60 20.0 40 57 10.0
6 60 10.0 41 62 0.0
7 64 10.0 42 55 0.0
8 65 10.0 43 49 10.0
9 65 0.0 44 55 15.0

10 55 20.0 45 50 0.0
11 61 0 46 58 0.0
12 65 15.0 47 55 10.0
13 55 20.0 48 50 0.0
14 61 0 49 48 5.0
15 69 10.0 50 50 0.0
16 62 0 51 49 5.0
17 55 20.0 52 46 15.0
18 62 15.0 53 53 0.0
19 74 0 54 59 0.0
20 55 0 55 56 10.0
21 70 0 56 47 10.0
22 72 5.0 57 44 5.0
23 70 20.0 58 42 10.0
24 66 15.0 59 45 0.0
25 59 30.0 60 40 5.0
26 55 0 61 45 10.0
27 58 20.0 62 48 5.0
28 67 0 63 55 0.0
29 63 0 64 68 30.0
30 62 40.0 65 68 5.0
31 58 0.0 66 55 0.0
32 51 0 67 55 30.0
33 51 15.0 68 45 0.0
34 55 0 69 90 Source Node
35 55 0 70 90 Source Node
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