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Abstract: Satellite research methods are frequently used in observations of water bodies. One
of the most important problems in satellite observations is the presence of missing data due to
internal malfunction of satellite sensors and poor atmospheric conditions. We proceeded on the
assumption that the use of data recovery methods based on spatial relationships in data can increase
the recovery accuracy. In this paper, we present a method for missing data reconstruction from
remote sensors. We refer our method to as Tensor Interpolating Empirical Orthogonal Functions
(TIEOF). The method relies on the two-dimensional nature of sensor images and organizes the data
into three-dimensional tensors. We use high-order tensor decomposition to interpolate missing data
on chlorophyll a concentration in lake Baikal (Russia, Siberia). Using MODIS and SeaWiFS satellite
data of lake Baikal we show that the observed improvement of TIEOF was 69% on average compared
to the current state-of-the-art DINEOF algorithm measured in various preprocessing data scenarios
including thresholding and different interpolating schemes.

Keywords: satellite observations of water bodies; missing data reconstruction; higher-order tensor
decomposition; chlorophyll; lake baikal

1. Introduction

Satellite research methods are actively involved in observations of water bodies. They
are used for a wide variety of tasks, including study of lake morphodynamic characteristics
(water level, surface, volume) [1], surface temperature [2], chlorophyll content, dynamics
of phytoplankton and primary production [3], protection of endangered species [4], etc.
However, satellite methods for observing water bodies have their own drawbacks. One of
the most important problems in satellite observations is the presence of missing data due
to internal malfunction of satellite sensors and poor atmospheric conditions.

Missing value reconstruction is a problem known for decades that emerges in a vast
range of research areas [5,6]. When analyzing measurements that contain partially missing
information, a researcher has to adjust data analysis methods to take into account the
missing data. A common approach for dealing with missing data is data imputation,
where missing values are filled with new data reconstructed from observations. To make
the reconstruction, one needs to define a model which will capture particular patterns in
observed data and use the model to fill the gaps in measurements. Various approaches exist
to model the missing data, including a rich set of statistical and probabilistic methods [7],
factor analysis [8], deep learning networks [9], autoencoders [10], and many more.

One of the most widely used methods to model remote sensing data with missing infor-
mation is the Data Interpolating Empirical Orthogonal Functions (DINEOF) algorithm [11].

Water 2021, 13, 2578. https:/ /doi.org/10.3390/w13182578

https://www.mdpi.com/journal /water


https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w13182578
https://doi.org/10.3390/w13182578
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13182578
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w13182578?type=check_update&version=2

Water 2021, 13, 2578

20f16

It relies on the empirical orthogonal functions (EOF) method which approximates the data
using low dimensional linear decomposition. The DINEOF algorithm is closely related
to principal component analysis method (PCA) [12] which is one of the most common
methods for low-dimensional data representation. A number of modifications for PCA
were proposed to account for missing data. A detailed review of them was presented in [13].
PCA with missing data allows various formulations including: least square problem [14], al-
ternating algorithm [15], probabilistic model (PPCA) [16], and variational Bayesian method
(VBPCA) [17].

When applied to spatio-temporal data, EOF- and PCA-based methods represent the
data using two-dimensional matrix where one dimension represents timeline and the
other represents a flattened n-dimensional measurement. When dealing with remote
sensing data like satellite images, three-dimensional tensors preserve a two-dimensional
measurement without unraveling it into a single vector. One dimension is used for the
timeline and the other two for longitude and latitude coordinates of satellite images. In this
case, the information about 2D spatial data structure does not get lost, and one can take
advantage of it in further analysis. Although there is no single straightforward general-
ization of singular matrix decomposition underlying the EOF and PCA methods to the
case of multidimensional tensors, a number of methods have been developed for the latter
to find low-rank representations of multidimensional data [18] which include canonical
polyadic decomposition (CPD) [19], Tucker decomposition [19,20], and its generalization
as a higher-order singular value decomposition (HOSVD) [20,21].

In this paper we show that the use of the tensors for data representation and high-
order tensor decomposition can significantly improve the quality of missing information
recovery compared to the DINEOF algorithm. We refer to our algorithm as the Tensor
Interpolating Empirical Orthogonal Functions (TIEOEF).

We tested the developed algorithm using satellite data on the concentration of chloro-
phyll a in Lake Baikal obtained within the period from 1998 to 2020. Lake Baikal is a
UNESCO world heritage site situated in southern Siberia (Russia) (coordinates 53.5 N,
108 E). It is the world’s largest freshwater lake by volume, containing 20% of the world’s
fresh surface water, and it is also the world’s seventh-largest lake by surface area. Lake
Baikal is the oldest (25 million years) and deepest (1700 m) lake in the world [22]. Since
2011, the blooms of filamentous green algae have regularly been observed in the nearshore
zone of the lake. Besides, since 2016 severe cyanobacterial blooms have been observed in
the coastal and pelagic zones of the lake [23]. Given the large size of the lake, satellite data
provide valuable information for studying the long-term trends in lake eutrophication,
but the amount of missing satellite data makes this challenging. We hope that our algorithm
will make it possible to assess the long-term trends in the development of lake ecosystems
more accurately, which in turn is necessary to take effective measures to preserve them.

2. Materials and Methods
2.1. Multi-Way Tensor Decompositions

Tensor decompositions is an area that has been actively explored over the last decades [24].
Having emerged in the 1920s tensor decompositions were later successfully applied in a
variety of fields: signal processing [18,25], image processing [26,27], biomedical data analy-
sis [28,29], bioinformatics [30], geophysics [31], and topic modelling [32,33] have added tensor
decomposition use cases. The first work, introducing CP-decomposition, was published
back in 1927 [19]. Then it was reinvented in 1970 in two independent research papers: CAN-
DECOMP [34] and PARAFAC [35] in psychometrics and linguistics domains. After that,
a significant number of papers have been published, both introducing new methods and
building upon the old ones. A great overview of methods and their applications for data
analysis is given by Tamara Kolda in [36].

In this work we employed three popular decomposition methods: Higher Order
Singular Value Decomposition (HOSVD), Higher Order Orthogonal Iteration (HOOI), and
PARAIllel FACtors (PARAFAC).
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HOSVD [20,21] is the simplest generalization of renowned Singular Value Decompo-
sition (SVD) on tensors of order higher than 2. The main idea here is to find Empirical
Orthogonal Functions (EOFs) and a kernel tensor of the same order as the original data
which contains singular values of different tensor unfoldings. When combining all that
information with mode products we get a reconstruction according to Figure 1.
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Figure 1. HOSVD.

PARAFAC [35] is a decomposition of a multi-way tensor on the sum of tensors of rank
1 (i.e., sum of outer products of vectors) like in Figure 2. To calculate those vectors the
Alternating Least Squares (ALS) algorithm [37] can be used. It is simple yet an effective
algorithm which iteratively fine-tunes part of the vectors while keeping others fixed [38].
Such a sum of outer products can actually be formulated as a mode product with diagonal
kernel similar to HOSVD.
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Figure 2. PARAFAC.

The HOOQI [39] algorithm simply combines ideas from both decompositions: HOSVD
and PARAFAC. Firstly, we use HOSVD to initialize a kernel and EOFs of unfoldings and
then apply the ALS algorithm to further improve the approximation.

2.2. Interpolation on a Static Rectangular Grid

Every satellite image contains a set of points with chlorophyll a measurements made
along the path of the satellite at a certain date and time. Coordinates of these points are not
constant in time and change with every image. As the first step of data preprocessing, we
interpolated the measurements on a rectangular grid, where each node corresponds to a
certain pair of coordinates and steps along each axis are constant. The grid is universal for
all images in the timeline. We have used two methods of interpolation: regression with
k-nearest neighbours and regression with neighbours within a fixed radius [40]. In both
methods the weight of a neighbouring point was calculated as the inverse of its proximity.
The rationale under using two interpolation methods is that the satellite data tends to be
sparse and sometimes the k-nearest neighbours method should employ far away points to
make a prediction. The comparison of two methods is given in the Results section.

2.3. Data Thresholding

The next preprocessing step is satellite signal thresholding, clipping signal with high
chlorophyll a concentration. In situ studies [41,42] showed that chlorophyll a concen-
tration determined using satellites can be significantly overestimated due to presence of
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coloured organic matter. In particular, a large discrepancy was observed in Lake Baikal
at concentrations of chlorophyll a higher than 2 mg/m?. To reduce the effect of satellite
chlorophyll a overestimation we have replaced satellite measurements exceeding 2 mg/m?
to the threshold value of 2 mg/m?3. The value of the threshold was motivated by the in situ
HPLC determination of chlorophyll a concentration in lake Baikal water and comparison
with satellite observations performed by Heim [41]. In this way we introduce some mis-
trust to the raw satellite data, but at the same time reduce the noise coming from satellite
chlorophyll a estimation algorithm OC3M [43]. In the Results section we show that such a
threshold increases the accuracy of every algorithm in the validation subset.

2.4. Validation Dataset

The performance of all the models used in reconstruction was measured by calculating
the error on a separate validation subset (5% of the available data) with known chlorophyll
a measurements. As chlorophyll a concentration tends to be zero in the majority of points,
sampling measurements uniformly would result in a validation subset that mostly consists
of zeros. Such set is not representative for reconstruction quality evaluation, since zero
is an initial guess for missing values (Section 2.5). Instead, we used a stratified sampling
approach: data points were grouped into several bins according to their chlorophyll a
values with the K-Means clustering method [44]. The number of bins were chosen to be
10. This number is highly dependent on the dataset, thus we have tried several options:
3,5, and 10 on MODIS Aqua and found 10 to be the most appropriate as it ensures that
each bin contains measurements with close enough magnitude. Then an equal number
of points from each bin were sampled and added to the validation set. Such procedure
provides a closer to uniform distribution of chlorophyll a values within the validation
dataset. While reconstructing data, these points are marked as missing. This allows us to
compare reconstructed chlorophyll a values to the reserved satellite measurements.

2.5. Missing Data Reconstruction

We have devised a novel approach to satellite data reconstruction—TIEOF algorithm
(Figure 3). The core idea is similar to DINEOF: to reconstruct missing values with the
help of low-rank data representation. However, DINEOF relies on matrices for data
representation and uses SVD decomposition to find the best low-rank approximation,
while TIEOF works with three dimensional tensors and utilizes tensor decomposition
methods. In our work we have used three different multi-way tensor decompositions:
Truncated Higher Order Singular Value Decomposition (HOSVD) [20,21], Higher Order
Orthogonal Iteration (HOQOI) [39], and Parallel Factors (PARAFAC) [38].

TIEOF

Figure 3. Simplified visual representation of TIEOF. The algorithm takes a batch of satellite im-
ages with missing values as an input, performs a series of tensor decompositions, and outputs
reconstructed data.

The TIEOF pseudo-code is presented in Algorithm 1. The input is an array of satellite
images—a three dimensional tensor Data with dimensions (lat, lon, t) which correspond
to latitude, longitude, and time respectively. At the initial step we calculate an average
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along spatial dimensions (latitude, longitude) as well as an average along time dimension.
Then subtract these averages from initial data to get it centered along spatial and time axes.
All averages are calculated ignoring missing values. In PCA and EOF methods this step is
usually performed implicitly while calculating correlation matrix. However, when using
decompositions, we have to perform this computation explicitly [45].

Algorithm 1 TIEOF
1: Data—input set of images (lat, lon, t)
2: Mask—boolean mask of known pixels
3: r—number of components in reconstruction
4: eps—a threshold on r-rank approximation error
5. es—boolean variable defining whether to use early stopping or not
6: procedure TIEOF(Data, Mask, r, eps = 1le — 3, es = False)
7: Data, averages < Center(Data) > Substract averages on (lat, lon) and (t)
dimensions
8: Data['mask] = 0 > Initial guess for unknown values
9: Error < o0
10: while Error > eps and V Error > eps if es else True do
11: Ky, F, =[HOSVD | HOOI | PARAFAC](Data, r)
12: Data, = Reconstruct(K;, F;)
13: Data,[mask] = Data[mask]
14: Error < NRMSE(Data[!mask|, Data,[!mask])
15: Data < Data,
16: Data < !Center(Data, averages) > Add memorized averages back
17: return Data

In the next step we fill missing data with zero values. Then an iterative algorithm
starts until convergence: tensor decomposition of the current representation of Data tensor
is calculated using one of three algorithms (HOSVD, HOOI, PARAFAC). Tensor decom-
position is used to estimate a reconstructed tensor Data,. Reconstructed tensor is used
to fill unknown values of the data. Reconstruction error is calculated as a normalized
root mean squared error (NRMSE) difference of reconstructed values for missing data
between successive iterations defined by Equation (1) (y/—reconstructed missing values of
the current iteration and y—reconstructed missing values from previous iteration).

E[(y' —y)?]
NRMSE = o )

A large number of iterations with a low amount of training data can lead to severe
overfitting. To avoid overfitting we have included an early stopping technique that is
typically used in deep learning routines [46]. As the stopping criteria, we first used
a threshold on NRMS error between Data and its r-rank approximation (Algorithm 1)
on a subset of unknown points. Later, we introduced an early stopping technique [46],
by putting a threshold on NRMS error gradients (absolute difference between r-rank
reconstruction errors in successive iterations). Effects of early stopping are presented in
the Results section. When the stopping criteria is satisfied, we cease iterations, fill missing
values in the initial data with corresponding points in the last reconstructed tensor and
apply reverse centering with the previously memorized averages.

2.6. The Lake Baikal Dataset

To test the TIEOF algorithm, we used three publicly available datasets distributed by
NASA'’s Ocean Biology Processing Group. These three datasets contain products obtained
from the Moderate Resolution Imaging Spectroradiometer (MODIS) located aboard the
Terra (EOS AM) and Aqua (EOS PM) satellites and from the Sea-Viewing Wide Field-of-
View Sensor (SeaWiFS) located aboard the OrbView-2 (SeaStar) satellite. MODIS Terra
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provides data for the period from 24 February 2000, to the present day. MODIS Aqua—
from 4 July 2002, to the present day. The SeaWiFS data is available for the period from
4 September 1997, to 11 December 2010. Each dataset provides data for each day in the
corresponding period. For our experiments we selected data on chlorophyll a concentration
(Level 2, 1 km resolution) for 93 days (1 June to 1 September) each year during 2003-2020
for MODIS Aqua, 2001-2020 for MODIS Terra, and 1998-2010 for SeaWiFs.

During preprocessing stage described in Section 2.2, we have interpolated satellite
images onto a static spatial grid with fixed coordinates. Coordinates of the static grid were
chosen to cover the whole region of interest (Baikal) with a close to 1 km density. Lake
Baikal is located approximately between 51.5 degrees and 56 degrees latitude and between
104 degrees and 110 degrees longitude. This roughly corresponds to a rectangular area
of 482 by 406 km. Taking into account a sample of 93 days for each year we sum up to
the dataset tensors of shape (482, 406, 93). To extract only coordinates within the Lake
Baikal borders in the downloaded pieces, we used the shapefile with Baikal coastline [47].
It allowed us to mask out the points outside the Lake borders.

The amount of missing information for the Baikal region differs between satellites. In
MODIS Aqua and MODIS Terra the average amount of missing measurements throughout
the year is around 75%, whereas the SeaWiFS shows the average of 95% missing values.
The average data missing ratios for each satellite and year are depicted in Figure 4.
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0.95 A —e— SEAWIFS
0.90 A

Missing ratio
o o
o2} [ee]

o v
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Figure 4. The average ratio of missing data for each year and satellite with a 95% confidence interval
obtained by bootstrapping.

3. Results
3.1. Interpolation on a Rectangular Grid

To compare two interpolation methods of aligning satellite data on a constant rectan-
gular grid (Section 2.2) , we have conducted the following experiment: we aligned MODIS
Aqua data using the K-neighbors method with K = 3 and regression with neighbors within
a 5 km radius, reconstructed missing data with all discussed methods, and evaluated NRMS
error on the validation set. K = 3 was chosen due to high sparsity of data. A 5 km radius was
chosen heuristically, but has proven to bring an improvement to the algorithm. Experiments
with larger set of possible values were not conducted due to high computational costs.

Results are presented in Figure 5. With the exception of the time period from 2008 to
2015, interpolation with neighbours within a 5 km radius has resulted in a significant drop
of NRMS error: by 9.5% for DINEOF; by 11.2% for TIEOF HOSVD; by 11.5% for TIEOF
HOQIL by 11.3% for TIEOF PARAFAC.
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Figure 5. NRMS error on validation set with K-neighbours (3 neighbours) and neighbours within a

radius (5 km radius). Shaded area defines a 95% confidence interval obtained by bootstrapping.

3.2. Effect of Early Stopping

To check the effect of the early stopping technique, we reconstructed the tensors from
MODIS Aqua dataset using all of the algorithms and measured NRMS error on a validation
subset. In this experiment we used the 5 km radius neighbours regression for interpolating
on a static rectangular grid. The stopping criteria value for both reconstruction error and
reconstruction error gradients between iterations was chosen to be 0.001.

The results are depicted in Figure 6. In the case of DINEOF, the early stopping leads to
a significantly lower NRMSE (by 8.4% on average). In the case of TIEOF, the early stopping
brings a slight increase in the NRMSE (by 0.3% for HOOI, by 0.4% for PARAFAC, by 1.8%
for HOSVD), but all differences are within the confidence interval. Thus we conclude that
TIEOF has the better resistance to the overfitting phenomenon than DINEOEF, because full
convergence mode is very close to early stopping mode (max difference is only 1.8%).
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Figure 6. NRMS error on validation set with and without using early stopping. Shaded area defines
a 95% confidence interval obtained by bootstrapping.

All further experiments were conducted with early stopping mode to slightly alleviate
the computational burden.

3.3. Data Thresholding Reduces Reconstruction Errors

As described in Section 2.3, the satellite signal of chlorophyll a beyond 2 mg/m? tends
to be greatly overestimated when compared to in situ values. To check the effect of data
thresholding, we reconstructed the same dataset with and without threshholding step and
compared NRMS errors on validation subset.

For this experiment we used the MODIS Aqua dataset, neighbours regression within
5 km radius to interpolate on a static rectangular grid, 2 mg/m? for threshholding step,
and early-stopping for model convergence strategy. Reconstruction of initially thresholded
tensor led to significantly lower NRMSE on the validation subset which is demonstrated in
Figure 7. The average factor of NRMSE decrease between all years is presented in Table 1.
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Table 1. Factor of improvement (NRMSE decrease) when using thresholding.

Method Improvement Factor
DINEOF 1.24
TIEOF: HOSVD 1.56
TIEOF: PARAFAC 1.56
TIEOF: HOOI 1.57
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Figure 7. Effect of thresholding data signal above 2 mg/m3. Shaded area defines a 95% confidence

interval obtained by bootstrapping.

3.4. Comparison of the Tensor Decomposition Methods

To perform a fair comparison of DINEOF and TIEOF algorithms, we reconstructed
data from all the available datasets and compared NRMS errors on validation subsets. All
TIEOF variations performed better than the DINEOF on all the available datasets (Figure 8).
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The difference between different TIEOF variations is not as significant (errors for
different TIEOF variations are within each other’s 95% confidence intervals) as compared
to DINEOF. This shows us that TIEOF is a robust choice of tensor decomposition and
its main benefit is not in the specific tensor decomposition but in the usage of original
multidimensional feature space. We depicted the mean errors between all years for all
datasets and methods in Table 2.

We observe that the improvement of TIEOF over DINEOF varies between 9 and 309%
(min and max improvement among all years and TIEOF variations). High improvement is
noticed when the data is poor, i.e., the error (NRMSE) is much larger (>25%) than a median
error calculated in all years and low improvement is observed when the error is close to
the median. Therefore, TIEOF provides a stable (69% on average) improvement compared
to DINEOF, and the difference between methods is most evident on poor data where the
DINEOF NRMS error increases.
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Figure 8. Performance comparison. Shaded area defines a 95% confidence interval obtained by bootstrapping.
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Table 2. Mean errors (NRMSE).

Data Method Mean NRMSE
AQUA DINEOF 0.68
TIEOF: HOSVD 0.48
TIEOF: PARAFAC 0.48
TIEOF: HOOI 047
TERRA DINEOF 0.74
TIEOF: HOSVD 0.51
TIEOF: PARAFAC 0.51
TIEOF: HOOI 0.50
SEAWIFS DINEOF 1.93
TIEOF: HOSVD 0.90
TIEOF: PARAFAC 0.90
TIEOF: HOOI 0.90

4. Discussion

In Section 3.3 we show that both DINEOF and TIEOF methods demonstrate better
results when using a signal thresholding step. We believe that cropping the data from
satellite instruments reduced the error and brought it closer to the ground truth chlorophyll
a levels. When compare Heim’s in situ data [41] to the MODIS and SeaWIFS chlorophyll a
estimations, we observe that discrepancy between them increases when concentration goes
beyond 2 mg/m3. For satellite data we get less error when we use a threshold value instead
of the calculated chlorophyll a level value. As a result, we obtain more accurate data with
less noise, which allows missing data recovery algorithms to find patterns and recover
missing information more accurately. The need for this step and the choice of the threshold
value of 2 mg/m? may be specific for the Baikal lake. For other lakes with different trophic
ranges, different heights above sea level, and other parameters which affect the quality of
chlorophyll a estimation, a separate analysis with in situ data is needed.

Our results demonstrate that tensor decompositions give consistently better re-
sults than the DINEOF matrix-based algorithm. This is not only proven quantitatively
(Section 3.4) but also qualitatively. Figure 9 depicts reconstruction for two days. When
the input is not completely empty both algorithms (DINEOF and TIEOF HOQI) are able
to restore the missing data. Though the restorations differ, they both generated plausible
results as chlorophyll a concentration increases in the shallower parts of lake Baikal near the
coastline [23]. In the second row we show the reconstruction of the input that is fully empty.
Probably, the weather was cloudy that day. This occludes the reception of a spectrometer
on board the satellite. Still, data can be reconstructed using measurements from other
days. We conclude that the reconstruction of TIEOF HOOI is better compared to DINEOF
as the latter did not catch the difference between the coastline of the lake and its depths
and assigned even smaller values of chlorophyll a near the shore. On the contrary, TIEOF
HOOQI provided the results that agree with the lake depth growth. The biggest difference
is presented in Figure 10. It is worth mentioning that the reconstruction can have values
above the threshold we applied earlier as no constraints were applied during the iterations,
thus the bias (thresholding) that was employed before the restoration can be corrected by
the algorithm.
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24th June
X
‘%“m
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0.0

Figure 9. Example of data restoration for two days on MODIS Aqua summer 2012 dataset. In the
second row input is completely unknown, but the data can still be reconstructed using measurements
from other days. The validation NRMS error for TIEOF HOOI is 26% lower comparing to DINEOF.

While decomposing the data matrix with the DINEOF algorithm, we operate in two
spaces: a space of vectors of length t (denoted as U in classical SVD notation) and a space
of vectors of length lat times lon (denoted as V in classical SVD notation). Thus we either
calculate the pixel-by-pixel correlation of satellite images between pairs of days or a day-
by-day correlation between pairs of coordinates. Far away points are usually not correlated
with each other, and close points correlate immensely. The DINEOF algorithm does not take
into the consideration the proximity of elements in each pair. So the majority of point pairs
provide no informative signal for the model. In the TIEOF algorithm, we decompose the
data tensor onto spaces of vectors of lengths: lat, lon, and t. Thus, we compute correlations
not between points within the whole spatial grid but between columns and rows of data
which correspond to lines along the same latitude and longtitude on the map. This way,
we take into account more features in images of different scope, not only correlations
between single coordinates but also correlations between latitude and longtitude lines.
This idea is close to the renowned convolutional neural networks [48]. The convolution
operation (or more precisely cross-correlation) uses typically small patches to calculate
features on the next layer. Thus the new features are constructed from only some local
part of the information from the previous layer of a neural network. For high-level tasks
(e.g., image classification) the features that are based on local regions surely are not enough.
A stacking of convolutional layers leads to a gradual increase of a receptive field which is
important for the abstractness of features on deep levels. Based on these abstract features it
is intuitively easier for a simple function (e.g., linear function) to classify the image. Yet for
low-level tasks (e.g., super-resolution, image completion) even small shallow convolutional
neural networks bring surprisingly good results [49]. Therefore, we make a conclusion that
searching correlations between lines rather than points within the whole spatial grid is of
crucial importance. Tensor decompositions employ exactly that treatment of data.
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DINEOF TIEOF HOOI

Figure 10. Close up area of the 2nd row in Figure 9.

5. Conclusions

In this work we proposed the new set of methods to reconstruct sparse data from
satellite images and have proven their effectiveness on chrolophyll a measurements of
Lake Baikal. In comparison with the renowned DINEOE, our methods have lower error
(69% improvement on average). The significance of the error difference was proven with a
95% confidence interval.

We have also investigated additional preprocessing techniques: data thresholding,
early stopping, and different interpolation methods to align satellite data to a static rectan-
gular grid. In a series of experiments we have shown the following: data thresholding is
an important part of the process, since it improves the quality significantly; early stopping
decreases the reconstruction error for DINEOF but is unnecessary for the TIEOF since our
algorithm has proven to be resistant to overfitting; regression with neighbours within a
fixed radius appears to be a better approach than K-neighbours regression, but this is highly
dependent on the dataset and can be proven wrong for some other satellite, measurement,
or geographical area.

The TIEOF algorithm can be used to achieve a wide range of goals related to the
restoration of missing satellite data. The algorithm can be used to analyze short-term and
long-term trends, identify correlations between various geophysical variables, as well as
for environmental modelling and solving applied problems of ecosystem management [50].
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The following abbreviations are used in this manuscript:

ALS Alternating Least Squares

DINEOF Data Interpolating Empirical Orthogonal Functions
EOF Empirical Orthogonal Functions

HOOI Higher Order Orthogonal Iteration

HOSVD Truncated Higher Order Singular Value Decomposition
MODIS Moderate Resolution Imaging Spectroradiometer

NRMSE Normalized Root Mean Squared Error
PARAFAC Parallel Factors

PCA Principal component analysis

SeaWiFS Sea-Viewing Wide Field-of-View Sensor

SVD Singular Value Decomposition

TIEOF Tensor Interpolating Empirical Orthogonal Functions
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