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Abstract: Monitoring disruptions to water distribution dynamics are essential to detect leakages,
signal fraudlent and deviant consumptions, amongst other events of interest. State-of-the-art methods
to detect anomalous behavior from flowarate and pressure signal show limited degrees of success as
they generally neglect the simultaneously rich spatial and temporal content of signals produced by
the multiple sensors placed at different locations of a water distribution network (WDN). This work
shows that it is possible to (1) describe the dynamics of a WDN through spatiotemporal correlation
analysis of pressure and volumetric flowrate sensors, and (2) analyze disruptions on the expected
correlation to detect burst leakage dynamics and additional deviant phenomena. Results gathered
from Portuguese WDNs reveal that the proposed shift from raw signal views into correlation-based
views offers a simplistic and more robust means to handle the irregularity of consumption patterns
and the heterogeneity of leakage profiles (both in terms of burst volume and location). We further
show that the disruption caused by leakages can be detected shortly after the burst, highlighting the
actionability of the proposed correlation-based principles for anomaly detection in heterogeneous
and georeferenced time series. The computational approach is provided as an open-source tool
available at GitHub.

Keywords: leakage detection; correlation analysis; multivariate time series; spatiotemporal data
analysis; water distribution networks

1. Introduction

Water distribution networks (WDNs) are hydraulic infrastructures responsible for
providing a continuous supply of pressurized safe water to consumers that play a pivotal
role in public health and environmental sustainability [1]. The presence of leakages and
abnormal water consumption can cause service interruptions, resource wastes, and po-
tentially compromise water quality [2]. In this context, pressure and flowrate records at
different locations of a WDN can be subjected to real-time processing procedures for the
online detection of these anomalous events. Despite the relevance of existing anomaly
detection approaches [3–7], they generally disregard the rich relationship between sen-
sors throughout time and depend on the presence of abundant leakage observations. In
addition, existing approaches are challenged by five major challenges: (i) irregularity of
consumption patterns; (ii) heterogeneity of leakage profiles, such as size and location;
(iii) poor sensor coverage, limiting the capacity to comprehensively reconstruct the water
dynamics; (iv) limited number of monitored leakages and the generalized lack of informa-
tion regarding their size and exact starting time; and (v) ongoing network changes and
interventions that disrupt the natural behavior of the network.

This work proposes a novel stance on the problem of real-time detection of anomalous
events in WDNs to address the aforementioned challenges. We shift the focus from raw
signal features towards spatiotemporal correlations of pressure and volumetric flowrate
sensors. Correlation-based features are modelled under normal conditions in order to
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dynamically detect anomalous behavior when the normal conditions suffer a disruption.
We take this stance to answer the following five research questions:

• How leakage events affect pairwise correlations?
• How disruptions differ in real versus artificial settings?
• Which correlation coefficients are more sensitive to water leakages? Which correlation-

based parameters yield optimal sensitivity to true positive disruptions?
• Are correlation-based features sufficiently expressive to detect small-to-moderate

sized leakages?
• How early can a leakage be detected?

Accordingly, we show that the disruption of the expected correlations between sensors
are essential to timely detect leakages in large WDNs. Our work further places the following
four additional contributions:

• a comprehensive analysis of how leakage events affect correlations in real versus
artificial WDN dynamics;

• a comparison of correlation coefficients as descriptors of network dynamics;
• an assessment of the impact of leakage size (flowrate) on its detectability; and
• a study on how early can leakages be detected.

The work is organized as follows. First, we highlight the differences of our work
against state-of-the-art contributions. Section 2 provides essential background on the
target task. Section 3 proposes a correlation-based stance for anomaly detection. Section 4
discusses the gathered results in real and artificially-modeled WDNs. Section 5 draws
major implications and highlights future directions.

Related Work

Existing descriptors and predictors of leakages are generally grouped into hardware
and software localization methods [3]. Hardware localization methods – including acoustic
logging, ground-penetrating radars, leakage noise correlators, and gas injection – generally
depend on expensive equipment, manual labour, precedent signalization of potential leak-
ages, and may require the interruption of the network [3,8]. Software-based methods rely
on computational models from pressure or volumetric flowrate data rather than leakage
noise information to offer a faster and cheaper alternative. Computational methods are
either reliant on classic hydraulic modeling or data-driven approaches to infer leakage
signalling rules [3,9]. In this latter class, distinct machine learning approaches have been
proposed to detect abnormalities in WDNs from time series data [10–12], generally su-
pervised in nature. In this context, neural processing and deep learning has currently
gain the focus of some researchers [4–7]. Mounce et al. [13] proposed neural processing
principles to harmonize data obtained from different sensors to classify different types of
leakage in a WDN. Jalalkamali et al. [14] further coupled basis function neural networks
with a genetic algorithm to this end. Mounce et al. [6,7] combine neural networks and
fuzzy inference systems for online leakage detection. Zhou et al. [4] combined spline-local
mean decomposition and convolutional neural networks to guarantee robustness detection
from highly variable signals. Most of the surveyed approaches rely on raw time series
data or individually extracted statistics per sensor. A few works explicitly transform the
original time series observations into a new dimensional space capturing dependencies
across variables [15]. Valizadeh et al. [16] suggested the extraction of time-domain features
along a sliding windows to transform the time signals of flow, pressure, and temperature
at the inlet and outlet of the network into a matrix of features.

Despite the relevance of existing efforts, they generally depend on a considerable
amount of annotated leakages [6,7]. To surpass labeling costs or needs, many approaches
are assessed on simulated data only, which can hide their true performance in real set-
tings [12,14]. In contrast with the surveyed approaches, the proposed principles in this
work, and coupled tool, unsupervisedly map signal data into a new informative space
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composed by spatiotemporal correlation features to support the subsequent learning of
predictive models or direct inspection of localized WDN disruptions.

2. Background

Water distribution networks (WDNs), as the one represented in Figure 1, are generally
composed of a large number of active and passive hydraulic elements. Active elements,
such as pumps and valves, can be operated to control the flowrate and pressure of water in
specific sections of the network. Passive elements, such as pipes and reservoirs, receive the
effects of the operation of active elements [17].

Figure 1. Infraquinta’s WDN, serving Quinta do Lago, a large touristic urbanization in Algarve, Portugal.

Water losses can be categorized as (1) non-physical (or apparent) losses, which are a
result of unauthorized consumption and metering inaccuracies, and (2) physical (or real)
losses, which include leakages from pipes, joints and fittings, leakages through reservoir
floors and walls, and also leakages from reservoir overflows [18]. Leakages are also
commonly defined as the loss of treated water from the network through uncontrolled
means [19]. They are categorized in literature as (1) background leakages, which consist of
the aggregation of leakages small enough to be undetected for long periods of time, and (2)
burst leakages, which are defined as occurring pipe ruptures that usually result in a large
water discharge [18]. The leakage flowrate at node j,

qj = Kj p
β
j , (1)

where pj is the pressure at node j, and β the pressure exponent. The corresponding leakage
coefficient is estimated as a function of the pipe and soil characteristics,

Kj = c×
M

∑
i=1

0.5Lij, (2)

where c is the discharge coefficient of the orifice which depends on the shape and the
diameter, Lij is the pipe length between nodes i and j, and finally, M is the number of pipe
reaches connected to the node j [20].

Water utilities (WUs) are public or private entities responsible for the management of
WDNs, including the handling of anomalous events. To this end, sensors and monitoring
devices are placed throughout the network, with pressure and volumetric flowrate sensors
being the paradigmatic cases.

In some WDNs, sensor coverage may not be sufficient to understand the full trans-
formations entailed by treated water to guarantee its pressurized delivery. In this context,
and as a result of regulatory requirements and customer expectations, the need for WUs to
model water dynamics may require the creation of artificial WDN models [21]. A variety of
paid and public modeling software programs allow the modeling of the network hydraulics
and further generate synthetic data at desirable points in a WDN [22]. EPANET, a public
domain software created by the United States Environmental Protection Agency to simulate
hydraulic dynamics within pressurized pipe networks [21], offers a variety of applications,
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such as sampling program design, hydraulic model calibration, chlorine residual analysis,
and consumer exposure assessment. EPANET further provides an environment for editing
network input data, running simulations, and visualize results.

The signal produced by a real sensor or artificial model is a time series, i.e., a sequence
of N observations made regularly along time, where each observation xt = (x1t, . . . , xkt) ∈
Rk with k ∈ N+ and t ∈ {1, .., N} is univariate when k = 1 and multivariate when k > 1.
Time series can also be decomposed into a set of non-observable (latent) components,
capturing long-term tendencies, the inherently seasonal characteristics of water consump-
tion dynamics, and residual variations due to irregular changes in water dynamics. Their
relationship is generally specified through an additive model if these components are as-
sumed to be mutually independent, and multiplicative model otherwise. Calendar-specific
variations caused, for instance, by changes during holidays can be further detected and
isolated [23].

To assess relationships between sensors, distance and correlation stances can be
pursued. Minkowski distance, also refereed to as `p-norm,

d(x, y) =

(
N

∑
t=1
|xt − yt|p

) 1
p

, (3)

between two univariate time series, x and y, of length N, can be considered a generalization
of the classic Euclidean distance (p = 2) [24]. Other specific cases of the Minkowski distance
are Manhattan (p = 1) and Chebyshev (p→ ∞). To accommodate temporal misalignments
between signals, dynamic time warping (DTW) finds an alignment minimizing the effects
of shifting and distortion in time [25,26]. For example, considering two time series, x and
y, of length M and N, respectively, DTW creates an n×m matrix,

A[i, j] = d(xi, yj) + min{A[i− 1, j], A[i, j− 1], A[i− 1, j− 1]}, (4)

where the element A[M, N] captures the cost associated with the optimal warping path,
i.e., the distance considering the best alignment between the series. Relevant extensions
have been proposed, including derivative dynamic time warping (DDTW) for a focus on
the shape of the time series [27], or piecewise and bounded variants for a faster DTW
computation with optimality guarantees [26,28]. The alternative edit distance on real
sequences (EDR) [29] extends the original Levensthein distance [30] to real-valued time
series, showing inherent properties of interest [31]. Marteau [32] integrated DTW and EDR
into a single distance, called time-warped edit distance (TWED), able to handle signal data
produced from sensors with different sampling rates. Serra and Arcos [29] further showed
that TWED outperforms Minkowski, DTW and EDR distances for time series classification
tasks in different application domains.

Sensors may be dissimilar yet meaningfully correlated. Paradigmatic examples in-
clude co-localized pressure and flowrate sensors, or pressure sensors placed on pipes with
distinct diameters along a non-bifurcated network path. To assess the degree of correlation
between a pair of time series, Pearson’s cross-correlation coefficient (PCC) offers a classic
correlation stance. In contrast with the previous distance stances, amplitude scaling or
translation will not affect the correlation [33]. However, when the signals are non-linearly
correlated, PCC may fail to detect the dependency between the sensors [34]. Also, sample
size (i.e., time series length) generally has a significant effect on the results [35].

Rank correlation coefficients are used to measure an ordinal association, i.e., the extent
to which one variable increases when the other increases without requiring that increase
to be represented by a linear relationship as in PCC. Both Spearman’s and Kendall’s rank
correlation coefficients fall into this category [36].

In order to capture the rich temporal dependencies along the paired observations,
Podobnik and Stanly [37] proposed a detrended cross-correlation analysis (DCCA). This
technique is based on detrended fluctuation analysis (DFA) and allows the analysis of
two non-stationary time series. DCCA is able to correlate signals with a high degree of
non-stationary as observed in the water domain due to irregular consumption patterns.
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However, it show limitations when used in signals exhibiting strong periodicity. Hor-
vatic et al. [38] proposed a variation of DCCA by employing detrending with a varying
polynomial order l. This technique (DCCA-l(n)) allows the analysis of non-stationary
time series with periodic trends. As these methods do not quantify the level of cross-
correlation, Zebende [39] introduced a robust coefficient based on DFA and DCCA meth-
ods, that succeeds in identifying seasonal components in both positive and negative forms
of cross-correlation.

3. Solution

The underlying principle in this work is that disruptions on the expected correlation
between nearby WDN sensors reveal anomalies. For instance, if the expected inverse
correlation between flowrate and pressure is disrupted at a specific region of the WDN,
a nearby leakage may be observed. Or, more intuitively, if the expected levels of direct
correlation between two pressure sensors (or two flowrate sensors) located along a network
path are disrupted, a leakage may be observed at an upstream (midstream) point. The use
of proper correlations captures different forms of relationships:

• sensors of different types, including inverse relationships between pressure and
volumetric flowrate sensors;

• sensors placed along pipes with distinct characteristics, such as diameter and slope;
• sensors subjected to different yet related consumption patterns, including flowrate

differences explained by additive factors.

In this context, this section proposes a mapping from raw signal data space into a
pairwise correlation feature space for the superior description and prediction of anomalous
events in WDNs.

3.1. Correlation-Based Feature Space Construction

As the correlation value between two highly correlated sensors is expected to decrease
when a leakage occurs between them, a new feature space can be inferred using the
correlation value between all pairs of sensors throughout time. To this end, we consider
two correlation methods introduced in Section 2. First, the classical and widely used
Pearson cross-correlation coefficient (PCC),

PCC(x, y) =
∑N

t=1(xt − x̄)(yt − ȳ)√
∑N

t=1(xt − x̄)2 ·
√

∑N
t=1(yt − ȳ)2

, (5)

where x and y are univariate time series extracted from two distinct sensors under the
same time window of length N, and x̄ and ȳ are their corresponding means [33]. Second,
detrended cross-correlation analysis (DCCA) to capture temporal dependencies between
observations. DCCA starts by defining Rk ≡ ∑k

t=1 xt and R′k ≡ ∑k
t=1 yt, where k ≤ N. Then,

it divides both time series into N − n overlapping boxes, each containing n + 1 values,
where 1 ≤ n < N. Considering that each box starts at t and ends at t + n, DCCA defines
the local trend as R̃k,t and R̃′k,t, where (t ≤ k ≤ t + n). For each box, the covariance of
its residuals,

f 2
DCCA(n, t) ≡ (n− 1)−1

t+n

∑
k=t

(
Rk − R̃k,t

)(
R′k − R̃′k,t

)
, (6)

is used to obtain the detrended covariance F2
DCCA, averaging the results of all boxes,

F2
DCCA(n) ≡ (N − n)−1

N−n

∑
t=1

f 2
DCCA(n, t). (7)

In this context, each data instance comprises the correlation values between all pairs
of sensors during a time window. The size of the selected time window is essentially
dependent on the sensors’ sampling rate and target correlation coefficient. For sensors
producing measurements every 5 min, a lower bound of 50 min (10 time points) when
considering classic Pearson correlations is necessary to achieve a compromise between
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reliability and timely detection. As shown in Section 4, anomalous events create disruptions
shortly after observed. As such, detection time is generally significantly lower than the
place time window size.

A sliding window is additionally considered to produce the data instances. Sliding
windows of 5 to 15 min are suggested to allow the early detection of leakages.

Since not all sensors show a significant amount of correlation with each other, specially
when they at distant WDN points, not all features generated in the construction step may
be informative. Additionally, reducing the number of features can lead to a reduced
dependency on some network sensors, and further improve the subsequent description
and detection of anomalies. As pressure and flowrate measurements generally do not
follow a normal distribution, we suggest the non-parametric Kruskal–Wallis H test [40] for
this feature selection step to favor features denoting strong pairwise sensor correlations in
normal situations.

3.2. Leakage Description, Detection and Localization

In the absence of information pertaining to the occurrence of leakages, the data
instances can be used to assess expectations on the monitored correlations. Unexpectedly
high deviations to the precomputed expectations can then be seen as anomalous events.

In the presence of information pertaining to a change in the elements’ state, namely
the presence of a leakage, data instances can be annotated into normal (negative) instances
and, when an event of interest is captured with the correlation time window, anomalous
(positive) instances. It is also important to note that the instances occurring during the
resolution of a leakage are not part of the leakage nor the everyday behavior of the network.
Therefore, they can be neglected. Table 1 shows an example of a real dataset with three
sensors using a time window of 60 min.

In this later context, state-of-the-art predictive models can be trained for the supervised
detection of anomalous events. In the presence of arriving sensor measurements, a new
testing instance can be composed by computing correlations and subjected to classification
as an anomalous versus regular event for the timely signalling of actionable warnings.

Table 1. Illustrative data instances produced from 3 sensors and a time window of 60 min.

Time Window Flowrate Sensor 1
Flowrate Sensor 2

Flowrate Sensor 1
Pressure Sensor 3

Flowrate Sensor 2
Pressure Sensor 3

Class

8 January 2017 05:15–8 January 2017 06:15 DCCA/PCC DCCA/PCC DCCA/PCC Negative
8 January 2017 05:30–8 January 2017 06:30 DCCA/PCC DCCA/PCC DCCA/PCC Negative
8 January 2017 05:45–8 January 2017 06:45 DCCA/PCC DCCA/PCC DCCA/PCC Positive
8 January 2017 06:00–8 January 2017 07:00 DCCA/PCC DCCA/PCC DCCA/PCC Positive

As previously highlighted, the proposed correlation features unravel important spatial
information to assist leakage localization tasks. Indeed, disruptions to the correlation
between volumetric flowrate sensors strongly suggest the presence of a leakage between
their locations within the network structure. Disruptions between pressure sensors can
alternatively be used to reveal both downstream and upstream complications. Finally,
disruptions on the expected correlation between co-located sensors (e.g., disruptions to
the inverse relationship between pressure and volumetric flowrate sensors) suggest that
leakage occurrence is either nearby or along the upstream path.

In this context, and similarly to the introduced principles for leakage detection, the pro-
posed correlation-based feature space can be used to support the learning of predictive
models for localizing a pre-identified anomaly. Here, the location of observed or generated
leakages within the network are the target annotations. In the presence of this informa-
tion, a dataset composed by leakage instances with georeference annotations, whether
categorical or numeric, can be considered to supervisedly learn predictive models or unsu-
pervisedly explore associations between the disruption of correlations and the location of a
leakage occurrence.
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3.3. Decision Support Tool

To facilitate the analysis of normal and disrupted network dynamics, a visualiza-
tion tool is provided to support the assessment of correlations between pairs of sen-
sors in a WDN. The tool was developed using the Bootstrap CSS framework and Plotly
Javascript library. The tool is provided as an open-source software available at https://
github.com/susanachambel/AnomalyDetectionInWaterDistributionNetworks (accessed on
8 September 2021).

The tool consists in two major components, parameterization and visualization. The
parameterization component, shown in Figure 2, allows users to select the (1) desirable
WDN sensors and (2) analysis settings, respectively. In particular, the user can opt between
different WDNs, types of sensors, periods of time, and correlations of interest.

(a) Network selection facilities. (b) Correlation selection facilities.

Figure 2. Decision support tool: parameterization component.

Regarding the visualization component, shown in Figures 3 and 4, it offers a com-
pound visualization the produced time series and an exploration of the correlations between
the pairs of selected sensors. Spatiotemporal zoom-in-and-out facilities are further pro-
vided to the end user (Figure 3). In particular, the correlogram (Figure 4) offers sorting
facilities by correlation value and geographical distances between sensor locations.

Figure 3. Decision support tool: series visualization with sensor and temporal selection facilities.

https://github.com/susanachambel/AnomalyDetectionInWaterDistributionNetworks
https://github.com/susanachambel/AnomalyDetectionInWaterDistributionNetworks
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Figure 4. Decision support tool: correlogram section with coefficient and spatial sorting and zoom-
ing facilities.

4. Results

Results gathered from the assessment of the proposed correlation-based principles
aim at answering the formerly introduced research questions (Section 1). How leakage
events affect pairwise correlations? How disruptions differ in real versus artificial settings?
Which correlation coefficients are more sensitive to water leakages? How early can a
leakage be detected? Which correlation-based parameters yield optimal sensitivity to true
positive disruptions?

Accordingly, Section 4.1 introduces the Infraquinta’s case study, describing the prop-
erties of the target real and synthetic WDN settings. Section 4.2 assesses how pairwise
correlations are disrupted in the presence of anomalous events. Section 4.3 shows how
the correlation changes over time in respect to the starting moment of leakage occurrence.
Section 4.4 assesses the sensitivity of correlation-based stances to different leakage sizes.
Finally, Sections 4.5 and 4.6 present how windowing and DCCA parameters affect the
ability to assess disruptions to expected behavior.

4.1. Case Study: Infraquinta

The Infraquinta’s WDN is selected as our study case. Infraquinta serves Quinta do
Lago, a tourist resort with extensive irrigation, large hotel units, and irregularities in the
occupation of households. Therefore, Infraquinta’s WDN suffers from highly irregular
consumption patterns, creating a challenging setting. The network is equipped with
pressure and flowrate sensors.

4.1.1. Artificial WDN Data

The synthetic data was generated using an EPANET model of Infraquinta’s WDN,
originating 18696 chunks of volumetric flowrate and pressure data. The flowrate data
comprises data extracted from 7 network points, which location is equivalent to the lo-
cation of flowrate sensors in the actual Infraquinta’s WDN (Figure 5). According to
WU experts, the location of the existing pressure sensors is not suitable to identify most
leakages. In this context, pressure data was extracted at 21 network points, where new
pressure sensors could be added. The precise location of these sensors, together with the
hydraulic model of Infraquinta’s WDN in EPANET, is provided as supplementary material
at https://github.com/susanachambel/AnomalyDetectionInWaterDistributionNetworks
(accessed on 8 September 2021). For simplification purposes, we refer to these 28 network
points as sensors. Negative measurements, caused by the configuration of pipe directions
in the EPANET model, can be found in data. The absolute value of measurements is
therefore considered. Moreover, we found measurements very close to zero in flowrate
sensors. Since there was no evidence of the existence of water flow in those situations,
flowrate values below 1 × 10−3 are neglected. Each generated data chunk collects measure-

https://github.com/susanachambel/AnomalyDetectionInWaterDistributionNetworks
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ments along a typical day, and encompasses one leakage with a specific size and location.
The leakages were generated using six leakage coefficients, namely, 0.05, 0.1, 0.5, 1.0, 1.5
and 2.0. The higher the coefficient, the larger the leakage is. In that way, our data covers all
3116 points of the network and six leakage sizes (18,696 = 3116 × 6). These leakages run
for approximately 4 h and can happen anywhere in the chunk.

As expected, and shown in Figure 6, we can identify a clear seasonality in synthetic
time series. Under these controlled conditions, disruptions in the network are more
noticeable. We can also see that flowrate and pressure have well-established inverse
correlation. Lastly, Table 2 present the descriptive statistics of the produced synthetic data,
offering a quantitative summary of the synthetic sensors from chunk 697, taken as an
illustrative example.

Figure 5. Overview of the real sensors’ location in Infraquinta’s WDN.

Figure 6. Synthetic time series of sensors 4 and 25 from chunk 697.
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Table 2. Statistics of synthetic pressure sensors 1 to 21 and flowrate sensors 22 to 28 from chunk 697.

Pressure Sensors

1 2 3 4 5 6 7 8 9 10 11 12 13 14

mean 23.13 39.43 60.10 39.91 27.37 40.71 34.01 43.92 48.14 37.59 48.80 33.30 48.33 43.53
std 1.26 1.09 0.56 3.23 0.08 1.33 1.97 2.15 2.03 2.08 1.97 1.97 1.98 2.83

min 19.43 36.21 58.47 30.78 27.07 35.57 26.82 35.51 40.92 29.35 41.52 26.12 41.11 35.82
25% 22.50 38.87 59.67 37.90 27.35 40.30 33.03 43.01 47.00 36.57 47.84 47.84 32.33 47.36
50% 23.54 39.79 60.30 41.17 27.39 41.12 34.20 44.12 48.34 37.64 48.97 48.97 33.50 48.54
75% 24.13 40.29 60.55 42.44 27.43 41.57 35.42 45.51 49.69 39.15 50.22 50.22 34.71 49.74
max 24.73 40.82 60.78 43.27 27.47 42.40 38.06 48.11 52.25 41.69 52.85 37.36 52.41 46.58

Pressure Sensors Volumetric Flowrate Sensors

15 16 17 18 19 20 21 22 23 24 25 26 27 28

mean 42.76 30.66 43.80 32.56 34.80 25.94 25.99 8.63 87.68 177.68 68.68 28.96 0.00 0.24
std 4.66 4.59 4.53 0.61 0.49 0.77 0.45 5.50 18.30 35.93 28.46 11.69 0.00 1.32

min 30.84 19.30 32.66 30.66 33.14 23.28 24.48 1.66 40.77 97.86 19.15 9.00 0.00 0.00
25% 41.35 40.33 28.29 41.44 32.16 34.52 25.56 4.84 77.36 149.52 44.61 19.56 0.00 0.00
50% 44.66 44.04 31.98 45.09 32.59 34.85 26.20 7.06 89.02 177.39 62.03 26.43 0.00 0.00
75% 45.83 46.24 34.09 47.21 33.01 35.18 26.48 10.48 97.87 199.23 93.02 36.41 0.00 0.00
max 48.76 36.57 49.66 33.65 35.66 26.78 26.79 30.18 148.58 279.15 136.23 58.02 0.00 11.77

4.1.2. Real WDN Data

The available real data were extracted from 7 volumetric flowrate and 6 pressure
sensors, identified in Table 3, along the entire year of 2017. The WDN monitoring system
has a granularity of approximately 60 s. Regarding leakages, out of 16 occurrences reported
in 2017, we have complete information about 12, as shown in Table 4. It is also important to
note that although we know the time leakages were reported, we do not know when they
actually started nor its size. The produced measurements are recorded at irregular time
steps. To estimate observations at a regular sampling (equally distant points), we applied a
simple linear interpolation method.

Table 3. Correspondence between the sensor location (Figure 5) and descriptors.

ID Volumetric Flowrate Sensors ID Pressure Sensors

1 APA Caudal Atual 3 PB2 Pressão Caixa 1
2 PB2 Caudal Caixa 1 7 RSV R5 Pressão Caixa 2
6 RSV R5 Caudal Caixa 8 QV Sonda de Pressão
9 QV Caudal 11 RPR Pressão Pre
10 HC Caudal 13 RPR Pressão Grv
12 RPR Pre 15 APA Pressão
14 RPR Caudal Grv

Table 4. Reported leakages in 2017.

Reported Time Resolution Start Resolution End

1 8 January 2017 08:30 8 January 2017 09:00 8 January 2017 14:00
2 7 February 2017 12:10 7 February 2017 12:15 7 February 2017 16:00
3 1 May 2017 04:20 1 May 2017 04:45 1 May 2017 10:35
4 7 May 2017 08:25 7 May 2017 09:15 7 May 2017 17:30
5 12 May 2017 11:15 12 May 2017 14:00 12 May 2017 16:20
6 13 June 2017 10:18 13 June 2017 11:03 13 June 2017 14:47
7 5 July 2017 03:00 5 July 2017 03:30 5 July 2017 10:45
8 9 September 2017 09:00 9 September 2017 09:15 9 September 2017 12:30
9 12 September 2017 09:35 12 September 2017 09:40 12 September 2017 11:30
10 1 December 2017 19:02 1 December 2017 19:30 1 December 2017 10:57
11 8 December 2017 16:40 8 December 2017 17:30 8 December 2017 20:30
12 12 November 2017 12:26 12 November 2017 13:40 12 November 2017 16:50
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Unlike the artificial WDN, all 13 sensors from Infraquinta are concentrated in three
major areas, as shown in Figure 5. Consequently, the lack of sensor coverage may negatively
impact the ability to detect leakages that do not occur between these areas.

As expected, the time series from Infraquinta’s WDN are generally more complex
than the synthetic ones, i.e., contain more noise, are vulnerable to network changes, and are
exposed to irregular consumption patterns. All these factors make the analysis of time series
more difficult. Figure 7 shows the decomposed components of two weeks of data from
sensor 6 using an additive model. Although we are able to observe a clear seasonality,the
time series contains large residuals and its trend does not convey enough information
about what happened during these weeks. Lastly, Table 5 presents the descriptive statistics
of the real dataset. As sensors 8, 11, 13, and 15 appear to be almost constant during the
whole year, they are not considered in the subsequent correlation-based analysis.

Figure 7. Additive decomposition of flowrate sensor 6 from 15 to 28 May 2017.

Table 5. Descriptive statistics of the real sensors from 15 to 28 May 2017.

Pressure Sensors Volumetric Flowrate Sensors

3 7 8 11 13 15 1 2 6 9 10 12 14

mean 5.62 2.97 2.80 2.30 0.40 2.51 57.99 30.83 98.80 18.86 6.75 155.29 68.36
std 0.43 0.31 0.01 0.01 0.00 0.03 34.05 14.19 32.67 12.22 12.08 47.43 36.04
min 3.80 1.60 2.60 2.10 0.40 1.96 4.44 0.00 31.30 1.50 0.00 58.91 5.10
25% 5.40 2.80 2.80 2.30 0.40 2.50 28.94 20.70 75.59 9.20 0.00 119.21 38.30
50% 5.73 3.09 2.80 2.30 0.40 2.50 49.14 28.45 91.36 14.53 0.50 146.42 63.30
75% 5.93 3.20 2.80 2.30 0.40 2.50 83.70 39.41 119.80 27.20 7.10 186.86 94.30
max 6.30 3.50 3.03 2.40 0.40 2.70 159.80 78.46 208.30 56.20 51.40 331.95 186.37

4.2. Correlation Analysis

Figures 8 and 9 assesses expectations and disruptions on the relationships between
the WDN sensors accordance with the proposed feature construction step. To this end,
one data instance can be visualized as a heatmap, where the presented values corresponds
to a correlation coefficient (DCCA or PCC) between a pair of sensors, with the blue scale
representing a positive correlation and the red scale representing an inverse correlation.

Regarding the artificial WDN, Figure 8 provides the correlogram of two synthetic
instances, one negative (regular behavior) and on positive (burst occurrence) from the same
chunk. Figure 8a uses DCCA as the correlation method, while Figure 8b uses PCC. When
focusing on the regular behavior, we can observe that pairs of sensors of the same type are
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directly correlated, while pairs of different types are inversely correlated. DCCA and PCC
also obtained similar coloring patterns, but PCC looks more robust against network disrup-
tions since its correlations are stronger in both instances. Consequentially, the difference
to the negative instance with PCC is less noticeable than with DCCA. Therefore, DCCA
appears to be more sensitive to leakages in the synthetic setting and therefore contribute to
better results in the subsequent leakage detection step than PCC.

(a) Detrended cross-correlation analysis (DCCA)

(b) Pearson’s correlation coeficient (PCC)

Figure 8. Correlograms of two synthetic instances from chunk 702 using a window of 40 time points.

Considering real measurements produced by the 13 selected sensors in Infraquinta’s
WDN, Figure 9 provide a comparable analysis. We can observe that, although the overall
correlations are not as strong as in the synthetic dataset, we can clearly differentiate between
regular and disrupted behavior. We also noticed that DCCA seems to consider most sensors
of the same type as directly correlated and sensors of different types as inversely correlated.
However, when using PCC, these correlations are not defined as clearly. When contrasting
the negative and positive instances, while most correlations became weaker in PCC, some
grew stronger in DCCA, highlighting the role of DCCA for describing anomalies.
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(a) Detrended cross-correlation analysis (DCCA)

(b) Pearson’s correlation coeficient (PCC)

Figure 9. Correlograms of two real instances in 7 February 2017, using a 120 min time window.
Negative instance occurs between 10:00 and 12:00, while the positive one between 14:45 and 16:45.

Overall, Figures 8 and 9 show preliminary empirical evidence in favor of the viability
of the proposed correlation principle to detect and model disruptions to normal behavior.

4.3. Correlation over Time

Another critical element to assess is how correlation evolves, especially before and
during the leakage. To understand how the correlation changes over time in our synthetic
setting, we created a sliding window that moves over the time series in intervals of 10 min.
Figure 10 shows the DCCA and PCC over time in three selected pairs from the same chunk.
Before the leakage, DCCA and PCC remained between 0.5 and 1, negative or positive,
depending on whether the pair is positively or negatively correlated. Moments after the
leakage occurred, the correlations got weaker and closer to zero until they started getting
stronger again. We can infer that this point corresponds to when the time window includes
more leakage points than non-leakage points. Figure 10 also shows that DCCA oscillates a
lot more than PCC, causing the impact of the leakage to be more apparent in DCCA.
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Figure 10. DCCA and PCC over time in three selected sensor pairs from chunk 702 using a time
window of 40 time points.

Regarding the real setting, shown in Figure 11, the behavior of DCCA and PCC is
very similar. Both methods are more unstable before the leakage, which is probably an
indication that these methods cannot accurately quantify the correlation value between
time series due to the large volume of noise present. Although the differences between the
negative and the positive instances are not as striking as in the synthetic dataset, we can
still notice a subtle change after the leakage. Since PCC has not outperformed DCCA so far,
and to make the analysis less exhaustive, the next sections of this chapter will only include
the results obtained through DCCA.

Figure 11. DCCA and PCC over time in three selected pairs from 7 February 2017, using a time
window of 120 min.

4.4. Correlation in Small Leakages

For the experiments in the synthetic setting, we have been using a leakage coefficient
of 2.0, which makes it a medium-sized leakage. However, since smaller leakages can
also happen in WDNs, it is vital to understand how DCCA responds to them. Therefore,
Figure 12 compares the disruption on the DCCA values for six different leakage coefficients.
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Figure 12. DCCA variation with the leakage coefficient in three selected pairs from chunk 702 using
a time window of 40 time points.

As we can see, the DCCA value for coefficients below 0.5 is very close to the value
obtained without a leakage. However, the correlation weakens considerably for leakages
above 0.5. As expected, larger leakages seem to cause a higher disruption in DCCA than
the smaller ones. Consequently, smaller leakages may be more difficult to detect than larger
ones. Although we cannot perform this analysis for the real setting because we do not
have information about the leakage sizes, we hypothesize from the gathered results that
the disruptions caused by smaller leakages (coe f ≤ 0.1) may be hard to detect.

4.5. Time Window Size

Until now, we have been using a time window of 40 time points for the synthetic
setting. Figure 13 helps us understand how DCCA is affected by different time windows
between 16 and 40 time points. Through the analysis of the positive and the negative
instances, we can see that the difference between them seems considerably random until
32 time points. Around that period, DCCA values start diverging, peaking at 40 time
points. One possible explanation is that DCCA could not accurately identify the degree of
correlation with less than 32 points. Lastly, since the 40 time point window showed the
largest correlation difference between instances, it may contribute to better results in the
classification step than the others.

Figure 13. Impact of time window size on DCCA in three selected pairs from chunk 702.
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Regarding the real setting, we have been using a time window of 120 min. Figure 14
shows how DCCA is affected by four different time windows between 60 and 240 min.
Although the 60 min time window fluctuates a lot more than the others, all of them behave
similarly over time. We can also see that the smaller its size, the greater its fluctuation.
Focusing on the time window of 60 min, we can see that too much variation disguises the
leakage. Contrarily, 240 min causes so much stability that the correlation between sensors
3 and 7 does not change during the leakage. Lastly, the time window of 120 min seems to
be very balanced, i.e., it does not fluctuate as much as one of 60 min but varies enough to
let us still notice the difference between negative and positive instances.

Figure 14. Impact of time window size on DCCA in three selected pairs from from 7 February 2017.

4.6. DCCA Parameterization

As introduced in Section 2, DCCA is dependent on the parameterized size of the over-
lapping boxes. As such, it is important to assess its impact. Considering that 1 ≤ n < N,
where N is the size of the time window, Figure 15 plots the DCCA for n values between
1 and 39 points for the synthetic setting. We can observe that when n = 1, the difference
between the DCCA values for the negative and the positive instances reaches its peak.
For n > 1, the difference between instances slowly grows until n = 39, its best value after
n = 1. Peak values may contribute to support the classification of anomalous behavior.
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Figure 15. Impact of parameter n on DCCA in three selected pairs from chunk 702 using a time
window of 40 time points.

To understand how n affects DCCA in the real setting, we chose four different boxes’
sizes, corresponding to 1/2, 1/3, 1/4 and 1/5 of the size of the target time window.
Figure 16 shows how the correlation of each pair is affected by each n value. Although all
four values of n seem to follow the same pattern, n = 59 stands out from the others as it
fluctuates more between negative and positive instances.

Figure 16. Impact of parameter n on DCCA in three selected pairs from 7 February 2017, using a time
window of 120 min.

5. Discussion and Concluding Remarks

This work proposes a shift on the current way of modeling anomalous events in WDNs
by placing the emphasis on the analysis of time-varying pairwise correlations between
sensors spatially distributed along a network. Experiments conducted in a controlled
environment and in a real WDN with highly irregular consumption patterns confirm the
relevance of the introduced principles for leakage detection.

In particular, we show that leakages of varying magnitudes cause unexpected disrup-
tions on the sensor relationships at all levels–between pressure sensors, flowrate sensors,
and between pressure-flowarate paired sensors. DCCA generally provided better results
against classic PCC coefficients, suggesting the relevance of temporal cross-correlation
stances. In addition, we observed that increasing the size of the sliding window does
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not always increase predictive accuracy and might camouflage the leakages. Specifically,
a 60 min window provided better results than a 180 and a 240 min window, and exper-
iments further showed that the maximum disruption of the correlation happens when
the middle of the time window aligns with the beginning of the leakage, suggesting that
small-to-medium sized bursts can be detected within 15 to 30 min.

The proposed correlation-based feature space is able to capture leakage perturba-
tions in a large WDN with sparse sensor coverage, attesting the validity of the proposed
contributions under suboptimal sensor placement. In this context, the assessment of the
proposed methodology in WDNs with broader sensor coverage is identified as an impor-
tant prospective direction to assess the generalization of the collected observations and
acquire a more comprehensive understanding on how correlation disruptions vary with
sensor distance and density.

We further highlight three major additional directions. First, a comprehensive com-
parison of predictive models for leakage detection from pairwise correlations. Given the
generally low number of annotated leakages, special attention needs to be paid to the
incorporation of class balancing principles along the learning process. Second, the dis-
crimination between anomalies and ongoing changes in the network dynamics caused,
for instance, by interventions. In particular, the proposed approach can be extended in
order to dynamically update the learnt correlation-based expectations in the presence of
events that change the network topology, such as network extensions and valve closures-
or-openings. Finally, an assessment of the relevance of the proposed methodology for
isolating the localization of bursts from the most disrupted sensor pairs, in accordance with
the introduced principles (Section 3.2).

The proposed correlation-based views open an important door in water research as
their applicability traverses many applications of interest. The underlying pairing principle
can be used to guide the placement of new volumetric flowrate and pressure sensors, while
the analysis of disruptions can be further pursued to dynamically detect changes in the
status of active hydraulic elements, fraud events, and background leakages.
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