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Abstract: This paper evaluates six soft computational models along with three statistical data-driven
models for the prediction of pan evaporation (EP). Accordingly, improved kriging—as a novel
statistical model—is proposed for accurate predictions of EP for two meteorological stations in
Turkey. In the standard kriging model, the input data nonlinearity effects are increased by using
a nonlinear map and transferring input data from a polynomial to an exponential basic function.
The accuracy, precision, and over/under prediction tendencies of the response surface method,
kriging, improved kriging, multilayer perceptron neural network using the Levenberg–Marquardt
(MLP-LM) as well as a conjugate gradient (MLP-CG), radial basis function neural network (RBFNN),
multivariate adaptive regression spline (MARS), M5Tree and support vector regression (SVR) were
compared. Overall, all the applied models were highly capable of predicting monthly EP in both
stations with a mean absolute error (MAE) < 0.77 mm and a Willmott index (d) > 0.95. Considering
periodicity as an input parameter, the MLP-LM provided better results than the other methods among
the soft computing models (MAE = 0.492 mm and d = 0.981). However, the improved kriging method
surpassed all the other models based on the statistical measures (MAE = 0.471 mm and d = 0.983).
Finally, the outcomes of the Mann–Whitney test indicated that the applied soft computational models
do not have significant superiority over the statistical ones (p-value > 0.65 at α = 0.01 and α = 0.05).

Keywords: pan evaporation; machine learning models; improved kriging; SVR; MARS

1. Introduction

One of the key elements of water resources management and hydrological projects is
to estimate the evaporation in a given region. This is even more important in managing
water resources in arid and semi-arid regions [1]. Some researchers have applied the
Budyko framework, which is a straightforward model that considers only rainfall and
potential evaporation as the required input for simulating and controlling various water
management plans [2,3]. Simply, knowing the accurate amount of the evaporation is
essential for water resources management projects.

Researchers have applied different approaches for modeling pan evaporation (EP)
and evapotranspiration in the literature classified as (i) physically-based combination
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models that take into account mass and energy conservation principles; (ii) semi-physical
models that use either mass or energy conservation; and (iii) data-driven models including
soft computing and statistical techniques [4–6]. The shortage of EP data (temporally or
spatially) is a major problem in some areas because it is difficult and expensive to install
evaporation pans. In these cases, applying data-driven and soft computing models for
estimating water evaporation is an effective and appropriate approach [7–9]. The accuracy
of modeling approaches is the most important parameter to take into account.

Several researchers have used climatic variables to estimate EP values [10,11]. Climate-
based approaches are appropriate methods when provided with specific climatic data,
which cannot always be easily obtained from a determined area. Similarly, data-driven
approaches, including computational intelligence and machine learning are also suitable
for estimating the EP. Recently, regular hybrid and integrative data-driven models (e.g.,
artificial neural networks (ANN) as well as support vector machine (SVM) and adaptive
neuro-fuzzy inference systems (ANFIS)) have been used for estimating the EP [7,12–20].

Tabari et al. [21] estimated the daily EP of a region by using different methods (ANNs
and multivariate nonlinear regression (MNLR)) and concluded that ANN was more accu-
rate than MNLR. Kişi et al. [22] applied three soft computing models, such as M5tree, ANN,
and chi-squared automatic interaction, to predict the daily EPs in Turkey. They reported
that the ANN model performed better than the two others. Tezel and Buyukyildiz [23]
investigated the usability of ANNs and ε-SVR to estimate monthly EP. According to the
performance criteria, the ANN algorithms and ε-SVR had the same performance. Tezel and
Buyukyildiz [23] compared the accuracy of SVM basis ε-support vector regression, radial
basis function (RBFNN), and multilayer perceptron ANN (MLPNN), and showed that the
latter provided the most accurate results. Keshtegar and Kisi [24] proposed the modified
response surface method (RSM) and modified RSMs have been compared with ANFIS
and M5Tree. Wang et al. [25] investigated the capabilities of ANFIS, M5Tree, and fuzzy
genetic (FG) for six stations in the Yangtze River Basin. The results stated that the FG model
generally produced better results. In another study, Wang et al. [26] compared the abilities
of FG, SVR, MARS, M5Tree, and multiple linear regression (MLR). The overall results
indicated that the soft computing models generally performed better than the regression
methods. Ghorbani et al. [27] applied a hybrid MLPNN for daily EP prediction at two sta-
tions. The results showed that the MLPNN model provided better performance compared
to the SVM model. Majhi et al. [28] applied a deep ANN model and compared it with the
traditional MLPNN for three areas of the Chhattisgarh State in India. The findings of the
study showed that the deep ANN model was more accurate than the traditional MLPNN.
The abilities of ANN and extreme learning machine (ELM) models have been compared
in predicting EP for two stations in Algeria by Sebbar et al. [29]. The results indicated
that the ELM could be successfully used to estimate the daily EP [29]. Al-Mukhtar [30]
investigated the applicability of quantile regression forest for EP prediction in arid areas.
In comparison to conventional NNs and linear regression models, the applied quantile
regression forest provided better results. Mohammadi et al. [31] predicted monthly EP
using integrative ANFIS, MLP and RBNN models for two stations in Iran. The results
showed that the integrative ANFIS model acted better compared to the MLP and RBNN.
Yaseen et al. [32] applied several machine learning models, including ANN, classification
and regression tree (CART), gene expression programming and SVM for predicting EP in
arid and semi-arid areas. The findings of the study indicated that the SVM was superior to
the other applied models.

A literature review related to the kriging approach revealed that it has never been used
to predict PE. However, this method was applied for the prediction of solar radiation [33]
and the daily total dissolved gas in aquatic systems concentration by Heddam et al. [34].
The kriging interpolation, which is a flexible regression tool for approximating any nonlin-
ear problem, can be introduced as a potential method for providing accurate EP predictions.

Indeed, soft computing techniques have provided satisfactory results in EP predic-
tion [35]. The majority of EP modeling reported the superiority of soft computing models
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over statistical models [21,26,36]. The main objective of this study is to challenge the
capability of soft computing techniques versus statistical data-driven models.

The present study investigates the accuracy of six soft computing methods, including
M5tree, MARS, SVR, RBFNN, Levenberg–Marquardt perceptron ANN and conjugate gra-
dient perceptron ANN and compares them with three different statistical approaches, RSM,
kriging, and improved kriging. In improved kriging, the basic functions are transferred
from polynomial to exponential functions to estimate monthly EP. In kriging models, the
second-order polynomial function is applied as regressed function to predict nonlinear
challenges. This function may not have predicted an accurate result for complex problems
such as EP. Thus, novel improved modeling is parented to enhance the regressed function
applied in original kriging. It uses a nonlinear transformation as an exponential map for
input variables of the EP predictions as a complex engineering problem with nonlinear ef-
fect that the accurate results in the modeling process is a cap for prediction of the statistical
regression approaches such as kriging and RSM models.

To our best knowledge, similar studies have not been carried out in applying the
above-mentioned methods for the estimation of EP. The subsequent parts of the rest of
the paper are organized as follows: In Section 2, the two stations are introduced, and the
data sets are presented. The third section deals with nine modeling methods applied in
statistical and soft computing approaches. The results of the predicted EP are presented
and compared in the fourth section. The fifth section of the paper deals with the hypothesis
testing and relevant discussion. Finally, the last section provides the concluding remarks of
the present work.

2. Case Study and Dataset

The input parameters for this study are monthly climatic data such as solar radiation
(SR, as Langley), sunshine hours (HS), relative humidity (RH), wind speed (WS as m/s)
as well as the minimum (Tmin as ◦C) and maximum temperature (Tmax as ◦C). Two
stations in the Eastern Mediterranean Region as Adana (latitude 37.22◦ N, longitude
35.40◦ E and altitude 20 m) and Antakya (latitude 36.33◦ N, longitude 36.30◦ E and altitude
100 m) were selected for the comparing modeling results. The map of the study area
is illustrated in Figure 1. The studied area has a climate with cool and rainy winters,
and moderately hot and dry summers and it receives yearly rainfall amounts of between
580 and 1300 mm. Data were gathered from the Turkish State Meteorological Service
(TSMS) having a modernized calibration center. The calibration center was accredited by
the Turkish Accreditation Agency to ensure the measurements’ reliability and to provide
the validity of the measurements’ quality around the world. Temperature, RH, and WS
calibration laboratories are accredited with TS EN ISO/IEC 17025 standards and work
in accordance with this standard. Global radiation and wind direction data are also in
accordance with the TS EN ISO/IEC 17025 standards. The evaporimeter used for obtaining
pan evaporation in Turkey is the US Weather Bureau Class A pan. The raw datasets were
directly utilized in the presented study without pre-processing. The available data period
covers September 1981 to March 2016 for Adana and from October 1983 to December 2010
for Antakya. There is no gap in the data.

In Figure 2, the general characteristics of the independent variables and the target
value for the (a) Adana and (b) Antakya stations are shown using the box-whisker plot and
related correlation values. These plots graphically depict the variability of each parameter
in terms of minimum, quartiles, and maximum values. Moreover, outliers are plotted as
individual points.
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The Pearson correlation coefficient was applied to analyze the effects of Tmax, RH,
WS, SR, and HS on EP. It can be seen from Figure 2 that there were high correlations
between EP, Tmin, Tmax, SR, and HS for both Stations. It is worth noting that the wind
speed showed high correlation with EP for the Antakya Station (correlation = 0.804),
whereas the reciprocal value of the WS correlation for the Adana Station is much lower
(correlation = 0.245).

For both of the Stations, the correlation between the relative humidity (RH) and the
EP was weaker than the other parameters. However, in the Antakya Station, the correlation
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value of RH is negative, which implies that the increase in relative humidity might lead to
a decrease in EP. The main factors responsible for the EP in both Stations include sunshine
hours (HS), Tmin, and SR. In the present study, data was split into two sets, 70% (for
training) and 30% (for testing) for executing and assessing the applied models.

As for the sensitivity analysis, the best subset regression using adjusted R-Sq and
Mallows CP was applied. The results indicated that all of the input variables have a
significant impact on the EP variable; hence, all of the independent parameters are used as
the input vector for constructing the models. Considering a descending order (from the
most influential to the least influential independent variables on PE), the following results
were achieved:

• Antakya Station: HS, Tmin, SR, WS, Tmax, and RH.
• Adana Station: HS, Tmin, SR, Tmax, WS, and RH.

3. Methods

Nine different approaches in terms of two main categories of statistical (RSM, kriging
and improved kriging) and machine learning models (SVR, MARS, M5Tree, MLP-LM,
MLP-CG and RBNN) were implemented for estimating EP.

3.1. Artificial Neural Networks: MLP-LM, MLP-CG, RBFNN

The ANNs are adaptable learning structures constructed from different interconnected
layers and a number of processing elements (called artificial neurons). So far, several types
of ANNs were developed and implemented for simulating and predicting hydrological
problems such as evaporation [37]. Among all the developed models, the multilayer
perceptron (MLP) and radial basis function neural network (RBFNN) have been used
in several applications, and their potential in capturing nonlinear features of complex
phenomena were proven by the following relation [38,39].

Ŷ(x) = [β0 +
M

∑
j=1

wj f (β j +
NV

∑
i=1

wijxi)] (1)

where β0, βj, wj, wij are respectively the biases and weights of the output and the M-hidden
layer and NV represents the number of input variables. f is an activation function for
hidden neurons in the MLP and RBFNN models. Sigmoid functions were considered for
the MLP and radial basis function were applied for the RBFNN models.

It should be noted that MLPs [38] and RBFNNs [40] can be considered as the funda-
mental versions of feed-forward networks with a supervised learning approach. In this
study, two types of MLP networks have been developed using two different approaches
for the learning algorithm: (1) the Levenberg–Marquardt algorithm, and (2) the conjugate
gradient (CG) algorithm. In addition to the MLP-LM and MLP-CG neural networks, the
efficiency of RBFNN was also challenged for the evaporation simulation [41].

3.2. Support Vector Regression (SVR)

The rapid application of SVMs in modeling various problems in engineering urges
researchers to apply different types of SVMs to different research fields. The core analogy
of constructing SVMs is to map variables from input space into high-dimensional feature
space by using special functions as below [42,43]:

Ŷ(x) = β0 +
N

∑
i=1

(αi − α∗i )K(x, xi) (2)
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where β0 is bias and K(x, xi) is the Kernel function for transferring the input data from
x-space to N-set feature space which is computed as below relation [44]:

K(x, xi) = exp(−‖ x− xi ‖ 2

2σ2 ) (3)

where, σ is the parameter of the Kernel function. αi and α∗i represent the Lagrange
multipliers as unknown coefficients in the SVR model. Recently, the application of the
SVR model in hydrological time series modeling has provided promising outcomes [45].
Several researchers have already claimed that SVR is efficient in modeling evaporation
processes [23,46].

3.3. Multivariate Regression Spline (MARS)

Proposed by Friedman in 1991 [47], multivariate adaptive regression spline is a proce-
dure for fitting adaptive nonlinear functions using a piecewise nonparametric regression
method. Unlike the black box models (e.g., ANNs), MARS models are deterministic, which
means that in the final regression form the input variables are identified and the interactions
between them are specified. Therefore, the MARS models are much easier to be interpreted
than the other techniques [48–50]. Considering X as the only independent variable and
Y as the dependent variable (target value), it can be seen in Figure 3 that the space of X
variable is divided into three sub-regions with three different equations. These equations
relate the independent variable space to the target of the system.
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The endpoints of the segments of each sub-region are called knots (Figure 3). The
resulting piecewise regression lines (basis functions, BFs) make the final regression form
flexible and appropriate for capturing trends from linear functions as bellow [51]:

Ŷ(x) = β0 +
m

∑
i=1

βiBFi (4)

where βi = 0, 1, . . . , m are unknown coefficients and m is the number of basis functions
(BF) which is determined using a piecewise linear function as follows [33]:

BFi = {max(0, x− Ci) , max(0, Ci − x)} (5)

where C represents the knot which is a constant coefficient. By considering more inde-
pendent variables, more equations will be added to the final regression form. In order to
determine the location of knots, an adaptive regression algorithm is used. In addition, BFs
are generated by a stepwise searching process. In brief, the main procedure of the MARS
method is categorized into two parts of the forward and backward phases. The location
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of potential knots and BFs equations are specified in the forward phase. To modify and
improve the modeling accuracy, unnecessary and the least effective variables are removed
in the backward phase [48]. Further details for the mathematical procedure of the MARS
method can be obtained from Friedman [47].

3.4. M5 Model Tree

Quinlan (1992) introduced a piecewise linear regression model, called the M5 model
tree (M5Tree) [52,53], which has a tree structure based on binary decisions. The linear
regression functions, which develop interconnection between the input and output vectors,
can be extracted at the terminals (leaves) nodes.

Constructing an M5tree model requires two distinct phases; first the initial tree is
generated and is then pruned. In the first phase, data sets are split into several subsets,
which create a decision tree. In other words, the M5 model tree splits the data set space into
subsets (sub-spaces) and generates a linear regression model [54,55]. As can be observed
in Figure 4, the two-dimensional dynamic space of the input vector (X1 & X2) is split
schematically into five subsets.
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The splitting criterion is determined by assuming the standard deviation (sd) of the
class values that reach a node. Based on the sd, the standard deviation reduction (SDR) can
be calculated as the following relation [13,56]:

SDR = sd(T)−
n

∑
ı=1

|Ti|
|T| sd(Ti) (6)

where T stands for the set of examples that reaches the node, and Ti is the subset of
examples with the ith outcome of the potential set. After the first phase (viz. constructing
the initial tree), a huge tree-like structure might be generated, which may cause poor
generalization. To cope with this problem, in the second phase, the overgrown tree is
pruned.

3.5. Response Surface Methodology

The response surface methodology (RSM) presents the advantage of multiple regres-
sion analysis via a statistical technique to simulate a response space based on quantitative
data obtained from the extracted multivariate equations as presented below [57]:

Ŷ(x) = β0 +
NV

∑
i=1

βixi +
NV

∑
i=1

NV

∑
j=i

βijxixj (7)

where NV denotes the number of input variables. β0, βi and βij are unknown coefficients
for polynomial terms. During the mathematical process, RSM explores the influence of
multiple independent variables on the response parameter and optimizes the trending
procedure by tuning the number of required experiments [58–61].
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3.6. Kriging Interpolation Approach

The kriging basis nonlinear model is a well-known interpolation approach to approx-
imate geological problems [62]. It is defined by using stochastic terms according to the
following relation [63,64]:

Ŷ(x) = β̂ f + rT(X)R−1(Y− β̂ f
)

(8)

where β̂ =
[
β̂1, β̂2, . . . , β̂m

]T
are regression coefficients for n-support points with m basic

functions. The unknown coefficients are computed as follows [65]:

β̂ =
(

f T R−1 f
)−1

f T R−1Y (9)

where Ŷ(X) is the predicted value. R represents the correlation matrix which is given as:

R =


1

r(X2, X1)
r(X1, X2)

1
· · · r(X1, Xn)

r(X2, Xn)
...

. . .
...

r(Xn, X1) r(Xn, X1) · · · 1

 (10)

in which r
(
Xi, Xj

)
is the cross-correlation function computed by the following relation:

r
(
Xi, Xj

)
= eθr2

ij , rij = ‖ Xi − Xj ‖ (11)

where, rij is the distance between points, Xi and Xj and θ > 0 are unknown correlation
parameters, which are determined as presented below [66–69]:

θ = argMax(
log[detR]+nlog[σ̂2]

2
) (12)

where n represents the number of training points, and σ̂2 denotes the variance of the model
obtained as:

σ̂2 =

(
Y− β̂ f

)T R−1(Y− β̂ f
)

n
(13)

In the kriging model, the basis function f can be defined as below:

f =


f1(X1)
f1(X2)

f2(X1)
f2(X2)

· · · fm(X1)
fm(X2)

...
. . .

...
f1(Xn) f2(Xn) · · · fm(Xn)

 (14)

where the vector [ f1(X1), f2(X1), . . . , fm(X1)] includes the basic functions that are evalu-
ated at the data input point of X1, and m is the number of the basic functions. The basis
function f can be used as polynomial and exponential functions for original kriging and
improved kriging, as presented in this study.

In the kriging models, the basic functions are considered as follows:

f (Xk) = {1Xk} where X = Mon, Ws, Tmax, Tmin, RH, SR, Hs (15)

where Mon represents the periodicity (month of the year), Ws is wind speed (m/s), Tmax
and Tmin are respectively the maximum and minimum temperature (◦C), RH is the relative
humidity (%), SR is the solar radiation (langley), and Hs represents the hours of sunshine
(h). The surrogate model that uses an adaptive kriging framework can be used for (i) re-
ducing the computational burden and increase the accuracy results of the optimization
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problem [50,70], (ii) structural reliability analysis [65,68], and (iii) reliability-based design
optimization [67,71].

3.7. Improved Kriging

In the fitness process of the kriging model, the basic function term, i.e., β̂ f is an impor-
tant factor for providing a flexible prediction. The stochastic term, i.e., rT(X)R−1(Y− β̂ f ),
may produce a smaller covariance for approximating data with accurate basic function.
Thus, the nonlinear form of the basic function can improve the accuracy of the EP predic-
tions. A schematic comparative view of the exponential and linear polynomial functions is
presented in Figure 5 to illustrate the fitness of the exponential basic function. We used the
exponential basic function for the regression process instead of the linear basic function, in
order to enhance the ability of the standard kriging model.
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In improved kriging, the linear and exponential functions are used by the following
basic function:

f (Xk) = {1Xkexp(Xk)} (16)

where Xk are the input variables and exp denotes the exponential operator. The prediction
accuracy of the improved kriging model for the estimation of the EP is tested based on an
untried data set using r(X) in Equation (11) and predicted relation in Equation (8).

3.8. Methodology and Models Evaluation

The modeling process focuses on the monthly predictions of the EP based on two
different scenarios, as presented below:

• Scenario I (without periodicity):

In the first scenario (#I), the monthly averaged of six meteorological parameters
including wind speed (WS, m/s), relative humidity (RH, %), solar radiation (SR, Langley),
sunshine hours (HS, h), minimum (Tmin, ◦C), and maximum temperatures (Tmax, ◦C), are
considered as the input vectors of the applied models.

• Scenario II, (with periodicity):

In the second strategy, all of the mentioned independent meteorological parameters
along with the time factor formed the input vector.

Due to the fact that in the second scenario, the order of the data is important for
modeling, the time series cross-validation technique was applied. Thus, in both of the
scenarios, 70% of the data was used for training the models, and the other 30% was used
for the testing set. In the current work, the root mean square error (RMSE) was used as a
measure of accuracy, while the mean bias error (MBE) was used as a measure of tendency.
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The absolute residual of the standard deviation between the actual EP values and the
modeled ones (RSTD) was used as a measure of precision as presented below [60,72,73]:

RMSE =

√√√√ 1
N

N

∑
i=1

(EPmi − EPoi)
2 (17)

MBE =
1
N

N

∑
i=1

(EPmi − EPoi) (18)

RSTD = |STDm − STDO| (19)

where N is the number of data, EPmi represents the modeled EP for the ith data and EPoi
stands for the observed EP values for the ith data. In addition to the above-mentioned
measures, other statistics and criteria such as the mean absolute error (MAE), mean absolute
percentage error (MAPE), Willmott index (d), total pan evaporation (Tot-EP), maximum
value of the relative error between the calculated and observed EP (MAX (RE)) were also
used for the evaluation of the applied methods [58].

MAE =

N
∑

i=1
|EPmi − EPoi|

N
(20)

MAPE =
1
N

N

∑
i=1

|EPmi − EPoi|
EPoi

(21)

d = 1−

N
∑

i=1
(EPmi − EPoi)

2

N
∑

i=1
(|EPmi − EPmean|+

∣∣EPmi − EPmean
∣∣)2

(22)

where EPmean is the mean of monthly EP. In this study, the Wilcoxon nonparametric
statistical hypothesis test is also implemented to evaluate the performance of statistical
versus soft computing models at the 95% confidence level. The maximum relative absolute
error ((Max (RE)) was computed as max (REi) and REi = (|Ŷi − Yi)|/Yi, where Ŷi an Yi
indicate the estimated and observed pan evaporation.

4. Comparison and Results
4.1. Evaluation of the Applied Models

Tables 1 and 2 report the comparison statistics of the applied data-driven models
for the Adana station for the first and second scenarios. For the first scenario (without
periodicity), the improved kriging model has the lowest MAE (0.659 mm), MAPE (0.189),
RMSE (0.843 mm) and the highest d (0.964), followed by the SVR model. Based on the
MAE, d, and RMSE values, the ANN-CG and RSM models provided the weakest results.
However, the M5Tree model gave the worst Max (RE) value (135.32). The mean and total
pan evaporations were also better approximated by the improved kriging compared to
the other models. In the second scenario, the improved kriging model presented a better
value of MAE than the SVR model (improved kriging = 0.646 mm vs. SVR = 0.648 mm),
but worse values for RMSE (improved kriging = 0.821 mm vs. SVR = 0.796 mm) and could
not be seen as the being better than the SVR model.
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Table 1. Comparing the results of the applied models without periodicity (Scenario #1) for Adana station in the testing
period.

Category Model MAE
(mm)

RMSE
(mm)

MBE
(mm) d Max (RE) Mean *

(mm)
STD *
(mm)

Tot-EP *
(mm) MAPE

Statistical

kriging 0.712 0.891 0.228 0.958 86.31 4.36 2.19 501.63 0.213
Improved

kriging 0.659 0.843 0.172 0.964 72.89 4.31 2.26 495.13 0.184

RSM 0.736 0.933 0.142 0.956 79.08 4.28 2.29 491.71 0.205

Soft computing
models

MARS 0.701 0.855 0.221 0.962 87.78 4.35 2.23 500.78 0.203
M5Tree 0.704 0.890 0.197 0.960 80.77 4.33 2.29 498.11 0.190

SVR 0.668 0.828 0.223 0.964 135.32 4.36 2.15 501.08 0.208
ANN(LM) 0.685 0.861 0.197 0.962 83.32 4.33 2.25 498.01 0.195
ANN(CG) 0.739 0.930 0.157 0.955 66.74 4.29 2.22 493.49 0.207
RBFNN 0.712 0.892 0.229 0.958 86.31 4.36 2.19 501.68 0.213

* The mean, standard deviation (STD) and total pan evaporation (Tot-EP) of the actual data points are mean = 4.134 mm, STD = 2.256 mm
and Tot-EP = 475.4 mm, respectively. Optimal structure of SVR: (C = 10, ε = 0.5, σ = 85), ANN (LM): 6-7-1, ANN (CG): 6-8-1, RBFNN: 6-40-1
(σ = 2).

Table 2. Comparing the results of the applied models with periodicity (Scenario #2) for Adana station in the testing period.

Category Structures MAE
(mm)

RMSE
(mm)

MBE
(mm) d Max (RE) Mean *

(mm)
STD *
(mm)

Tot-EP *
(mm) MAPE

Statistical

kriging 0.730 0.912 0.224 0.957 88.79 4.36 2.20 501.11 0.220
Improved

kriging 0.646 0.821 0.168 0.966 76.97 4.30 2.26 494.75 0.181

RSM 0.768 0.972 0.138 0.953 100.96 4.27 2.31 491.22 0.210

Soft computing
models

MARS 0.697 0.859 0.146 0.962 63.13 4.28 2.24 492.19 0.193
M5Tree 0.715 0.897 0.192 0.959 80.77 4.33 2.28 497.45 0.197

SVR 0.648 0.796 0.173 0.966 106.42 4.31 2.12 495.30 0.200
MLP-LM 0.746 0.949 0.206 0.954 99.85 4.34 2.26 499.06 0.205
MLP-CG 0.764 0.976 0.189 0.952 71.22 4.32 2.29 497.16 0.208

RBNN 0.682 0.842 0.233 0.963 85.82 4.37 2.21 502.21 0.214

* The mean, standard deviation (STD) and total pan evaporation (Tot-EP) of the actual test data points are mean = 4.134 mm, STD = 2.256
mm and Tot-EP = 475.4 mm, respectively. Optimal structure of SVR: (C = 5, ε = 0.3, σ = 80), ANN (LM): 7-14-1, ANN (CG): 7-12-1, RBFNN:
7-35-1 (σ = 5).

In general, all of the applied statistical and soft computing models approximated the
EP values satisfactory (with d > 0.95 and RMSE < 1 mm). In Table 3, the best predictive
model is presented as the improved kriging model based on attaining two of the highest
position of the three elements of accuracy, precision, and tendency.

Table 3. The general performance of the applied models in terms of accuracy, precision, and tendency for Adana Station in
the testing period.

Scenario I, without Periodicity Scenario II, with Periodicity
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)

Statistical
Kriging M L + M L +

Improved kriging H H + * H H + *
RSM L M + L L +

Soft computing
models

MARS H H + * M H +
M5Tree M M + M M +

SVR H L + H L +
MLP-LM M H + L H +
MLP-CG L M + L M +

RBNN L L + H M +

Note: Accuracy is based on RMSE (mm), precision is based on RSTD, and tendency is based on MBE. Accuracy and precision: H: high
(3 best values), M: moderate (3 median values), L: low (3 worst values); Tendency: +: Over-predicted (positive values); N: neutral (absolute
value < 0.01 mm). Best models have been chosen based on acted best at least in two of the three criteria.
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Figure 6 demonstrates the observed and estimated EP values of the applied models
for the two scenarios, the Adana Station, (a) without periodicity, and (b) with periodicity. It
is clear from the fit line equations and R2 values that the improved kriging model has less
distributed properties than the other models for both cases.
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The comparison statistics of the applied models are given in Tables 4 and 5 for the
Antakya Station. In the first scenario, the improved kriging model outperformed the
other statistical models considering all of the given measures in Table 4. Nonetheless,
in comparison to the SVR—as the best soft computing model—the improved kriging
model provided the best performance for the MBE (−0.001) value, it failed in sustaining its
superiority over the SVR for the MAE (improved kriging = 0.489 mm vs. SVR = 0.463 mm)
and RMSE (improved kriging = 0.626 mm vs. SVR = 0.613 mm) criteria.

Table 4. Comparison of statistical errors for the applied models without periodicity (scenario #1) for Antakya Station in the
testing period.

Category Model MAE
(mm)

RMSE
(mm)

MBE
(mm) d Max

(RE)
Mean *
(mm)

STD *
(mm)

Tot-EP *
(mm) MAPE

Statistical

kriging 0.555 0.717 −0.190 0.974 56.81 4.34 2.17 399.39 0.142
Improved

kriging 0.489 0.626 −0.001 0.981 48.06 4.53 2.35 416.77 0.119

RSM 0.540 0.687 −0.132 0.978 60.99 4.40 2.36 404.77 0.129

Soft
computing

models

MARS 0.510 0.637 0.107 0.981 60.01 4.64 2.32 426.71 0.130
M5Tree 0.722 0.998 −0.234 0.949 58.18 4.30 2.22 395.33 0.158

SVR 0.463 0.613 −0.012 0.981 54.12 4.52 2.18 415.77 0.115
MLP-LM 0.528 0.681 0.099 0.976 105.46 4.63 2.20 426.01 0.145
MLP-CG 0.525 0.651 0.100 0.980 49.28 4.63 2.36 426.11 0.126
RBFNN 0.476 0.610 −0.035 0.983 47.64 4.50 2.39 413.67 0.117

* The mean, standard deviation (STD) and total pan evaporation (Tot-EP) of the actual test data points are mean= 4.532 mm, STD = 2.295
mm and Tot-EP = 416.9 mm, respectively. Optimal structure of SVR: (C = 1600, ε = 0.25, σ = 80), ANN(LM): 6-9-1, ANN(CG): 6-7-1, RBFNN:
6-30-1 (σ = 15).

Table 5. Comparison of statistical errors for the applied models with periodicity (scenario #2) for Antakya Station in the
testing period.

Category Model MAE
(mm)

RMSE
(mm)

MBE
(mm) d Max

(RE)
Mean *
(mm)

STD *
(mm)

Tot-EP *
(mm) MAPE

Statistical

kriging 0.560 0.721 −0.188 0.973 62.26 4.55 2.35 418.14 0.145
Improved

kriging 0.471 0.601 0.014 0.983 43.68 4.42 2.34 407.02 0.114

RSM 0.579 0.701 −0.107 0.976 67.19 4.42 2.15 406.53 0.155

Soft
computing

models

MARS 0.517 0.638 0.094 0.980 48.89 4.32 2.26 397.37 0.132
M5Tree 0.677 0.970 −0.212 0.953 49.04 4.34 2.17 399.62 0.142

SVR 0.496 0.664 −0.113 0.977 49.49 4.53 2.24 416.47 0.117
MLP-LM 0.492 0.625 −0.005 0.981 44.51 4.63 2.26 425.98 0.118
MLP-CG 0.508 0.623 0.099 0.981 68.50 4.45 2.12 409.60 0.132
RBFNN 0.483 0.632 −0.079 0.979 48.67 4.32 2.26 397.37 0.122

* The mean, standard deviation (STD) and total pan evaporation (Tot-EP) of the actual test data points are mean= 4.532 mm, STD = 2.295 mm
and Tot-EP = 416.9 mm, respectively. Optimal structure of SVR: (C = 600, ε = 0.3, σ = 80), ANN (LM): 7-12-1, ANN (CG): 7-14-1, RBFNN:
7-30-1 (σ = 15).

For the second scenario (Table 5), the improved kriging surpassed all the other applied
statistical and soft computing models considering MAE, MAPE, RMSE, and d. In this
scenario, the MLP-LM was the best soft computing model in predicting the EP values
based on the MAE, MBE, d, and Max (RE) values. Table 6 presents the best predictive
models in terms of three perspectives of accuracy, precision, and tendency. As expected,
the improved kriging performed better than the other models in the first scenario (without
periodicity), while the MLP-LM and MLP-CG were also among the best models for the
second scenario (with periodicity).
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Table 6. The general performance of the applied predictive models in terms of accuracy, precision, and tendency for Antakya
Station in the testing period.

Scenario I, without Periodicity Scenario II, with Periodicity
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Statistical
Kriging L H − L L −

Improved kriging H H N * H M + *
RSM L L − L M −

Soft computing
models

MARS M H + M H +
M5Tree L M − L L −

SVR H L − M M −
MLP-LM M M + H H N *
MLP-CG M M + H H + *

RBNN H L − M L −
Note: Accuracy is based on RMSE (mm), precision is based on RSTD, and tendency is based on MBE. Accuracy and precision: H: high
(3 best values), M: moderate (3 median values), L: low (3 worst values); Tendency: −: under-predicted (negative values); +: over-predicted
(positive values); N: neutral (absolute value < 0.01 mm). Best models have been chosen based on attaining at least two of the three accuracies
(=H), precision (=H), and tendency (=N) criteria.

Figure 7 presents the observed and estimated values of the EP of the Antakya station
of applied models a) without periodicity and b) with periodicity. From Figure 7, it is clear
that the improved kriging, MARS, and MLP-CG models have similar graphs and they have
less scattered predations than the other two models for the two modeling scenarios. It can
also be seen that the M5Tree has the most scattered predicted values.

The ratio of the Willmott index of agreement (d) to the MAE can be used as a measure
to compare the accuracy of different models. This statistic (d/MAE) varies from 0 to
∞. The larger value of the d/MAE denotes the better calibration of the applied model
(Keshtegar et al., 2018). The calculated d/MAE ratios of the applied models are illustrated
in Figure 8 for both stations. In general, it is apparent that the improved kriging has higher
accuracy than the other models. It can also be observed that better results were given
by the improved kriging model considering the periodicity (scenario II). Figure 8 shows
that the SVR is the second-best accurate model in predicting EP values, which is similar
to the results in Tables 3 and 6 (marked with “H”). Despite being the most accurate soft
computing model, the SVR did not act well on the precision and tendency of the predicted
values, and as a result, it was not specified as the best model in Tables 3 and 6.
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4.2. Hypothesis Testing

The results of the significance test of the predicted values of statistical techniques and
soft computing models using the Mann–Whitney test are presented in Tables 7 and 8 for
the Adana and Antakya Stations, respectively. In the Mann–Whitney test, the null and
alternative hypotheses are as follows (η is the median):

Table 7. p-Values of the Mann–Whitney Test for statistical methods versus soft computing models in Adana Station.

Soft Computing Models

M5Tree RBNN MLP-LM MLP-CG SVR MARS

Statistical
models

RSM 0.792 0.899 0.865 0.654 0.970 0.720

Kriging 0.878 0.844 0.984 0.964 0.970 0.977

Improved kriging 0.988 0.724 0.870 0.918 0.886 0.895

Table 8. p-Values of the Mann–Whitney Test for statistical methods versus soft computing models in Antakya Station.

Soft Computing Models

M5Tree RBNN MLP-LM MLP-CG SVR MARS

Statistical
models

RSM 0.824 0.873 0.626 0.631 0.786 0.638

kriging 0.904 0.722 0.478 0.532 0.648 0.518

Improved kriging 0.709 0.997 0.757 0.785 0.910 0.778

The null hypothesis, H0: η1 − η2 = 0.
The alternative hypothesis, H1: η1 − η2 6= 0.
The results of Tables 7 and 8 clearly reveal that there is no significant difference

between the performance of the statistical models (RSM, kriging, and improved kriging)
and soft computing models (M5Tree, RBNN, MLP-LM, MLP-CG, and MARS) at 95% and
99% confidence levels, as they have p-values greater than 0.05 and 0.01. In other words, the
Mann–Whitney nonparametric test implies that the null hypothesis was not rejected, and
none of the applied statistical-based predictive models surpasses the other soft computing
models at the 0.05 and 0.01 levels of significance.

5. Discussion

This paper aimed to challenge the performance of different statistical and soft comput-
ing models based on (i) mathematical (accuracy, precision, and tendency), and (ii) statistical
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(at the 0.01 and 0.05 levels of significance) perspectives. In accordance with the mathemati-
cal comparisons (Tables 1, 2, 4 and 5, and Figure 8), it was concluded that the improved
kriging model performed better than the other applied models, which means that an
improved statistical model might even be able to surpass soft computing models.

Figure 9 illustrates the Taylor diagrams for (a) Adana and (b) Antakya Stations. As
shown by these figures, the kriging models provide a better prediction for agreement
than the RSM but worse than the soft computing models (viz. SVR, MARS, and RBFNN).
The SVR provides a superior correlation with the observed data compared to the other
soft computing models. As can be seen in Figure 9, the improved kriging enhanced the
predictions of the standard kriging model.
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There is no doubt that in most cases, soft computing models perform better than
traditional statistical models. Similarly, the standard kriging and RSM models failed to
surpass the soft computing models due to linear cross-correlation regressed function based
on the statistical measures. This assessment is based on pertinent studies in the literature.
For instance, in a comparative study between the capability of machine learning versus
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ANN, and statistical technique versus MLR, for EP prediction, it was found that the model
efficiency and correlation coefficient of the ANN was higher than the MLR model for the
calibration and validation phases [20]. The same result has been noted for the superiority
of ANFIS model over the MLR statistical model [74]. However, it is worth noting that
the majority of recent published studies have solely focused on the evaluation of several
machine learning models [11,32]. Investigating the outcomes of these studies indicates that
the machine learning models perform well in predicting evaporation at different climatical
regions.

In this study, in addition to the mathematical evaluation of the potential performance
of statistical and soft computing models, the results of the Mann–Whitney hypothesis
test were also taken into account. The outcomes of the Mann–Whitney hypothesis test
showed that none of the soft computing applied models has significant superiority over the
statistical ones. In other words, despite their ability to model nonlinear phenomena, soft
computing models should not be taken into granted as the preliminary predictive models.
The improved versions of the RSM or kriging-based statistical techniques can improve
the accuracy of the prediction of nonlinear problems. Thus, the improved statistical
kriging technique uses the exponential transformation of input variables and can also be
applied for other engineering problems with nonlinear complex relations. Furthermore,
the competency of this method can be apprised by comparing it with machine learning
models for complex problems with highly nonlinear relations.

6. Conclusions

The soft computing models and statistical techniques are useful frameworks for mak-
ing predictions of complex climatological indices, such as the hydrological pan evaporation
(EP). The improved kriging method was presented as a statistical technique for the accurate
prediction of the EP. The RSM, kriging, and improved kriging models were compared with
soft computing models, such as the SVR, M5tree, MARS, RBNN, MLP-LM, and MLP-CG.
Two different input scenarios, namely with and without periodicity, were applied for the
modeling process in the Antakya and the Adana stations located in Turkey. The abilities of
statistical models versus soft computing schemes were compared with several statistical
measures. The key findings of the study are summarized below:

• Soft computing using machine learning models such as the SVR, MARS, MLP-ML,
and RBNN provided more accurate predictions than the M5Tree and RSM.

• The kriging model, as well as the SVR, RBFNN and MLP-ML, provided better perfor-
mances compared to the RSM and M5Tree.

• It was found that the developed improved kriging model performed better than the
other applied models, including the soft computing (SVR, RBNN, MLP-ML, and
MARS) and standard statistical (kriging and RSM) models.

• By comparing the performances of the improved kriging method with six other
applied models, it can be concluded that the proposed kriging framework can be
successfully applied for this current hydrological challenge while its performances
for other hydrological stations and other complex, sophisticated problems should be
discussed in future.
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Abbreviations

BF Basis functions
ANFIS Adaptive neuro-fuzzy inference systems
ANN Artificial neural networks
d Willmott index
ELM Extreme learning machine
LSSVM Least square support vector machine
m Number basis functions
MAE Mean absolute error
MAPE Mean absolute percentage error
MARS Multivariate adaptive regression spline
MBE Mean bias error
MLPNN Multilayer perceptron artificial neural networks
MLR Multiple linear regression
MNLR Multivariate nonlinear regression
R Correlation matrix
RBFNN Radial basis function neural networks
RMSE Root mean square error
SVM Support vector machine
SVR Support vector regression
wj, wij Weights
NV Number of input variables
K(x,xi) Kernel function
β Unknown coefficients
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