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Abstract: The Soyang Dam, the largest multipurpose dam in Korea, faces water resource management
challenges due to global warming. Global warming increases the duration and frequency of days
with high temperatures and extreme precipitation events. Therefore, it is crucial to accurately
predict the inflow rate for water resource management because it helps plan for flood, drought, and
power generation in the Seoul metropolitan area. However, the lack of hydrological data for the
Soyang River Dam causes a physical-based model to predict the inflow rate inaccurately. This study
uses nearly 15 years of meteorological, dam, and weather warning data to overcome the lack of
hydrological data and predict the inflow rate over two days. In addition, a sequence-to-sequence
(Seq2Seq) mechanism combined with a bidirectional long short-term memory (LSTM) is developed
to predict the inflow rate. The proposed model exhibits state-of-the-art prediction accuracy with root
mean square error (RMSE) of 44.17 m3/s and 58.59 m3/s, mean absolute error (MAE) of 14.94 m3/s
and 17.11 m3/s, and Nash–Sutcliffe efficiency (NSE) of 0.96 and 0.94, for forecasting first and second
day, respectively.

Keywords: dam inflow; machine learning; bidirectional LSTM; Seq2Seq; deep learning

1. Introduction

Due to its high population density, South Korea has only one-sixth of the world’s
average water available per capita and suffers from deterioration of water resource quality,
floods, and droughts due to significant variance in yearly regional and seasonal precipita-
tion [1]. In particular, islands and mountainous areas suffer from annual water shortages
that require the use of emergency water supplies with restrictions on water usage. These
shortages are due to low water inflow, specifically on tributary streams with delayed
investment in infrastructure, causing an increase in damage of water-related natural disas-
ters [1,2]. To overcome these issues, Korea has constructed multipurpose dams to manage
water resources. However, climate change significantly increases the probability of water-
related disasters (e.g., floods and droughts) and adds to the uncertainty of water resource
management [2]. Consequently, climate change alters dam inflow patterns, adding difficul-
ties to water supply and water resource utilization plans [3]. According to Jung et al. [4],
researchers previously used conceptual and physical hydrologic models to predict the
water level or inflow rate of the dam; however, these models must include meteorological
and geological data, and prediction accuracy varies based on the number of parameters.
In addition, conceptual and physical hydrologic models require constant verification and
adjustment of each input parameter, causing an increase in simulation time and reducing
the overall time to prepare for a natural disaster. Researchers have used various models,
such as the Hydrological Simulation Program—Fortran [5], the watershed-scale Long-
Term Hydrologic Impact Assessment Model [6], and the Soil and Water Assessment Tool
(SWAT) [7], to predict the river discharge and dam inflow rate.

In the case of the Soyang River, some areas of the watershed are located in North
Korea, resulting in insufficient hydrological data for prediction, and SWAT does not yield
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accurate inflow rate predictions. Furthermore, the Soyang Dam, a multipurpose dam that
controls water supply and generates power for the Seoul metropolitan area, is located on
the Soyang River. To overcome the lack of accurate hydrological data to predict the Soyang
River Multipurpose Dam inflow, researchers have used data-driven models [8–16]. The
proposed model not only can predict the inflow rate without detailed hydrological data but
also outperforms the existing algorithms [8,9]. We believe that our model can be applied to
other dams that do not have sufficient hydrological data for predicting the inflow rate.

Data-driven models are capable of repeatedly learning the complex nonlinear re-
lationships between input and output data to produce highly predictive performance,
regardless of the conceptual and physical characteristics. Researchers worldwide use
data-driven models for various applications, such as decoding clinical biomarker space
of COVID-19 [17], water quality prediction [18], and pipe-break rate prediction [19]. Re-
searchers attempt to use data-driven models for various hydrological predictions, such as
MARS [20–24], DENFIS [25], LSTM-ALO [26], and LSSVR-GSA [27]. MARS uses forward
and backward step to add and remove piecewise linear functions to fit the model. However,
there is performance degradation if data contain too many variables. To get the best result,
MARS requires variable selection [20–24]. DENFIS requires prior assumptions about data
and needs domain knowledge to set predefined parameters. Yuan et al. [26] claim that
LSTM-ALO can find the optimal hyperparameter with an ant-lion optimizer. However,
the model uses a variable to predict the runoff. Adnan et al. [27] claim that the gravitation
search algorithm (GSA) will help to find the optimal value for the least square support
vector regressor (LSSVR). LSSVR is a modified version of the support vector regressor (SVR)
that reduces the complexity of the optimization program [24]. Even though LSSVR-GSA
outperforms LSSVR, there was no mention that implementing GSA would reduce the
overall training time.

In the case of inflow rate prediction, researchers used SVR [10–12], Comb_ML [9],
multivariate adaptive regression splines (MARS) [28], random forest [9–13], and gradient
boosting [9,11,14]. In addition, deep learning models, such as multilayer perceptron
regressors (MLP) [9,10,13], recurrent neural networks (RNNs) [8], and LSTM [15,16], as
the models for inflow rate predictions. These models have proven to be highly effective in
predicting inflow rates, but they do not have the ability to capture input data’s long-term
dependencies and summarize the data.

We propose an end-to-end model that consists of a Seq2Seq algorithm incorporated
with bi-directional LSTM and a scaled exponential linear unit (SELU) activation function
to predict the inflow rate over a period of two days. Then we evaluate and compare the
model with other algorithms. The Seq2Seq model consists of an encoder and decoder.
First, the encoder summarizes the information of the input sequence. Then the decoder
uses the summarized information for prediction. We use LSTM for both an encoder and
a decoder. LSTM consists of gating units to handle sequential data and learns long-term
dependencies. In addition, we incorporated bidirectionality with LSTM to extract extra
information about complex relationships between present and past data. Lastly, we change
the activation function of LSTM from tanh to SELU with LeCun normal kernel initializers
to stabilize the training process despite the presence of abnormally high and low inflow
rates. We did not use any decomposition method because we believe bidirectional LSTM
can extract information from flooding and drought events, and SELU activation function
helps to stabilize the training process with the abnormal inflow rates. Our model proves
that predicting the inflow rate is possible without using detailed hydrological data.

In this article, we construct some commonly used machine learning models to compare
the prediction accuracy with the proposed model. Then, we evaluate the result of the
proposed model by using a discrepancy ratio. We propose a deep learning algorithm
that surpasses the prediction accuracy of the existing algorithms, such as RNN [8] and
Comb-ML [9], in predicting the inflow rate of the Soyang Multipurpose Dam for a period
of two days. We also compared the prediction accuracy of our model with those of the
existing machine learning models.
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The contributions of this study are as follows:

1. We developed an end-to-end model capable of summarizing input data for inflow
rate forecasting.

2. Unlike previous research, we only used nearly 15 years of weather warning data,
along with the meteorological and dam inflow rate data.

3. Our Seq2Seq model used bidirectional LSTMs, SELU activation function, and Le-
Cun normal kernel initializer to stabilize the training process and outperformed the
baseline models in most accuracy criteria.

2. Materials and Methods
2.1. Study Area

This study predicts the inflow rate of the Soyang River Multipurpose Dam (Soyang
Dam), the largest dam in Korea. The dam was built in 1973 and can hold up to 2.9 billion
metric tons of water. The dam consists of five flood gates for various purposes. The
Soyang Dam supplies water to Gangwon Province, Seoul metropolitan area, and Han River
coast and prevents flooding of the downstream region of the Han River. It also generates
and supplies electricity to the Seoul metropolitan area and Korea’s central region to cope
with the surging demand for electricity [29]. However, dam management is increasingly
complicated because of climate change and, as the annual precipitation increases, the inflow
decreases owing to evaporation [9].

2.2. Data Description

Daily weather and daily dam data for this experiment were obtained from the Ko-
rea Water Resources Corporation [30] and the Korea Meteorological Administration [31],
respectively. The data ranged from 4 July 2004 to 31 December 2019.

The dam data consist of many records, such as inflow rate, precipitation, discharge
amount, and dam water level. For this study, we used only the daily inflow rate and daily
precipitation records.

We collected weather data for Chuncheon City, where the dam is located. More
than 100 daily meteorological records of Chuncheon City are available. However, we
only collected the maximum and minimum temperatures, average wind speed, total solar
radiation, and average humidity for each day. One average humidity, one total solar
radiation, and two average wind speed data points were missing; we interpolated the
missing data points using linear interpolation.

Weather warning data consist of city, regional, and province records of 30 warnings
and watches, and each warning can be issued multiple times a day. In some cases, multiple
warnings are in effect in a single day. The daily frequency of each warning was counted.
The Soyang River Dam catchment spans Chuncheon City, Yeongseo, and the midwest
regions of Gangwon Province. Therefore, we collected only warning types in effect in the
catchment area, as shown in Table 1. Unlike the weather watch, the warning goes into
effect when a disaster occurs, and major damage is expected [32]. As this experiment aims
to predict the regular and extreme inflow rates accurately, we only collected the heavy rain
warning data.
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Table 1. Input data for the proposed and baseline models.

Input Variable Output Variable

Weather data for the last
seven days

Inflow (t − 7)

Inflow (t − 6)

Inflow (t − 1)

min_temperature (t − 7),
min_temperature (t − 6),
min_temperature (t − 1)

max_temperature (t − 7),
max_temperature (t − 6),
max_temperature (t − 1)

precipitation (t − 7),

precipitation (t − 6),

precipitation (t − 1)

wind (t − 7), Inflow of the day: Inflow (t),

wind (t − 6), Inflow of the next day: Inflow (t +
1)

wind (t − 1)

solar_radiation (t − 7),
solar_radiation (t − 6),
olar_radiation (t − 1)

humidity (t − 7)

humidity (t − 6)

humidity (t − 1)

heavy_rain_warn (t − 7),
heavy_rain_warn (t − 6)

heavy_rain_warn (t − 1)

Forecasted data
precipitation (t)

precipitation (t + 1)
Note: The ‘Inflow’, ‘min_temperature’, ‘max_temperature’, ‘precipitation’, ‘wind’, ‘solar’, ‘humidity’, ’
heavy_rain_warn’, ‘(t − 7)’, ‘(t − 6)’, ‘(t − 1)’, ‘(t)’, and ‘(t + 1)’ are the daily dam inflow, minimum tem-
perature of the day, the maximum temperature of the day, precipitation of the day, average wind speed of the day,
total radiation of the day, relative humidity of the day, number of heavy rain warning of the day, seven days ago,
six days ago, one day ago, the day, and the next day, respectively.

Figure 1 shows that rainfall and inflow increase and decrease simultaneously and that
they are occasionally unusually high. The daily maximum and minimum temperatures,
average wind speed, relative humidity, and total solar radiation exhibit no irregularities.
Heavy rain warnings show similar patterns to the daily inflow rate and precipitation.
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Figure 1. Time series data of dam inflow and weather.

Figure 2 shows a heatmap of the correlation coefficients between the input variables.
In addition to the daily minimum and maximum temperature correlation, there is a high
correlation between the inflow rate, precipitation, and heavy rain warnings. Moreover, the
heatmap suggests that the daily minimum and maximum temperatures, humidity, and
total solar radiation have a high correlation.
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Figure 2. Heat map of correlation coefficients of variables.

Prior weather conditions have a significant effect on the amount of water in the
soil [33]. Therefore, for this experiment, we included seven days of meteorological data as
the input. In addition, previous research incorporates past daily inflow rates and forecasted
rainfall for better inflow rate accuracy [8,9]. Therefore, we input the past seven days of
meteorological data, inflow rate, and forecasted rainfall for the next two days, as listed in
Table 1.

Figure 3 suggests that both the training and the testing data are left-skewed. The third
interquartile for both training and testing data are less than 50 m3/s, and the maximum
value is greater than 2300 m3/s. The noticeable difference between the third interquar-
tile and the maximum value suggests that the Soyang River Dam deals with occasional
heavy floods.
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Figure 3. Violin plot for training and testing data.

We standardized the input variables because each variable has different minimum
and maximum values and distributions. Then, we reserved 20% of the data for testing and
used the remaining for training.

We created an end-to-end model that can predict both normal and abnormally high
inflow rate of the dam. We did not use any decomposition method because we want our
model to extract information from flooding events and predict abnormally high inflow
rates. Our model contains LSTM for both an encoder and a decoder. LSTM uses a gating
function to capture essential information.

2.3. Background

We introduce the following two primary components that form the foundation of our
model: a bidirectional LSTM and a sequence-to-sequence model.

2.3.1. Bidirectional LSTM

RNNs suffer from a vanishing gradient problem as the length of the sequence increases.
To overcome this problem, LSTM uses gated functions to accept long sequences and decide
which part of the input data to remember [34]. The structure of LSTM is shown in Figure 4.
Equations (1)–(6) are equations for the LSTM [15], where Ot, ct, ht, and ft represent the
input, output, cell state, hidden state, and forget state, respectively; t represents the time
step, and xt is the input vector for LSTM. Wn, Wf, and Wi represent the weight of the
output gate activation vector, forget gate activation vector, and input gate activation vector,
respectively; σ is the activation function for the forgotten, hidden, and cell state gates. Nt
uses the tanh activation function to update the weight of the input. Some researchers have
used the LSTM to predict the inflow rate [15,16].
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Figure 4. Structure of LSTM.

As shown in Figure 5, LSTM can be trained in both directions. Bidirectional LSTM
combines a bidirectional RNN and LSTM [35]. A unidirectional LSTM processes data in the
order of input and tends to predict based on recent patterns. In contrast, the bidirectional
LSTM learns from both past to present and present to past data, providing a higher
predictive performance than the unidirectional LSTM [36,37].

ft = σ
(

W f [ht−1, Xt] + b f

)
(1)

it = σ
(

Wi[ht−1, Xt] + b f

)
(2)

Nt = tanh(Wn[ht−1, Xt] + bn) (3)

Ot = σ(Wo[ht−1, Xt] + bo) (4)

ct = ct−1 ft + Ntit (5)

ht = ottanh(ct) (6)

Figure 5. Structure of a bidirectional LSTM.

2.3.2. Seq2Seq Model

Suyskever et al. [38] introduced a Seq2Seq model consisting of an encoder and a
decoder. The encoder compresses the input sequence data, and the decoder creates a
sequence output based on the compressed data. The encoder uses an input sequence and
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outputs the hidden state vectors and resultant vectors to the decoder. The decoder then uses
outputs from the encoder to train on the difference between the real and predicted values.

2.4. Experimental Setup

In this experiment, we compare the prediction accuracy of our model against the
baseline models presented in Section 1: support vector regressor, random forest regressor,
multilayer perceptron (MLP), Comb-ML, and RNN. Optimal hyperparameters are found
for each model by performing a grid search. Then, we introduce our sequence-to-sequence
model with bidirectional LSTMs. Finally, we show that our model is the most accurate
model for predicting the inflow rate of the Soyang River Dam.

We use the mean absolute error (MAE), root mean square error (RMSE), and Nash–
Sutcliffe Efficiency (NSE) as the metrics for the prediction accuracy. We decided to use
RMSE, MAE, and NSE because they are the most popular statistical methods often used
to compare observed values with the predicted values. In addition, Hong et al. [9] used
RMSE, MAE, and NSE to evaluate the predictive performance of their model. Park et al. [8]
used NSE and RMSE as performance metrics. Therefore, it is logical to use MAE, RMSE,
and NSE to evaluate models. MAE measures how well our model predicts extreme events,
such as floods and droughts. RMSE assesses the extent to which the predicted value is
different from the mean of the real value. Finally, NSE measures the prediction accuracy
of the hydrological model. The MAE and RMSE range from 0 to infinity, while the NSE
ranges from negative infinity to 1. The model is predictive if NSE is approximately 1, while
MAE and RMSE are approximately 0. MAE, RMSE, and NSE for the evaluation of the
model accuracy can be calculated from Equations (7)–(9), where yj is the actual value at
time j, ŷj is the predicted value at j, n is the number of days, and y is the average of the
observed values.

MAE =
1
n

n

∑
j=1

∣∣yj − ŷj
∣∣ (7)

RMSE =

√√√√ n

∑
j=1

(
yj − ŷj

)2

n
(8)

NSE = 1−

∑n
j=1
(
yj − ŷj

)2

∑n
j=1
(
yj − y

)2

 (9)

2.4.1. SVR (Baseline)

A SVR generates a hyperplane that does not exceed the maximum marginal error [39].
Equation (10) is used to find the hyperplane. ai and a∗i are constants from the Lagrange
dual optimization, and b is a bias. K〈xi,x〉 is a kernel function: linear, polynomial, radial
basis (RBF), or sigmoid function. Several studies have used different kernel functions
to determine the optimal value to obtain the best prediction accuracy [10–12]. To find
the optimal hyperparameters, we tested different values, as shown in Table 2. We tried
different kernel functions and experimented with various degrees for the polynomial
kernel. Gamma is the kernel coefficient for the polynomial and RBF kernels, and it had a
significant impact on the predictive performance.

f (x) =
l

∑
i=1

(ai − a∗i )K〈xi, x〉+ b (10)
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Table 2. Hyperparameters to determine the optimal values for support vector regressor.

Hyperparameter Value

kernel poly, rbf
degree 2, 3, 4, 5
gamma scale, auto

2.4.2. Random Forest Regressor (Baseline)

A random forest is an ensemble model of decision trees using a bagging method [40].
The model builds multiple decision trees and searches for the best features among a
random subset of features [41]. As the regressor has only a few hyperparameters, it is
easy to determine the optimal values [9,13]. As shown in Table 3, we experimented with
different hyperparameter values to identify the best predictive model: n_estimators is
the number of decision trees used in the experiment, and max_features is the number of
features to be considered when searching for the best split. Finally, the criterion measures
the quality of the split.

Table 3. Hyperparameters to determine the optimal values for random forest regressor.

Hyperparameter Value

n_estimators 100, 200, 500
max_features 2, 3, 4, 5

criterion mse, mae

2.4.3. Gradient Boosting Regressor (Baseline)

Boosting is an ensemble technique that connects multiple weak learners to create
multiple strong learners [42]. The gradient boosting regressor adds predictors sequentially
to correct the errors. Liao et al. [14] created a model based on a gradient boosting regressor
to predict the inflow rate more accurately than a support vector regressor and multilayer
perceptron regressor model. We experimented with various hyperparameters to obtain
the highest prediction accuracy, as shown in Table 4. Specifically, we experimented with
different loss functions (loss), learning rates (learning_rate), numbers of trees (n_estimators),
and criteria (criterion) for splitting nodes.

Table 4. Hyperparameters to find the optimal values for gradient boosting regressor.

Hyperparameter Value

loss ls, lad, huber, quantile
learning_rate 0.1, 0.01, 0.001
n_estimators 100, 200, 300

criterion friedman_mse, mse. mae

2.4.4. Multilayer Perceptron Regressor (Baseline)

In 1958, Rosenblatt first proposed an artificial neural network called perceptron [43].
In Equation (11), WT is the weight vector of the perceptron, and X is the input vector.
In Equation (12), σ is the activation function of the resultant vector of the input vector
multiplied by the weight vector, WT . Each layer of the neural network consists of one or
more perceptrons. Each layer of the perceptron receives the output from the previous layer.
The output from the final layer is compared with the result, and the weight is updated
through backpropagation [44]. Previous research used the backpropagation algorithm to
predict the inflow rate [9,12,13]. As shown in Table 5, we experimented with the number of
perceptrons per hidden layer (hidden_layer_size), activation functions (activation), gradi-
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ent descent algorithm (solver), number of training samples in one iteration (batch_size),
learning rate (learning_rate), and a decision to shuffle the dataset (shuffle).

Z = WTX (11)

hw(x) = σ(Z) (12)

Table 5. Hyperparameters to determine the optimal values for multilayer perceptron regressor.

Hyperparameter Value

hidden_layer_sizes (30, 30, 30), (50, 50, 50), (100, 100)
activation Identity, logistic, tanh, relu

solver lbfgs, sgd, adam
batch_size 32, 64, 128

learning_rate Constant, invscaling, adaptive
shuffle True, False

2.4.5. Comb-ML (Baseline)

The Comb-ML model combines MLP with either a random forest regressor or a
gradient boosting model. Comb-ML first identifies the optimal hyperparameter for each
model and then combines the models. According to Hong et al. [9], when the inflow rate
exceeded 100 m3/s and the average precipitation was 16 mm, the MLP showed the highest
prediction accuracy. In contrast, when the inflow rate was less than 100 m3/s, the ensemble
models (random forest regressor and gradient boosting regressor) showed the highest
prediction accuracy. Consequently, they created a model called RF_MLP, which combined
MLP with a random forest regressor, and another model called GB_MLP, which combined
MLP with a gradient boosting regressor called GB_MLP.

2.4.6. RNN (Baseline)

Unlike artificial networks with the feed-forward method, nodes in the RNN receive
new data and data from the previous state. Park et al. [8] used the Soyang River Dam data
and Chuncheon City meteorological data as inputs to the RNN. In addition, their RNN
had three hidden layers, and each hidden layer had an extra node to account for the bias.
We followed their method to create an RNN model. As shown in Table 6, we changed the
learning rate and batch size to obtain the best prediction accuracy.

Table 6. Hyperparameters for the recurrent neural network grid search.

Hyperparameter Value

Learning rate 0.1, 0.01, 0.001
Batch size 64, 128, 256

2.4.7. MARS (Baseline)

MARS is a nonparametric regression model. It finds a set of simple piecewise linear
functions and combines them to predict until the residual error is too small. Then it removes
the least effective term iteratively until it meets the stopping criteria [45]. MARS model is
fitted using py-earth Python library [46].

2.4.8. Seq2Seq Model

The Seq2Seq model has three layers of bidirectional LSTMs for an encoder and decoder,
as shown in Figure 6. We utilize bidirectional LSTM (Figure 7) for an encoder and a
decoder because it enables the model to train on the present to past and past to present
information. For each bidirectional LSTM, we use the SELU activation function with
the LeCun normal kernel initializer to stabilize the training in the cases of flood and
drought seasons. Equation (13) represents the SELU activation equation. According to
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Klambauer et al. [47], α and λ are approximately 1.67 and 1.05, respectively. As shown in
Table 7, we changed the learning rate, batch size, and number of output units for each
bidirectional LSTM to obtain the best prediction accuracy. The learning rate and batch size,
and the number of output units per bi-directional LSTM all affect how the model trains. We
experiment with a different set of hyperparameters to achieve the best prediction accuracy,
as shown in Table 7. The overall training procedure is described as shown in Algorithm 1
and Figure 8.

Algorithm 1: Seq2Seq Training Procedure.

Input: Weather data for the last seven days and forecasted rainfall
Output: Predicted inflow rate for t and t + 1
1: For Epoch = Epoch + 1 to 3000 do
2: Initialize encoder kernel with LeCun Normal kernel initializer
3: Generate encoder output with SELU activation function
3: Obtain hidden and carry state data from encoder output
4: Initialize decoder with LeCun Normal kernel initializer
5: Generate decoder output with SELU activation function
6: Evaluate error between expected output and the model output with mean squared error

Figure 6. Seq2Seq model schematics.

Figure 7. A detailed schematics of a Seq2Seq’s bidirectional LSTM module.
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Table 7. Hyperparameters for bidirectional LSTM sequence-to-sequence model grid search.

Hyperparameter Value

Learning rate 0.1, 0.01, 0.001
Batch size 64, 128, 256

Number of output units
per bidirectional LSTM 59,100,118,177

SELU(X) = λ

{
x, i f x > 0
αex − α, i f x ≤ 0

(13)

Figure 8. The overall training procedure for Seq2Seq model.
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3. Results

In this section, we share the prediction accuracy results of the baseline models and
our proposed model. We then compare the results of the baseline and proposed models.
Then, we list the outcomes of not using the SELU activation function and bidirectionality of
LSTM in the Seq2Seq model. Finally, we share the results of not using heavy rain warnings
in our proposed model.

3.1. Comparison of Prediction Accuracy among Baseline Models

Table 8 lists the baseline prediction accuracies, and Table 9 lists the hyperparameters
for the baseline models. MLP had the highest prediction accuracy for all criteria. Even
though Hong et al. [9] claimed that Comb-ML performed better than the MLP, random
forest regressor, and gradient boosting regressor, we observed degradation in the prediction
accuracy of the Comb-ML. The RNN had the worst inflow rate prediction accuracy for all
criteria. MARS outperformed RNN, but it was the second-least performing model. Even
though MARS removes the least effective term from the model, it failed to train on the
complex nonlinear relationship between the input and the output.

Table 8. Prediction accuracy results for baseline models.

Baseline
Model Prediction Time RMSE MAE NSE

RNN
T 100.34 53.51 0.78

T + 1 104.08 55.05 0.77

MLP
T 53.49 16.74 0.94

T + 1 59.89 16.95 0.93

SVR
T 63.78 26.06 0.92

T + 1 73.12 28.80 0.89
Random Forest

Regressor
T 66.63 15.76 0.91

T + 1 58.21 15.95 0.93
Gradient Boosting

Regressor
T 76.90 16.71 0.90

T + 1 64.78 17.21 0.93
Comb -ML
(RF_MLP)

T 69.79 16.44 0.92
T + 1 71.01 16.80 0.92

Comb -ML
(GB_MLP)

T 69.39 16.73 0.92
T + 1 71.17 16.97 0.92

MARS
T 71.68 21.88 0.907

T + 1 73.37 25.48 0.902

Table 9. Hyperparameters for baseline models.

MLP Support Vector Regressor

Hyperparameter Value Hyperparameter Value

activation logistic degree 2
batch_size 32 gamma auto

Hidden_layer_size (100, 100, 100) kernel poly
learning_rate constant

shuffle False
solver lbfgs

Random Forest Regressor Gradient Boosting Regressor

Hyperparameter Value Hyperparameter Value

criterion mse criterion mse
max_features auto learning_rate 0.1
n_estimators 100 loss ls

n_estimators 300
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Table 9. Cont.

RNN

Hyperparameter Value

Batch Size 64
Learning rate 0.1

If we closely examine the MLP hyperparameters (Table 9), the activation function
was a logistic function, and maintaining the learning rate at a constant rate was benefi-
cial for prediction accuracy. The limited-memory Broyden–Fletcher–Goldfarb–Shannon
optimization algorithm also aided in obtaining the best performance among the baseline
models. For RNN, a batch size of 64 and a learning rate of 0.1 resulted in the best prediction
accuracy among other hyperparameters in a grid search. However, RNN had the worst
prediction accuracy overall.

3.2. Comparison of Prediction Accuracy between Baseline Models and the Proposed Model

The hyperparameter values for our proposed model are shown in Table 10.

Table 10. Hyperparameter values for our model.

Our Proposed Model

Hyperparameter Value

Batch size 256
Learning rate 0.001

Number of output units per bidirectional
LSTM 177

Our model with the Seq2Seq mechanism outperformed the other models in most
criteria. Table 11 shows that the model outperformed the MLP in the first-day predic-
tion. However, MLP had a better prediction performance in terms of the MAE, whereas
our model outperformed the MLP in terms of the RMSE and NSE for the next day’s
inflow prediction.

Table 11. Prediction accuracy results of our proposed model and the MLP.

Sequence-to-Sequence Model (Our Model) MLP

RMSE MAE NSE RMSE MAE NSE
T 44.17 14.94 0.96 53.49 16.74 0.94

T + 1 58.59 17.11 0.94 59.89 16.95 0.93

3.3. Ablation Study

For an ablation study, we wanted to analyze how the bidirectionality of LSTM, alter-
ation of activation function, and removal of the warning can affect the prediction accuracy.
Therefore, we changed the bidirectional LSTM to unidirectional LSTM for both the en-
coder and decoder, changed the activation function to tanh, and removed the heavy rain
warning data.

The results presented in Table 12 show that removing the bidirectionality of LSTM
lowers the overall prediction accuracy. In addition, all criteria values were lower than
those of the proposed model. Table 13 compares the prediction accuracy results when the
LSTM activation function changed to tanh. The RMSE value increased, while the MAE
value decreased. In addition, only the NSE value of the first day was decreased by 0.02.
Table 14 lists the prediction accuracy results after the exclusion of the warning data. The
table suggests that the RMSE value decreased for the prediction of both days. The NSE
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value for predicting the day was lowered by 0.01. However, excluding the warning data,
resulted in a decrease in the MAE values for forecasting both days.

Table 12. Prediction accuracy results after removing bidirectionality from LSTM.

Sequence-to-Sequence Model
(Unidirectional LSTM)

Sequence-to-Sequence Model
(Control)

RMSE MAE NSE RMSE MAE NSE
T 54.90 16.23 0.94 44.17 14.94 0.96

T + 1 74.12 19.29 0.90 58.59 17.11 0.94

Table 13. Prediction accuracy results after changing activation function to tanh.

Sequence-to-Sequence Model
(Activation Function: Tanh)

Sequence-to-Sequence Model
(Control)

RMSE MAE NSE RMSE MAE NSE
T 58.38 15.62 0.94 44.17 14.94 0.96

T + 1 61.04 17.03 0.94 58.59 17.11 0.94

Table 14. Prediction accuracy results after excluding warning data.

Sequence-to-Sequence Model
(No Warning Data)

Sequence-to-Sequence Model
(Control)

RMSE MAE NSE RMSE MAE NSE
T 54.19 14.57 0.95 44.17 14.94 0.96

T + 1 60.67 16.59 0.94 58.59 17.11 0.94

4. Discussion
4.1. Seq2Seq Training Result

Figure 9 suggests that the model continues to train until it reached the 3000th epoch.
The loss slowly converges to 0 after 300 epochs.

Figure 9. Graph for Seq2Seq model training loss.

4.2. Results of Prediction Accuracy Comparison

Figure 10 suggests that the proposed model and baseline models tend to follow the
trend. However, RNN tends to frequently underestimate as if there are days with a negative
inflow rate.
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Figure 10. Time variation graph for the proposed model RNN, RF_MLP and GB_MLP.

The results from Table 15 show that combining an ensemble model with MLP (Comb-
ML) does not improve the prediction accuracy. Hong et al. [9] claimed that they combined
MLP with an ensemble model because the MLP can predict most accurately when the
inflow rate exceeds 100 m3/s, while an ensemble model can predict most accurately when
the inflow rate is less than 100 m3/s. However, our experiment failed to support this claim.
The RNN was the least performing model in this experiment. One possible explanation is
that, unlike LSTM, the RNN model cannot store any critical information between the input
and output. Changing the number of outputs per node can be helpful, and further research
is required to improve the prediction accuracy of the RNN. The SVR and ensemble models
had similar prediction accuracies.

Table 15. Prediction accuracy result of the proposed model, Comb- ML and RNN.

Models
Metrics

RMSE MAE NSE

Our model
(Seq2Seq)

T 44.17 14.94 0.96
T + 1 58.59 17.11 0.94

Comb-ML
(RF_MLP)

T 69.79 16.44 0.92
T + 1 71.01 16.80 0.92

Comb-ML
(RF_MLP)

T 69.39 16.73 0.92
T + 1 71.17 16.97 0.92

RNN
T 100.34 53.51 0.78

T + 1 104.08 55.05 0.77

Our model is the most accurate model compared with the baseline models. Compared
with MLP, which is the most accurate baseline model, our model outperformed it on
all metrics used for forecasting the day’s inflow. For predicting the next day’s inflow
rate, the RMSE value decreased by 1.3, while the NSE value increased by 0.01. The only
disadvantage of our model is that the MAE value was 0.16 higher than that of the MLP.



Water 2021, 13, 2447 18 of 25

In other words, our model can accurately forecast normal inflow, whereas MLP has better
accuracy in predicting extreme forecasting events.

Table 16 compares the accuracy of our model with the RNN prediction result. Conse-
quently, the RMSE value for the day forecasting was lowered by 56.17, and the MAE value
was 38.57. The NSE value was 0.18 higher than that of the RNN. For the next day’s forecast,
the RMSE and MAE values were lowered by 55.49 and 37.94, respectively. The NSE value
increased by 0.17.

Table 16. Prediction accuracy results of our proposed model and the RNN.

Sequence-to-Sequence Model (Our Model) RNN

RMSE MAE NSE RMSE MAE NSE
T 44.17 14.94 0.96 100.34 53.51 0.78

T + 1 58.59 17.11 0.94 104.08 55.05 0.77

4.3. Ablation Study Analysis

Overall, the tested modifications prove that our model design helped to improve
prediction accuracy. The modifications included changing the bidirectional LSTM to
unidirectional LSTM for both the encoder and decoder, altering the activation function to
tanh, and removing the heavy rain warning data.

As shown in Table 12, having bidirectional LSTM helps predict inflow accurately
by learning patterns from past to present and present to past information. Changing the
bidirectional LSTM to unidirectional LSTM lowers all prediction criteria values. Table 13
suggests that changing the activation function from tanh to SELU helps to increase the
prediction accuracy. The SELU activation function enables the model to train under extreme
conditions, such as flooding and drought, by self-normalizing to prevent exploding or
vanishing gradient problems. By changing to the tanh activation function, the MAE value
for forecasting the next day decreased by 0.08, and the NSE value decreased by 0.02 for
predicting the day’s inflow.

As shown in Table 14, removing the warning data during training causes some
prediction accuracy degradation. The RMSE value increased, but the MAE decreased for
forecasting both days. The NSE value for forecasting the inflow rate for the same day was
reduced by 0.01; however, the value was constant for the next day’s prediction.

4.4. Seq2Seq Model’s Performance Evaluation

Figures 11 and 12 suggest that our model is a good fit. Nearly all the data are close
to the 45-degree line. Our model has the best performance for predicting the first day.
RNN was the worst-performing model among the nine models. Scatter plots show that
GB_MLP, RF_MLP, RNN, Seq2Seq shows the nearly equal predictive performance when
the inflow rate is less than 1000 m3/s. RNN tends to underestimate when the inflow rate is
greater than 1000 m3/s. GB_MLP, RF_MLP, and Seq2Seq tend to show similar predictive
performance, but Seq2Seq tends to outperform other models when the inflow rate is greater
than 1500 m3/s.

Discrepancy ratio = log
(

ŷi
yi

)
(14)
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Figure 11. Scatter plots for predicting inflow rate with the proposed model and based models.
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Figure 12. Scatter plot for predicting the inflow rate with baseline models.
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To evaluate the performance of the Seq2Seq model, we analyzed the discrepancy
ratio. We analyzed with a test dataset. Equation (14) shows how to calculate the ratio. ŷi
represents the predicted value, while yi represents the observed value. If the ratio is greater
than 1, the model is overestimating. If the ratio is less than 1, the model is underestimating.
If the ratio is equal to 1, the model shows the best prediction performance. We calculated
the minimum, maximum, and average of the discrepancy ratio to analyze the proposed
model. The test data contain 0 and cause the discrepancy ratio to become infinity. To
avoid getting an infinity, we replaced 0 with 1× 10−9. Figures 13 and 14 suggest that all
models tend to underestimate the inflow rate. Seq2Seq model is the model that has the
least amount of errors. If we closely examine violin plots from Figures 13 and 14, Seq2Seq
data has less extreme discrepancy value than the other models. Even though all baseline
models’ mean discrepancy is close to 1, extreme values are causing the mean discrepancy
value to increase.

Figure 13. Violin plot for the discrepancy ratio for the proposed model and baseline models.
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Figure 14. Violin plot for the discrepancy ratio for baseline models.



Water 2021, 13, 2447 23 of 25

5. Conclusions

In this study, we propose a model that outperforms models from other studies. In
addition, we set models from other studies as baseline models, namely MLP, random forest
regressor, gradient boosting regressor, Comb-ML, and RNN models. We performed a grid
search to determine the optimal hyperparameters for each model. Comb-ML combines an
MLP model with an ensemble model, but its prediction performance was not better than
that of the MLP model. The MLP model has the highest prediction accuracy, whereas RNN
is the least accurate predictive model. The RNN model did not have the ability to retain
important information for the prediction task. Therefore, the RNN uses all information
without distinguishing critical information to predict the inflow rate. The prediction
accuracy of our sequence-to-sequence model outperforms those of all baseline models.
Only the next day’s MAE value for our model was higher than that of the MLP.

We propose the use of the SELU activation function with the LeCun normal kernel
initializer for bidirectional LSTM to improve the prediction accuracy. This combination
allowed stable training with self-normalizing features. Consequently, the model can
accurately predict the inflow rate under extreme weather conditions, such as flooding and
drought. In addition, bidirectional LSTM allows the model to learn the relationship from
past to present and present to past. Therefore, the model requires more input information
and predicts inflow more accurately than the baseline models.

Three cases were included in the ablation study. The first case involved removing the
bidirectionality of the LSTM. The prediction accuracy decreased. The second case involved
changing the SELU activation function to tanh. We observed a performance degradation
in the inflow prediction. In the last case, warning data were excluded from training. The
model returned less accurate predictions without the warning data. In conclusion, the
ablation study proves that the bidirectionality of LSTM, a change in activation function,
and the addition of warning data all contribute to the prediction accuracy.

The findings of this research show that the Seq2Seq model can be effective in predicting
the inflow rate. Unlike physically based models, our model does not require detailed
hydrological data for predicting the inflow rate. Therefore, our model is suitable for
dams with lacking hydrological data. We also need to experiment with dams that contain
abundant hydrological data to compare our model with physically based models. Lastly,
we need to see how the Seq2Seq model performs if we include hydrological data to predict
the inflow rate.
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