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Abstract: This paper studies the convergence properties of an arbitrary Lagrangian–Eulerian (ALE)
Riemann-based SPH algorithm in conjunction with a Weighted Essentially Non-Oscillatory (WENO)
high-order spatial reconstruction, in the framework of the DualSPHysics open-source code. A
convergence analysis is carried out for Lagrangian and Eulerian simulations and the numerical
results demonstrate that, in absence of particle disorder, the overall convergence of the scheme is
close to the one guaranteed by the WENO spatial reconstruction. Moreover, an alternative method for
the WENO spatial reconstruction is introduced which guarantees a speed-up of 3.5, in comparison
with the classical Moving Least-Squares (MLS) approach.

Keywords: smoothed particle hydrodynamics; weighted essentially non-oscillatory; high order;
consistency; arbitrary lagrangian-eulerian

1. Introduction

The Smoothed Particle Hydrodynamics (SPH) numerical method was originally con-
ceived for the simulation of astrophysical phenomena [1,2]. Its meshless character and
Lagrangian description make it very attractive for the simulation of complex flows with
highly distorted moving interfaces, as it was first demonstrated by Monaghan [3]. Since
then, SPH has been used in a large number of applications that range from environmental
and coastal engineering to energy production [4]. Nowadays, SPH is widely used for
Computational Fluid Dynamics [5,6] and applied to a number of problems in hydraulics,
including wastewater works [7], turbine design [8], fish passage flows [9], interaction of
free-surface flows with flexible structures [10], sloshing in partially filled tanks [11], analysis
of Wave Energy Converters (WEC) [12], study of the impact of sea waves on structures [13],
and Large Eddy Simulation (LES) modelling of turbulent flows for moderate [14] and, more
recently, high [15] Reynolds numbers. For geometrically complex problems and/or multi-
physics applications for which the creation of computational grids is a practical burden,
SPH already represents a real alternative to more established mesh-based tools.

Nevertheless, the SPH Research and Engineering International Community (SPHERIC),
https://spheric-sph.org, accessed on 5 April 2021, has identified a series of Grand Chal-
lenges [16] that need to be overcome to further extend the usage of SPH in industrial
applications. In particular, the present work addresses the first of these Grand Challenges
which is the low accuracy and convergence rate of the method [6]. Indeed, the theoretical
second order spatial accuracy of the continuous SPH integral interpolation [17] cannot be
achieved with the original SPH formulation [3] and usually the convergence rate practically
attained is around first order. This is mainly due to the Lagrangian nature of the scheme,
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which inevitably leads to an irregular particle distribution and consequent poor accuracy of
the SPH spatial operators [18]. Early attempts to increase the accuracy of SPH were based
on re-normalisations and corrections [19–21] to enforce zeroth and first order consistency
of the SPH operators. In a later work [22], this methodology was extended to higher orders
of consistency; interestingly, the method kept the consistency also at boundaries where
the SPH computational stencils have incomplete support. To alleviate the computational
cost, Sibilla [23] derived an algorithm from the previous work [22] where the unknowns
are only the derivatives up to the third order (hence fixing to second order the level of
consistency attained on the first derivative). An alternative to achieve higher orders of
consistency, known as Moving Least-Squares (MLS) hydrodynamics [24], substitutes the
use of integral interpolations by the minimisation of a least-squares functional. Overall, the
downside of all these methods is that the symmetry of the interactions between particles
is broken and hence the attractive conservation properties of SPH are lost. To avoid this
there is a second research path in the literature that aims at preventing the formation of
irregularities in the particle distribution as the simulation evolves. This line of research
encompasses techniques such as the periodic reinitialisation (or remeshing) of the particle
locations [25] where the properties of the shifted particles are corrected (as they have been
moved in an unchanged velocity field). Previously, the widely-known XSPH scheme [26]
already updated the positions of the particles with slightly perturbed non-Lagrangian
velocities, and later it was demonstrated that the gradient of the partition of unity of the
kernel provides a shifting field more effective in regularising particle distributions [27].
Lind and Stansby [28] demonstrated that high-order convergence in SPH solutions can be
achieved if particles are located on a Cartesian grid and kept fixed during the simulation
(Eulerian approach). Despite this algorithm no longer featuring the Lagrangian description
that had so far characterised the SPH method, this encouraging result has inspired other
works that use particle regularisation strategies in conjunction with arbitrary Lagrangian–
Eulerian (ALE) schemes to improve the convergence of quasi-Lagrangian SPH schemes
(see [29] for a recent example). Finally, there is a third research path to improve conver-
gence in (Lagrangian) SPH schemes, firstly proposed in [30], consisting in using high-order
spatial reconstructions to increase the accuracy of particle-particle interactions modelled
as Riemann problems (which have a great stabilization effect and do not require tuning
of empirical coefficients). In line with this, Avesani et al. [31] introduced a polynomial
Weighted Essentially Non-Oscillatory (WENO) reconstruction, improving the accuracy
of this ALE-SPH scheme. In a recent work [32], a new Arbitrary Derivative in Space and
Time (ADER) integrator has been proposed to avoid the expensive computation of the
reconstruction at intermediate stages of a given time step. It is worth mentioning that other
approaches to adopt WENO reconstructions in SPH schemes have been proposed in the
literature. Contrary to the polynomial WENO above-mentioned, both Vergnaud et al. [33]
and Zhang et al. [34] use 1D stencils along each interacting particle pair. Moreover, alterna-
tive methods to stabilize mesh-based schemes have been extended to SPH such as the a
posteriori Multi-dimensional Optimal Order Detection (MOOD) technique [35].

In the present work, the same WENO spatial reconstruction adopted in [31] has been
used for the flux computation in the ALE-SPH scheme. The complex interaction between
the WENO reconstruction error and the SPH interpolation error is not well understood
yet. For this reason, one of the main aims is to demonstrate whether the convergence
properties of the global scheme are inherited from those of the WENO reconstruction as
this would imply that increasing the order of the WENO polynomials is an effective way
to obtain a high order version of the SPH method. For a synthetic 2D vortex case, it will
be demonstrated that the discretization error in the SPH interpolators for divergencies in
the governing equations prevents to exploit the high-order capabilities of the polynomial
WENO reconstruction, which become apparent in a Eulerian simulation. On the other hand,
an alternative way to compute the WENO reconstruction polynomials is proposed: the MLS
fits used in [31] have been replaced with a corrected SPH interpolation [22] with the aim of
remarkably improving the efficiency of the numerical scheme. Though boundary conditions



Water 2021, 13, 2432 3 of 15

are not included in the declared scope of this work, a high-order boundary treatment is
also required to achieve global high order convergence of the scheme, as demonstrated
for the case of Eulerian SPH [36]. For the implementation, the DualSPHysics open-source
project [37] has been chosen as baseline for its efficiency and capability of exploiting
the computational power of modern graphics processing units (GPUs). Recently, a new
boundary treatment has been developed [38] with higher order capabilities (at least, for
pressures). It should be noted as well that there is additional research on other high-order
mesh-free methods such as the Local Anisotropic Basis Function Method (LABFM) [39]
that interestingly collapses to SPH in the limiting low order case.

The rest of this paper is organised as follows: Section 2 provides first a concise but
complete description of the ALE Riemann-based SPH scheme with polynomial WENO
reconstruction; then summarizes the general procedure to restore consistency in SPH
interpolations, and details the context where this correction is applied in the present work.
Section 3 gives first the numerical evidence to support the newly proposed method for
the generation of the WENO polynomials; then follows the convergence study of the
WENO-SPH scheme for the 2D vortex case. Finally, Section 4 draws the conclusions and
proposes topics for further research.

2. Materials and Methods
2.1. Arbitrary Lagrangian–Eulerian Riemann-Based SPH

The starting point to derive the expressions of the SPH scheme used in this work is the
conservative form of the Euler equations for the conservation of mass and momentum [40]:

∂ρ

∂t
= −∇ · (ρv),

∂

∂t
(ρv) = −∇ ·

(
ρv⊗ v + p ¯̄I

)
.

(1)

In standard (Lagrangian) SPH schemes the fluid domain is discretized into small
computational nodes called particles, with position ri and associated volume Vi, that
move with the fluid velocity. On the contrary, in an ALE SPH scheme the velocities of
these particles, known as the transport velocities (v0i), can be arbitrarily prescribed. The
equations for the evolution of the mass and the momentum of particle i can be obtained
from Equation (1) after adjusting the advective terms with the transport velocities:

1
Vi

d(Viρi)

dt
= −[∇ · (ρ(v− v0))]i,

1
Vi

d(Viρivi)

dt
= −

[
∇ ·

(
ρv⊗ (v− v0) + p ¯̄I

)]
i
.

(2)

Using the identity:
∇ ·ϕ = ∇ ·ϕ+ϕ · ∇1, (3)

where ϕ is a generic vector or tensor field, and applying standard SPH operators for the
divergence discretization [41], the following expressions are obtained:

d(Viρi)

dt
= −Vi ∑

j
Vj
(
ρi(vi − v0i) + ρj

(
vj − v0j

))
· ∇Wij,

d(Viρivi)

dt
= −Vi ∑

j
Vj

(
ρivi ⊗ (vi − v0i) + pi

¯̄I + ρjvj ⊗
(
vj − v0j

)
+ pj

¯̄I
)
· ∇Wij.

(4)

Here Wij is the so-called smoothing kernel function. Following the approach of mesh-
based Godunov methods, Vila [30] introduced the idea of computing the fluxes exchanged
within a pair of interacting particles via the solution of a Riemann problem located at the
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midpoint of the pair and that moves at speed v0ij =
(
v0i + v0j

)
/2. These fluxes appear

naturally when interpreting Equations (4) as a space centred approximation of:

d(Viρi)

dt
= −Vi ∑

j
Vj

(
2[ρ(v− v0)]ij

)
· ∇Wij,

d(Viρivi)

dt
= −Vi ∑

j
Vj

(
2
[
ρv⊗ (v− v0) + p ¯̄I

]
ij

)
· ∇Wij.

(5)

Two algorithmic elements, that will be discussed in the next subsections, are used to
supply the input required for the equations in (5):

• A Riemann solver, that can be exact or approximate;
• A reconstruction procedure to infer the values of mass and momentum fluxes at

the midpoint of the ij pair, for both the left (L) and the right (R) states of the
Riemann problem.

Furthermore, an extra equation is needed to link the volume variations with the
arbitrarily prescribed transport field. Considering (from Continuum Mechanics) that the
divergence of a transport field provides the corresponding local rate of variation of a
unitary volume, and applying standard SPH operators for the divergence, the following
expression is obtained:

dVi
dt

= Vi ∑
j

Vj
(
v0j − v0i

)
· ∇Wij. (6)

Finally, a weakly compressible model is adopted, coupling the two equations in (5)
via the equation of state

p = c0
2(ρ− ρ0), (7)

where c0 is the speed of sound, and ρ0 is a reference density. To obtain a larger computa-
tional time step, c0 is chosen as 10 times the maximum expected fluid velocity (a common
compromise in weakly compressible SPH schemes [3]). The equations in (5) and (6) are
explicitly integrated in time with a symplectic scheme, under a CFL condition (see [37]
for details).

2.2. Rusanov Flux

The Rusanov flux is used here to (approximately) solve the Riemann problem that
appears in (5), as it is simple and computationally efficient. For notation convenience, the
conserved variables are grouped together in a column vector

Q =

(
ρ

ρv

)
, (8)

and the mass and momentum fluxes are arranged into a matrix

F(ρ, v, p, v0) =

(
ρ(v− v0)

ρv⊗ (v− v0) + p ¯̄I

)
. (9)

With this, the Rusanov flux has the following expression:

FRusanov
ij =

1
2

(
F
(

ρL
ij, vL

ij, pL
ij, v0ij

)
+ F

(
ρR

ij , vR
ij , pR

ij , v0ij

))
−

cij

2

(
QR

ij −QL
ij

)
⊗ nij, (10)

where nij is the unit vector pointing from particle i to particle j, and cij is the maximum
value of speed of sound in the pair. Here, since Equation (7) has been adopted as the
equation of state, the speed of sound is uniform for all the particles (and constant in
time). It is worth mentioning that the second term on the right-hand side of Equation (10)
provides the necessary upwinding to numerically stabilise the scheme avoiding the use
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of artificial viscosity (with the benefit of not having to tune unphysical coefficients for
each application).

2.3. High-Order Polynomial Weighted Essentially Non-Oscillatory Reconstruction

To compute the fluxes of Equation (10), it is first necessary to get the values of the
conserved variables, ρ and ρv, for the left and right states of each individual Riemann
problem. The ij interface is located at the midpoint of the corresponding particle pair;
however, at a given time step, the fluid variables are known only at the specific locations of
the particles (i.e., a piece-wise constant distribution of data). Hence, it is needed to locally
reconstruct the fluid fields from the particle data. It is well known that the piece-wise
constant reconstruction (where the variables of the left and right states of the Riemann
problem are taken equal to the variables of the i and j particles, respectively) originates too
much numerical diffusion [42,43].

In this work it is proposed to use a polynomial WENO (non-linear) reconstruction.
Originally extended from mesh-based methods to SPH in [31], the method is suitable for
approximating functions that contain discontinuities or exhibit large gradients, preserving
the stability of the numerical scheme. It is assumed that the reconstructed functions are
polynomials of a specified degree. For a given (central) particle i, the corresponding local
polynomial reconstruction has the following form:

Qi(r) = Qi +
N

∑
k=1

Ck
i Bk

i (r− ri), (11)

where N is the size of the polynomial basis (that depends on the polynomial degree and
on the space dimension), Bk

i (r− ri) are the associated basis functions, and Ck
i are the

(unknown) polynomial coefficients.
For each i-th particle, several candidate stencils for the reconstruction are initially

considered, each of them composed by a subset of the particles in the neighbourhood.
Figure 1 shows a sketch of the candidate stencils for a sample randomized 2D particle
distribution. The so-called central stencil is composed by all the particles at distance lower
or equal to the length of the kernel support. On the other hand, there are several lateral
one-sided stencils, all of them composed by particles at distance lower or equal to the
double of the length of the kernel support. In 2D, there are 8 lateral one-sided stencils: a
neighbouring j-th particle belongs to the s stencil (1 ≤ s ≤ 8) when the polar θ coordinate
of the vector rij = rj − ri fulfils the expression:

θ ∈
[
(s− 1)

π

4
, s

π

4

]
. (12)

It should be noted that the particles belonging to the central stencil are also part of
one of the lateral one-sided stencils. In general, SPH particles move in time; hence, at each
time step, the particles that form a given candidate stencil change.

For each candidate stencil, a (local) candidate polynomial reconstruction is built.
Differently from what was done in [31], a corrected SPH interpolation has been used in the
present work to compute the polynomial coefficients, as will be explained in Section 2.4.

In this stencil-adaptive WENO method, the final reconstructed polynomial is a
weighted average of all the candidate stencil polynomials,

Qi(r) = ∑
s

ωsQs
i (r). (13)

To determine the weights ωs that appear in (13), the following unnormalized weights
are computed first:

ω̃s =
λs

(ε + σs)
4 , (14)
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where λs = 1 for the one-sided lateral stencils (1 ≤ s ≤ 8), and λ0 = 105 for the central
stencil; ε is introduced to avoid dividing by zero (valid values are 10−7 and 10−14 for
single and double precision, respectively); and σs is an indicator of the smoothness of the
candidate polynomial based on the values of its coefficients:

σs =
N

∑
k=1

(
Ck

i,s

)2
. (15)

It should be noted that Equation (14) favours the contribution of the central polynomial
candidate, and effectively filters out the contributions of polynomial candidates that are
oscillatory. Finally, a normalization of the weights is done via the expression:

ωst =
ω̃st

∑s ω̃s
. (16)

Once a local polynomial reconstruction is defined for every particle, the left state of
the Riemann problem for the ij pair is obtained from the reconstruction local to particle i,
and the right state is obtained from the reconstruction local to particle j.

Figure 1. Sketch of the central and the one-sided lateral stencils for a sample randomized 2D
particle distribution.

2.4. Corrected SPH Estimation of Derivatives

In this work, the consistency correction proposed in [22] is applied to compute the
coefficients of the polynomials involved in the WENO reconstruction. For completeness,
the following paragraphs explain the process to restore consistency in SPH.
The objective is to use SPH summations to compute at the location of a given particle i the
values of a function, fi, and its derivatives of successive order, fi,α, fi,αβ, . . . (the indexes α,
β, . . . traverse the different dimension variables of the space). For convenience, a Taylor
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expansion of f around particle i is used to express the value of f at the neighbouring
particle j,

f j = fi + fi,α

(
rα

j − rα
i

)
+

(
rα

j − rα
i

)(
rβ

j − rβ
i

)
2!

fi,αβ + · · · , (17)

where rα
i represents the α component of the position vector of particle i. It should be noted

that the Einstein summation convention is adopted.
Without loss of generality, it may be assumed that the objective is to achieve first

order consistency (or second order accuracy) in the SPH estimation. Then, all the terms
in Equation (17) containing second or higher order derivatives can be neglected, and the
remaining unknowns are fi and the first order derivatives fi,α. Multiplying the resulting
expression by the product of the volume of particle j times the value of the smoothing
kernel, VjWij, and summing for all the neighbouring particles j, a first equation is obtained:

∑
j

f jVjWij = fi ∑
j

VjWij + fi,α ∑
j

(
rα

j − rα
i

)
VjWij. (18)

Taking similar actions but using instead the first order derivatives of the smoothing
kernel, Wij,β, leads to analogous equations (as many as the number of dimensions of
the space):

∑
j

f jVjWij,β = fi ∑
j

VjWij,β + fi,α ∑
j

(
rα

j − rα
i

)
VjWij,β. (19)

Equations (18) and (19) form a linear system that can be solved, for instance, with an
LU decomposition [44].

Please note that, if achieving a higher order of consistency is required, then higher
order derivatives of the kernel function can be considered in the Taylor expansion of
Equation (17), and this process can be readily generalised.

2.4.1. Generation of polynomials for the Weighted Essentially Non-Oscillatory
Reconstruction

In the WENO reconstruction it is necessary to estimate the polynomial coefficients Ck
i

that appear in Equation (11). This is a computationally expensive process that needs to be
done for each of the candidate stencils (e.g., nine times in a 2D space). Avesani et al. [31]
use a least-squares fit to carry out this task. In the present work we propose to use a
corrected SPH interpolation described in Section 2.4 for the estimation of the polynomial
coefficients (equivalent to the estimation of the reconstructed function derivatives by virtue
of a Taylor expansion). The benefits in terms of computational efficiency and accuracy will
be supported with data subsequently.

3. Results and Discussion
3.1. Moving Least-Squares vs. Corrected SPH Interpolation for the Generation of
Reconstruction Polynomials

This section focuses on the comparison of the computational performance and the
accuracy of an MLS fit used in [31] and the corrected SPH interpolation described in
Section 2.4 to compute the coefficients Ck

i of the polynomial reconstruction (11). With this
aim, both methods will be used to reconstruct the following 2D scalar function:

f (x, y) = sin(πx) · sin(πy), (20)

in the squared domain [−1, 1]× [−1, 1] with periodic boundary conditions. The (exact)
value of f is known at the particle positions, and two different particle arrangements have
been adopted: (a) particles distributed in the vertices of a Cartesian grid with horizontal
and vertical spacing equal to a certain length, ∆x, and (b) particles distributed randomly by
applying a uniformly distributed random perturbation (of maximum length ∆ = εrand · ∆x,



Water 2021, 13, 2432 8 of 15

with εrand = 10%) to the x and y coordinates of an initial Cartesian grid configuration. For
each particle i, a second order polynomial reconstruction:

Pi(x, y) = f (xi, yi) + C1
i (x− xi) + C2

i (y− yi)+

C3
i (x− xi)

2 + C4
i (y− yi)

2 + C5
i (x− xi)(y− yi) (21)

is produced from the data of the particles in a neighbourhood of radius 4 times ∆x. To
evaluate the reconstructions, a Cartesian reconstruction grid is created initially superim-
posed to the above-mentioned particle arrangement (a), then the grid is shifted by the
distance 0.1 · ∆x both in positive x and y directions. For the computation of the error, each
reconstructing polynomial will be evaluated at the reconstruction grid point placed closest
to the centre of the reconstruction, and compared to the exact value of f . Finally, for the
corrected SPH interpolations, the popular cubic spline kernel is used [37], with a smoothing
length h = 2∆x.

Figure 2 shows the convergence of the L2 norm of the error in the reconstruction of
Equation (20) for the MLS and for the corrected SPH interpolation methods (annotations of
the order of convergence are also included). The MLS reconstructions have been computed
via a Singular Value Decomposition (SVD) algorithm (see, e.g., chapter 15 in [45] for
details). Both above-mentioned uniform and randomized particle distributions have been
used. A third order convergence rate is achieved as one would expect from the second
order approximation of (21). However, in both particle arrangements, the accuracy of the
reconstruction when using corrected SPH interpolations is higher for a given resolution.

Figure 2. Convergence of the L2 norm of the error in the reconstruction of Equation (20) in the squared
domain [−1, 1]× [−1, 1] with side length L = 2 m. Results are displayed for the MLS and for the
corrected SPH interpolation methods (with a smoothing length h = 2∆x), as well as for both uniform
and randomized particle distributions. Annotations of the order of convergence are included.

More importantly, the average measured computational cost for the method us-
ing the corrected SPH interpolation is 3.5 smaller than for MLS. Considering that the
WENO method requires one of these polynomial reconstructions per candidate stencil (e.g.,
9 polynomials in a 2D case), it is expected that the associated speed-up in the complete
SPH scheme will be remarkable.
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3.2. Weakly Compressible 2D Vortex

A weakly compressible 2D vortex, as described in [46], has been chosen for the
evaluation of the SPH scheme used in this work. This is an inviscid, stationary problem
that has circular streamlines. Interestingly, an analytical solution given by the following
expressions is available:

ρ(r) = ρ0 + (ρM − ρ0)

[
1− 2r

r0
e−

2r
r0 − e−

2r
r0

]
uθ(r) =

2r
r0

c0

√
ρM − ρ0

ρ(r)
e−

2r
r0

, (22)

where c0 and ρ0 have already been defined in (7), ρM is the asymptotic value of density,
and r0 marks the position where the (tangential) velocity is maximal. Please note that
the analytical solution depends only on the radial distance r. The actual values of these
parameters used in this work are: c0 = 1.0 m/s, ρ0 = 1.0 kg/m2, ρM = 1.01 kg/m2, and
r0 = 0.1 m. The size of the circular simulation domain is R = 0.7 m. There are several
reasons to select this test case for the preliminary studies of the present WENO-SPH
scheme. Firstly, boundary conditions can be easily enforced with the appropriate number
of rows of dummy particles around the simulation domain (where the analytical solution
is imposed). This allows to avoid the situation where some of the candidate reconstruction
stencils lack of sufficient neighbouring particles to build the corresponding polynomials.
On the other hand, the test case is challenging as in general vortices are difficult to capture
for Lagrangian particle methods.

For convenience, all the simulation results are expressed in non-dimensional variables,
marked by a hat symbol (^). These variables are defined as follows:

x̂ =
x
r0

, ẑ =
z
r0

, t̂ =
t · vθ(r = r0)

r0
,

p̂ =
p

ρ0 · v2
θ(r = r0)

, v̂ =
v

vθ(r = r0)
.

(23)

Please note that the non-dimensional time above can be interpreted as the angle (in
radians) that the radius vector of the fastest particles (i.e., the ones at r = r0) traverses in
that time.

Regarding the SPH scheme, second order polynomials are used for the WENO re-
construction. The kernel is a cubic spline (see definition in [37]), with a smoothing length
h = 2∆x for all the simulations. The CFL number has been set equal to 0.2. Unless explicitly
stated otherwise, the simulations are performed adopting a Lagrangian transport velocity
(v0 = v).

Figure 3 shows the pressure distribution along the line ẑ = 0 and at time t̂ = 0.37,
computed with a standard SPH scheme with artificial viscosity (see details in [37]), and two
Riemann-based SPH (RSPH) schemes: one with a piece-wise constant reconstruction and
the other one with the polynomial WENO reconstruction. The resolution of the simulations
is R/∆x = 39, and the exact (stationary) solution is provided for comparison. The value
chosen for the artificial viscosity coefficient (α = 0.05) is typical of applications in the
hydraulics field. Please note that the selected physical time corresponds to a sufficiently
early instant in the simulation which guarantees that the fluid has not experienced large
deformations yet. This is needed to obtain meaningful results in Lagrangian simulations
without a dedicated treatment for irregular particle distributions. It may be seen that the
artificial viscosity used in the standard SPH scheme introduces a spurious spike around
x̂ = 0. On the other hand, the RSPH scheme is very good at stabilizing the results
without spurious effects. However, the unavoidable numerical diffusion that it introduces
is too large when using the piece-wise constant reconstruction, affecting the accuracy of
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the solution. Finally, the high-order reconstruction in the RSPH-WENO scheme largely
improves its accuracy.

Figure 3. Pressure distribution of the 2D vortex along the line ẑ = 0 and at time t̂ = 0.37, computed
with three different schemes: standard SPH with artificial viscosity (α = 0.05), RSPH with a piece-wise
constant reconstruction, and RSPH with a WENO reconstruction. The resolution is R/∆x = 39.

Figure 4 shows the distribution of particles of the 2D vortex simulation (with the
RSPH-WENO scheme) at a later physical time, t̂ = 3.7, with the magnitude of the gradient
of partition of unity superimposed:

‖∇x̂Ci‖ = r0‖∇Ci‖ = r0

∥∥∥∥∥∑j
Vj∇Wij

∥∥∥∥∥, (24)

In this plot, the resolution is R/∆x = 92. The high-order spatial reconstruction makes
the particles move accurately along their Lagrangian trajectories which in its turn leads
to anisotropic particle distributions. An immediate consequence is the (local) increase of
the gradient of partition of unity which translates into low accuracy of the standard SPH
approximations of divergence operators used in Equations (5) and (6).

Aiming at further comparing the different schemes herein adopted, Figure 5 shows
the convergence of the L2 norm of the pressure error at t̂ = 0.37 for the following five
different RSPH schemes:

• RSPH with a piece-wise constant reconstruction. This is the less accurate scheme
due to the very large diffusion introduced by the Riemann problem with a trivial
reconstruction.

• RSPH with a MUSCL reconstruction. Uses linear reconstructions based on gradients
estimated by standard SPH operators, with slope limiters (to prevent oscillatory fields)
as first depicted by [30]. The MUSCL reconstruction improves the accuracy of the
scheme to the point that anisotropic distributions (like the ones displayed in Figure 4
for the RSPH-WENO scheme) appear, especially for high resolutions. The result is an
increase in the discretization error that saturates the decrease in the global error.

• RSPH with WENO reconstruction: The high-order spatial reconstruction further im-
proves the accuracy of the trajectories described by the particles which, in conjunction
with the usage of standard divergence SPH operators in Equations (5) and (6), ruins
the beneficial effect of the high-order reconstruction.
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• RSPH with WENO reconstruction and Eulerian transport. In these simulations,
particles remain fixed on the vertices of a Cartesian grid (v0 = 0). Hence, the gradient
of partition of unity is exactly zero in the whole field, unleashing the full potential of
the WENO reconstruction to reach a maximum convergence rate of∼2.7. Considering
that the theoretical convergence for the second order reconstructing polynomials used
is third order, this result suggests that the overall convergence of the scheme is guided
by the order of the WENO polynomials.

Figure 4. Distribution of particles of the 2D vortex simulation (with the RSPH-WENO scheme) at
t̂ = 3.7, with the magnitude of the gradient of partition of unity superimposed. The resolution is
R/∆x = 92.

Figure 5. Convergence of the L2 norm of the 2D vortex pressure error at t̂ = 0.37 (the resolution is
expressed as the ratio between the domain radius and the particle spacing, Rdp) for five different
RSPH schemes.
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Figure 6 displays the distribution of particles of the 2D vortex simulation at t̂ = 3.7
with the field of unitary volume variation superimposed

V̂ − V̂0 =
V − (∆x · ∆x)

∆x · ∆x
, (25)

computed by the RSPH-WENO scheme. In this plot, the resolution is R/∆x = 92. It may
be seen that the algorithm keeps volume variations small, below a 3% (in absolute value).

Figure 6. Distribution of particles at t̂ = 3.7 for the 2D vortex case, with the field of unitary volume
variation superimposed, computed by the RSPH-WENO scheme. The resolution is R/∆x = 92.

Finally, Table 1 details the approximate computational time for two different Riemann-
based SPH schemes relative to that of a standard SPH scheme with artificial viscosity
(see details in [37]), for a given resolution. The large number of candidate polynomials
reconstructions in WENO makes this method notably more expensive. However, with
the high-order method the same level of accuracy can be reached with a lower resolution,
as it may be seen in Table 2 that compares the performance of standard SPH and the
Riemann-based SPH scheme with WENO reconstruction. With the much lower resolution
required by the WENO SPH scheme, a 25 percent speed-up is actually achieved. Note that
the value of the artificial viscosity coefficient α = 0.6 has been chosen aiming at obtaining a
similar amount of numerical diffusion (i.e., a similar depth of the central area in Figure 3)
compared to that of the solution computed with the WENO SPH scheme. However, it is
not possible to match exactly both the numerical diffusion and the L2 norm of the pressure
error so a compromise value has been adopted.

Table 1. Computational time of Riemann-based schemes relative to a standard SPH scheme (for a
given resolution).

Riemann-Based Scheme CPU Time / CPU Time Standard SPH

MUSCL 2.5
WENO 10.9
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Table 2. Performance comparison of standard SPH and Riemann-based with WENO reconstruction
SPH, for the 2D vortex case. Values of the L2 norm of the pressure error at t̂ = 0.37 are provided.

SPH Scheme R/∆x ‖err(p̂)‖2 CPU time / CPU Time Standard SPH

Standard SPH (α = 0.6) 160 0.020532 1
WENO-RSPH 52 0.020878 0.75

4. Conclusions

In this paper, the convergence properties of a polynomial WENO ALE-SPH scheme
have been investigated. For the case of a weakly compressible 2D vortex, it has been
demonstrated first that the accuracy of the Lagrangian trajectories of the SPH particles
improves with the WENO reconstruction, to the point that anisotropic particle configura-
tions easily form. As a result, the truncation error in the discrete SPH operators becomes
dominant and produces the saturation of the global error with increasing resolutions. It
has also been shown that, with the aid of a Eulerian simulation with particles fixed on
the vertices of a Cartesian grid, this truncation error can be eliminated, obtaining high
order convergence (∼3). More importantly, the fact that the order of convergence achieved
is very close to the order of the adopted WENO polynomials suggests that this type of
schemes is a viable path to reach high order convergence in SPH (which is one of the main
goals of the present work).

Furthermore, a novel efficient procedure based on a corrected SPH interpolation for
the estimation of the coefficients of the underlying WENO (candidate) polynomial recon-
structions has been proposed. Compared to the MLS approach used in [31], this method
not only increases the accuracy of the results but brings a speed-up in computational time
by a factor of 3.5.

In connection with the convergence analysis of the WENO SPH scheme, and thanks
to the ALE framework of the SPH formulation used in this work, it should be noted that
it is also possible to tackle the issue of the anisotropic particle distributions by means of
particle regularisation techniques (as firstly proposed by [47]) that perturb the Lagrangian
transport velocities with a small shifting velocity field that keeps the particle distribution
regular. Contrary to the Eulerian simulation performed in the present work, this approach
would allow to (approximately) keep the Lagrangian nature that has characterized so far
the SPH method (very useful, e.g., in problems with free surfaces). Another interest of this
technique in an ALE framework (which is left for future research) is that both conservation
and consistency of the scheme would be kept.

The formulation of general boundary conditions (e.g., walls and free surfaces) in the
framework of the polynomial WENO-SPH scheme has not been tackled in the present
work. The challenge lies in the potential incompleteness of some of the candidate WENO
reconstruction stencils when boundaries are present. The appropriate treatment that would
keep high order convergence of the numerical solution also close to boundaries remains to
be investigated.
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The following abbreviations are used in this manuscript:

SPH Smoothed Particle Hydrodynamics
WEC Wave Energy Converters
LES Large Eddy Simulation
SPHERIC SPH rEsearch and engineeRing
MLS Moving least-squares
ALE Arbitrary Lagrangian–Eulerian
WENO Weighted Essentially Non-Oscillatory
ADER Arbitrary DERivative
MOOD Multi-dimensional Optimal Order Detection
LABFM Local Anisotropic Basis Function Method
GPU Graphics Processing Unit
CFL Courant–Friedrichs–Lewy
RSPH Riemann-based SPH
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