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Abstract: Surface gravity wave interaction with a semi-infinite floating elastic plate in the presence
of multiple undulations has been studied under the assumption of linearized water wave theory
and small amplitude structural response. The elastic plate is modeled using the Euler-Bernoulli
beam equation, whilst the multiple undulations are categorized as an array of submerged trenches
or breakwaters. The numerical solution obtained in finite water depth using the boundary element
method is validated with the semi-analytic solution obtained under shallow water approximation.
Bragg resonance occurs due to the scattering of surface waves by an array of trenches or breakwaters
irrespective of the presence of the floating semi-infinite plate. The zero-minima in wave reflection
occur when the width of the trench and breakwater is an integer multiple of 0.6 and 0.35 times
wavelength, respectively, as the number of trenches or breakwaters increases. In contrast to trenches
and breakwaters in isolation, non-zero minima in wave reflection occur in the presence of a semi-
infinite plate. Moreover, the number of complete cycles in trenches is less than the number of
complete cycles in breakwaters, irrespective of the presence of the floating structure. The frequency
of occurrence of zero minimum in wave reflection is reduced in the presence of the semi-infinite
plate, and wave reflection increases with an increase in rigidity of the floating plate. Time-dependent
simulation of free surface displacement and plate deflection due to multiple undulations of seabed in
the presence of the semi-infinite floating plate is demonstrated in different cases.

Keywords: Bragg reflection; trenches; breakwaters; semi-infinite plate; Gaussian wave packet

1. Introduction

One of the challenges due to global warming is the rise in sea level contributing to
coastal flooding and erosion. Very large floating structures (VLFS), in the form of semi-
infinite floating structures, have been introduced as an eco-friendly solution to meet the
need for land space. These structures are very large in nature and deform elastically under
wave action. During the last two decades, for different serviceability conditions, several
techniques have been proposed for mitigating wave-induced structural responses on
floating structures. Recent progress on the performance of anti-motion systems for reducing
wave forces on the VLFSs was reviewed by Wang et al. [1]. An analogous discipline is the
wave-ice interaction problems in which the ice sheet is modeled as an elastic plate. Meylan
and Squire [2] analyzed the scattering of surface waves by a single ice floe. Sahoo et al. [3]
studied the scattering of surface gravity waves by a semi-infinite floating elastic plate and
analyzed the role of different types of edge conditions on the vibration of the floating
structure. Squire [4] reviewed the synergy between a floating ice sheet and a very large
floating structure in the study of surface gravity wave interaction with a floating elastic
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plate. Sturova [5] investigated the unsteady response of a heterogeneous elastic plate under
shallow water approximation. Bhattacharjee and Soares [6] studied the transformation of
the flexural gravity waves by a vertical wall. Papathanasiou et al. [7] studied the unsteady
hydroelastic response of a floating ice shelf under long-wave excitation using the finite
element method. Sturova [8] investigated the hydroelastic response of an external load
moving over a semi-infinite ice sheet in the sub-critical regime. Das et al. [9] investigated
the blocking dynamics of flexural gravity waves in the presence of ocean current and
compression. Barman et al. [10] studied the flexural gravity wave scattering due to
a crack in a floating ice sheet in the context of blocking dynamics. Jiang et al. [11]
designed and analyzed the floating prestressed concrete structures in shallow waters.
Kalyanaraman et al. [12] investigated the shallow-water limit for the modeling of wave-
induced ice-shelf vibrations. Various developments of numerical algorithms on ice-water-
structure interaction was reviewed by Ni et al. [13].

In recent decades, due to the advent of computational techniques, significant progress
on the study of scattering of gravity waves by VLFS over undulated seabed has been
witnessed in the literature. Belibassakis and Athanassoulis [14] analyzed the hydroelastic
responses of a VLFS floating over the undulated seabed. Karmakar et al. [15] investigated
the role of multi-step bottom topography on the transformation of flexural gravity waves
in finite water depth. Karperaki et al. [16] analyzed the transient hydroelastic response
of a flexible floating plate, which is connected to the seabed elastically. The study of
Kar et al. [17] reveals that the maximal peak Bragg reflection curve is nearly linear in the
case of long wave scattering by a pair of submerged trenches, whilst the pattern of the
said curves appears to be non-linear in the case of an array of finite number of submerged
trenches. Kar et al. [18] studied the scattering of long gravity waves due to an array of
submerged trenches and breakwaters in the presence of an array of floating flexible plates.

The boundary element method (BEM) is broadly used for dealing with varieties of
physical problems associated with wave-structure interactions. Koley [19] used a coupled
boundary element-finite difference method to study the effect of undulated bottom on the
Bragg scattering of water waves by a flexible floating plate of finite length. Vijay et al. [20]
used the boundary element method to reduce the wave-induced responses of a floating
structure near a wall in the presence of permeable plates. Mohapatra et al. [21] developed
the multi-domain BEM method to study the scattering of gravity waves by a submerged
wavy porous plate. Ray et al. [22] investigated the water wave scattering by a submerged
thick rectangular barrier in the presence of an ice sheet. Gayathri et al. [23] studied the
wave scattering obliquely by a floating rigid bridge placed near a vertical porous and
flexible barrier. Recently, Vita et al. [24] studied the interaction of surface gravity waves
with an array of submerged periodic structures for attenuating wave height. However,
there is no study in the literature on wave interaction with a semi-infinite floating flexible
in the presence of multiple seabed undulations.

In the present study, Bragg scattering of surface gravity waves by an array of sub-
merged trenches and breakwaters is analyzed in the presence of a semi-infinite floating
flexible plate. Various results associated with the long gravity waves obtained via the
analytic method are validated with the numerical results computed based on the boundary
element method. Moreover, energy identity is derived and used to check the accuracy of the
results. Various physical quantities, such as reflection coefficients, plate deflection, and free
surface elevations, are computed for analyzing the effects of different physical parameters
associated with wave motion, trenches, breakwaters, and floating semi-infinite plate. The
Bragg reflection patterns generated due to various combinations of trenches/breakwater
and the semi-infinite floating plate are analyzed. The wave packets interacting with
an array of trenches or breakwaters are demonstrated in the presence/absence of the
semi-infinite plate.
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2. Mathematical Formulation

The problem of surface gravity wave interaction with a semi-infinite floating plate
in the presence of multiple bottom undulations is studied in the two dimensions in the
Cartesian coordinate system. Here, x−axis is taken along the horizontal direction, and
y−axis is directed vertically downward. There is an array of N rectangular trenches or
breakwaters of equal width w, with the gap between the leading edges of two adjacent
trenches/breakwaters being d, which occupy the regions xj,1 < x ≤ xj,2 (= xj,1 + w) for
j = 1, 2, 3, . . . , N. The floating semi-infinite plate occupies the region p ≤ x < ∞, y = 0,
and Lg is the gap length between the plate and the lee-side of the rightmost Nth trench or
breakwater. The water depth at the sea-side and shore-side of the trenches is h1, whereas
the water depth within the submerged breakwaters is h2 with h1 > h2, as shown in Figure 1.
On the other hand, it may be noted that, in the case of submerged trenches, h1 will be less
than h2. Moreover, the water depth in-between the trenches and the plate covered region
is considered to be h1. Under the assumptions of small amplitude surface gravity wave
theory with motion being simple-harmonic motion in time with angular frequency ω, the
velocity potential Φj(x, y, t) is written as Φj(x, y, t) = <

{
φj(x, y)e−iωt}, with subscripts

1 and 2 corresponding to the open water and the plate covered regions, respectively.
Further, the free surface elevation ζ(x, t) and the plate deflection τ(x, t) take the form
ζ(x, t) = <

{
η(x)e−iωt}, τ(x, t) = <

{
ν(x)e−iωt}, where η(x) and ν(x) are the spatial

components of the free surface elevation and plate deflection, respectively. Thus, the spatial
components of the velocity potentials φj(x, y) (for j = 1, 2) satisfy the Laplace equation.

Figure 1. Schematic of wave motion over undulated bed and floating elastic plate.

(
∂2

∂x2 +
∂2

∂y2

)
φj = 0. (1)

The free surface condition in the open water region is given by

∂φ1

∂y
+ Kφ1 = 0, on y = 0, −∞ < x < p, (2)

where K = ω2/g is the wavenumber associated with the surface gravity waves in infinite
water depth. Further, on the plate covered surface, the linearized dynamic boundary
condition yields (see Stoker [25] and Kar et al. [18] for details)

EIνxxxx +
(

ρg−msω2
)

ν = −iρωφ2, on y = 0, p < x < ∞, (3)

with E being the Young’s modulus and I = d3
s /(12(1− ν2)), ds being the plate thickness,

ν being the Poisson’s ratio, ms = ρsds being the uniform mass of the plate per unit length,
and ρs being the density of the plate. The linearized free surface kinematic boundary
condition on the elastic plate is given by

∂φ2

∂y
= −iων, on y = 0, p < x < ∞. (4)
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The free edge condition of the semi-infinite plate at x = p yields

νxx = 0, νxxx = 0, at x = p, y = 0. (5)

On the other, the boundedness of the solution at x → ∞ yields

ν(x)→ finite value, at x → ∞. (6)

The boundary condition on the rigid bottom yields

∂φj

∂n
= 0, on y = h(x), (7)

where ∂/∂n represent the normal derivative. In Equation (7), the bottom boundary h(x)
takes the form

h(x) =


h1, for {x < x1,1} ∪ {x > xN,2} ∪

{
xj,2 < x < xj+1,1

}
(j = 1, 2, · · · , N − 1),

h2, for
{

xj,1 ≤ x ≤ xj,2
}
(j = 1, 2, · · · , N).

(8)

Finally, the far-field radiation conditions are of the forms{
φ1(x, y)→ φI(x, y) + AR φI(−x, y), as x → −∞,
φ2(x, y)→ AT ψ(x, y), as x → ∞,

(9)

where φI(x, y) =
cosh(k1(h1 − y))

cosh(k1h1)
eik1x is the incident wave velocity potential, with k1

being the positive real root of the dispersion relation ω2 = gk tanh(kh1). Further, ψ(x, y) =
cosh(p1(h1 − y))

cosh(p1h1)
eip1x, with p1 being the positive real root of the dispersion relation

p
{(

ρg−msω2
)
+ Dp4

}
tanh ph1 = ρg−msω2, (10)

with D = EI being the rigidity of the semi-infinite plate. It is to be noted that AR and AT
are the unknown constants associated with the reflection and transmission coefficients.
To incorporate the far-field boundary conditions as in Equation (9) in the boundary element
method, the alternate form of the radiation condition will be used is given by

∂
(
φ1 − φI)

∂x
+ ik1

(
φ1 − φI

)
= 0, as x → −∞,

∂φ2

∂x
− ip1φ2 = 0, as x → ∞.

(11)

3. Numerical Solution Based on Boundary Element Method

Here, the boundary value problem, as discussed in Section 2, is handled for a solution
using the boundary element method (BEM). In BEM, all the boundary conditions except
the plate surface condition can be easily incorporated. To use the plate surface boundary
conditions (3)–(6), the normal velocity ∂φ2/∂n is written in terms of the velocity potential
φ2 along the plate covered surface. Thus, the plate dynamic boundary condition (3) is
rewritten as

d4ν

dx4 +

(
ρg−msω2

D

)
ν =
−iρωφ2

D
. (12)
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The characteristic polynomial of Equation (12) can be written as

r4 + C = 0, (13)

where C =

(
ρg−msω2

D

)
. As ρg >> msω2, Equation (13) will have four complex conju-

gate roots in four quadrants of the form±δj for j = 1, 2 with δ1 = a+ ib, δ2 = a− ib a, b > 0.
Now, the Green’s function associated with Equation (12) takes the form

gp(x, ξ) =

{
a1eδ1x + b1e−δ1x + c1eδ2x + d1e−δ2x, x < ξ,
a2eδ1x + b2e−δ1x + c2eδ2x + d2e−δ2x, x > ξ,

(14)

where ξ is the source point, and x is the field point on the plate boundary, and satisfies the
following properties

gp(x, ξ) is bounded as x → ∞,

∂2gp

∂x2

∣∣∣∣∣
x=p

=
∂3gp

∂x3

∣∣∣∣∣
x=p

= 0,

gp,
∂gp

∂x
and

∂2gp

∂x2 are continuous at x = ξ,

∂3gp

∂x3

∣∣∣∣∣
x=ξ+

−
∂3gp

∂x3

∣∣∣∣∣
x=ξ−

= −1.

(15)

The unknowns in Equation (14) are computed by solving the following matrix system



eδ1ξ e−δ1ξ eδ2ξ e−δ2ξ −e−δ1ξ −e−δ2ξ

δ1eδ1ξ −δ1e−δ1ξ δ2eδ2ξ −δ2e−δ2ξ δ1e−δ1ξ δ2e−δ2ξ

δ2
1eδ1ξ δ2

1e−δ1ξ δ2
2eδ2ξ δ2

2e−δ2ξ −δ2
1e−δ1ξ −δ2

2e−δ2ξ

−δ3
1eδ1ξ δ3

1e−δ1ξ −δ3
2eδ2ξ δ3

2e−δ2ξ −δ3
1e−δ1ξ −δ3

2e−δ2ξ

δ2
1eδ1 p δ2

1e−δ1 p δ2
2eδ2 p δ2

2e−δ2 p 0 0
δ3

1eδ1 p −δ3
1e−δ1 p δ3

2eδ2 p −δ3
2e−δ2 p 0 0





a1

b1

c1

d1

b2

d2


=



0

0

0

−1

0

0


, (16)

along with a2 = c2 = 0. Using Equation (14) into Equation (12), the plate deflection ν(x)
can be written as

ν(x) = − iρω

D

∫ ∞

p
gp(x, ξ) φ2(ξ)dξ. (17)

Finally, substituting the expression of ν(x) as in Equation (17) into Equation (4), we get

∂φ2

∂y
= −ρω2

D

∫ ∞

p
gp(x, ξ) φ2(ξ)dξ. (18)

Introducing the operator

G( f (x)) = −ρω2

D

∫ ∞

p
gp(x, ξ) f (ξ)dξ, (19)

Equation (18) can be written as

∂φ2

∂y
= G(φ2(x)). (20)
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This particular form will be used in the BEM formulation at a later stage. Now, using
Green’s second identity to the functions φ(x, y) and G(x, y; x0, y0) in the region Ω bounded
by Γ, it is derived that

1
2

φ(x, y) =
∫

Γ

(
φ(x0, y0)

∂G(x, y; x0, y0)

∂n
− G(x, y; x0, y0)

∂φ(x0, y0)

∂n

)
dΓ(x0, y0), (21)

for (x, y) ∈ Γ.

In Equation (21), G(x, y; x0, y0) is the free space Green’s function, which satisfies(
∂2

∂x2 +
∂2

∂y2

)
G = δ(x− x0)δ(y− y0), (22)

and takes the form G(x, y ; x0, y0) = (1/2π) ln r, where r =
√
(x− x0)2 + (y− y0)2 repre-

sents the distance between the field point (x, y) and the source point (x0, y0). Using the
boundary conditions (2), (7), (11), and (20) into the integral Equation (21), we obtain

Cφ +
∫

Γl

(
∂G
∂n
− ik1G

)
φdΓ +

∫
Γb

φ
∂G
∂n

dΓ +
∫

Γr

(
∂G
∂n
− ip1G

)
φdΓ +

∫
Γp
(φ

∂G
∂n

− GG(φ))dΓ +
∫

Γ f

(
∂G
∂n

+ KG
)

φdΓ =
∫

Γl

(
∂φI

∂n
− ik1φI

)
GdΓ, (23)

where C is a constant which depends on the interior angle between the linear boundary
elements. In Equation (23), Γl and Γr are the auxiliary boundaries situated at the far-field, as
shown in Figure 2. These two auxiliary boundaries are taken sufficiently far away in both
sides so that Equation (11) holds. Further, Γb, Γp, and Γ f represent the bottom boundary,
plate covered surface, and the free surface, respectively. The details derivation for reducing
Equation (23) into system of equations are provided in the Appendix A. Next, the influence
coefficients, as defined in the Appendix A, are calculated analytically when the field points
match with that of the source points, whilst the Gaussian quadrature formula is used
otherwise (see Katsikadelis [26] for details). Subsequently, using the collocation method, a
linear algebraic system of equations is obtained, which is handled for the solution. Next,
using Equation (9), the reflection coefficient Kr and transmission coefficient Kt are obtained
using the formulae given by

Kr = |AR| =
∣∣∣φ1(x, 0)− eik1x

∣∣∣
x=−∞

, (24)

Kt =
p1

k1

tanh(p1h1)

tanh(k1h1)
|At| =

p1

k1

tanh(p1h1)

tanh(k1h1)

∣∣∣φ2(x, o)
∣∣∣
x=∞

, (25)

where φ1(−∞, 0) and φ2(∞, 0) correspond to the left and right most panel on the boundary
Γ f , respectively.

2h
1 j N

.... ..........
1h

)0,(p

2

Figure 2. Computational domain for BEM.
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4. Energy Identity

Here, the energy balance relation is derived for the physical problem discussed in
Section 2 using the procedure adopted in Evans and Davies [27]. To derive the energy
balance relation, Green’s second identity is applied to the functions φ(x, y) and its com-
plex conjugate φ̄(x, y) over the region bounded by the lines Γl ∪ Γb ∪ Γr ∪ Γp ∪ Γ f . The
contribution from the line Γl as x → −∞ is given by

i
(

1− |AR|2
) 2k1h1 + sinh(2k1h1)

2 cosh2(k1h1)
. (26)

No contribution will come from Γb and Γ f . The contribution from Γp as x → ∞ is
given by

−
4i Dp4

1 tanh(p1h1)(
Dp4

1 + (ρg−msω2)
) |AT |2. (27)

Now, the contribution from Γr as x → ∞ is given by

− i |AT |2
2p1h1 + sinh(2p1h1)

2 cosh2(p1h1)
. (28)

Adding all the terms, the energy balance relation is obtained as

|AR|2 + |AT |2
(

χ2

χ1
+

4Dp4
1 tanh(p1h1)(

Dp4
1 + (ρg−msω2)

)
χ1

)
= 1, (29)

where χj for j = 1, 2 are given by

χ1 =
2k1h1 + sinh(2k1h1)

2 cosh2(k1h1)
, χ2 =

2p1h1 + sinh(2p1h1)

2 cosh2(p1h1)
. (30)

Now, using the definition of Kr and Kt as defined in Equation (24), the energy identity
in Equation (29) can be rewritten as

K2
r + γK2

t = 1, (31)

where γ =
k1
p1

sinh(2k1h1)

sinh(2p1h1)
×
(

Dp4
1 + (ρg−msω2)

)
2p1h1 + (5Dp4

1 + (ρg−msω2)) sinh(2p1h1))

ρg(2k1h1 + sinh(2k1h1))
.

The energy identity as obtained in Equation (31) is equivalent to the one defined in
Karmakar et al. [15] in case of normalized incident wave.

5. Analytic Long Wave Solution

In this section, Bragg scattering of small amplitude long waves due to multiple bottom
undulations in the presence of the semi-infinite floating ice sheet is studied analytically, as
shown in Figure 1. Assuming the motion as time-harmonic in time with angular frequency
ω, the velocity potential Φ(x, t) is written in the form Φ(x, t) = <

{
φ(x)e−iωt}. Further, the

free surface elevation in the open water region ζ(x, t) and the plate deflection τ(x, t) are
written in the forms ζ(x, t) = <

{
η(x)e−iωt}, τ(x, t) = <

{
ν(x)e−iωt}, with η(x) and ν(x)

being the spatial components of the free surface elevation and plate deflection, respectively.
In the presence of the submerged trenches and the floating plate, the spatial component of
the velocity potential φ can be divided into two parts, φ1 (velocity potential in the open
water region) and φ2 (velocity potential in the plate covered region).

The long wave equation in the open water region in term of φ1(x) is given by (see
Kar et al. [18] and Sahoo [28] for details)

φ1xx + k2
j φ1 = 0, (32)
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where k2
j = ω2/ghj for j = 1, 2.

Hence, the solution of Equation (32) in the open water region (without semi-infinite plate
covered region) is of the form

φ1(x) =



eik1(x−x1,1) + ARe−ik1(x−x1,1) for x ≤ x1,1,
Aj

1eik2(x−xj,2) + Aj
2e−ik2(x−xj,2) for xj,1 ≤ x ≤ xj,2, j = 1, 2, 3, .., N

Bj
1eik1(x−xj+1,1) + Bj

2e−ik1(x−xj+1,1) for xj,2 ≤ x ≤ xj+1,1,
j = 1, 2, 3, .., N − 1

C1eik1(x−p) + C2e−ik1(x−p) for xN,2 ≤ x ≤ p,

(33)

where AR is the unknown constant associated with the reflection coefficient, and Aj
t, Bj

t, Ct
are the unknown constants for t = 1, 2 and j = 1, 2, . . . .N. The linearized long wave
equation in the plate covered region in term of the spatial component φ2(x) is given by
(see Kar et al. [18])

d6φ2

dx6 +
ρg−msω2

D
d2φ2

dx2 +
ω2ρ

Dh1
φ2 = 0. (34)

Hence, the solution of Equation (34) in the semi-infinite plate-covered region (see
Kalyanaraman et al. [12]) is of the form

φ2(x) = D1em4(x−p) + D2em3(x−p) + D3em5(x−p), p < x < ∞, (35)

where Dk, k = 1, 2, 3 are unknown constants to be computed, and mi(i = 1, ..., 6) are the
roots in m of the characteristic polynomial

m6 +
ρg−msω2

D
m2 +

ω2ρ

Dh1
= 0, (36)

which are of the form m1,2 = δ± iσ, m3,4 = −δ± iσ, m5,6 = ±iξ with δ, σ ∈ R+, ξ ∈ R+.
The free edge condition of semi-infinite plate at x = p yields

∂4φ2

∂x4

∣∣∣
x=p

= 0,
∂5φ2

∂x5

∣∣∣
x=p

= 0. (37)

Using Equation (35) in Equation (37), we have

D1 =
m5 −m3

m3 −m4

(
m5

m4

)4
D3 and D2 =

m4 −m5

m3 −m4

(
m5

m3

)4
D3.

Hence, Equation (35) converts into

φ2(x) =

(
m5 −m3

m3 −m4

(
m5

m4

)4
em4(x−p) +

m4 −m5

m3 −m4

(
m5

m3

)4
em3(x−p) + em5(x−p)

)
D3. (38)

Thus, from Equations (32) and (38), the velocity potential φ in the fluid domain can be
expressed as

φ(x) =
{

φ1(x) for x1,1 ≤ x ≤ p,
φ2(x) for p ≤ x < ∞.

(39)

The continuity of mass flux and pressure across the interfaces x = x̃ yield

φ
∣∣∣
x̃−

= φ
∣∣∣
x̃+

, h(x̃−)
dφ

dx

∣∣∣
x̃−

= h(x̃+)
dφ

dx

∣∣∣
x̃+

. (40)
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Using Equation (39) and the matching conditions as in Equation (40), we get following
matrix relation in the product form as(

1
AR

)
=

N

∏
j=2

(
H−1

1 P1H−1
2 S1

)(j−1)
(H−1

1 P1H−1
2 )S2H−1

3

(
p1
p2

)
D3 =

(
a1
a2

)
D3, (41)

where square matrices H1, H2, H3, S1, S2, P1 are defined as

H1 =

(
1 1

k1h1 −k1h1

)
, H2 =

(
1 1

k2h2 −k2h2

)
, H3 =

(
1 1

ik1 −ik1

)
,

P1 =

(
e−ik2w eik2w

k2h2e−ik2w −k2h2eik2w

)
,

S1 =

(
eik1(w−d) e−ik1(w−d)

k1h1eik1(w−d) −k1h1e−ik1(w−d)

)
, S2 =

(
e−ik1Lg eik1Lg

k1h1e−ik1Lg −k1h1eik1Lg

)
,

with

p1 = 1 +
m5 −m3

m3 −m4

(
m5

m4

)4
+

m4 −m5

m3 −m4

(
m5

m3

)4
,

p2 = m5 +
m5 −m3

m3 −m4

(
m5

m4

)4
m4 +

m4 −m5

m3 −m4

(
m5

m3

)4
m3.

Finally, using Equation (41), the reflection coefficient is obtained as Kr = |AR| =
|a2/a1|.

Moreover, the spatial components of the free surface elevation η(x) and the plate
deflection ν(x) are obtained as

η(x) = Re
{(

ih(x)
ω

)
φ1xx(x)

}
, ν(x) = Re

{(
ih1

ω

)
φ2xx(x)

}
, (42)

where h(x) is the water-depth as defined in Equation (8).

6. Results and Discussions

In this section, using MATLAB software, numerical codes are written to analyze the
effect of a semi-infinite floating plate on Bragg scattering of surface waves by multiple
undulations in the seabed. Various non-dimensional physical parameters, such as width
w/L1, gap between the leading edges of two adjacent trenches/breakwaters 2d/L1 of
trench/breakwater, gap between right-most trench/breakwater, and plate Lg/L1, are
considered for the analysis of Bragg scattering of gravity waves, as in Kar et al. [18].
Moreover, the values of different physical parameters, such as water depth h1 = 5 m,
incident wavelength L1(= 2π/k1) = 40π m, and plate rigidity D/ρg = 105 m4 (same as
considered by Kalyanaraman et al. [12]), and mass density of the plate is ms = ρidi, with
density of ice ρi = 922 kg m−3, plate thickness di = 1 m, density of water ρ = 1025 kg m−3,
and g = 9.81 ms−2 are kept fixed, unless stated otherwise.

6.1. Semi-Infinite Plate in the Absence of Bottom Undulation

In Figure 3, the reflection coefficient Kr is plotted against wavenumber k1h1 for dif-
ferent values of (Figure 3a) rigidity D/ρg with h1 = 5 m and (Figure 3b) water depth h1
with rigidity D/ρg = 105 m4 in the absence of bottom bed undulation. In Table 1, the
energy identity as in Equation (31) for various wave number are computed in case of
waves scattering by semi-infinite floating flexible plate in finite water depth. The relative
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errors corresponding to Figure 3a is provided in Table 2. It is to be noted that the relative
error is calculated by comparing the BEM-based results with the analytic results. Table 2
reveals that the maximum relative error is less than 5%, which depends on the wave
number k1h1. Figure 3a shows that, for a higher wave number, reflection increases rapidly
compared to the lower wavenumber values. Figure 3a depicts that, with an increase of
rigidity of ice-sheet, wave reflection coefficient Kr increases, which is similar as observed in
Sahoo et al. [3]. In Figure 3b, reflection coefficient Kr decreases as water depth h1 increases
with an increases in wavenumber k1h1 which may be due to less resonance in higher water
depth h1. Figure 3 reveals that resonance in wave reflection does not occur as the wave
number increases for the semi-infinite plate in the absence of seabed undulations. Further,
Figure 3a,b reveal that rigidity of the plate has more effect on wave reflection compared to
water depth. Moreover, both the sub-figures reveal that the various computational results
obtained via the numerical method agree well with the analytic solution, as discussed in
the case of long waves. Thus, in the subsequent study, our analyses will be based on the
analytic solution associated with long waves.

Table 1. Energy identity as in Equation (31) for waves scattering by semi-infinite floating flexible
plate in finite water depth case.

k1h1 D/ρg in m4 BEM-Based Solution

K2
r γK2

t K2
r + γK2

t

0.1

105 0.00011 0.99988 0.99999
106 0.00088 0.99912 1.00000
107 0.00830 0.99169 0.99999
108 0.02147 0.97852 0.99999

0.2

105 0.00146 0.99853 0.99999
106 0.00989 0.99010 0.99999
107 0.02345 0.97654 0.99999
108 0.05330 0.94669 0.99999

0.3

105 0.00615 0.99384 0.99999
106 0.01784 0.98216 1.00000
107 0.04025 0.95974 0.99999
108 0.09604 0.90395 0.99999

0.4

105 0.01108 0.98891 0.99999
106 0.02560 0.97439 0.99999
107 0.06206 0.93793 1.00000
108 0.14006 0.85993 0.99999
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Figure 3. Semi-infinite plate for different values of (a) rigidity D/ρg with h1 = 5 m; (b) water depth
h1 with D/ρg = 105 m4 in the absence of trenches/breakwaters.
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Table 2. Relative error corresponding to Figure 3a.

k1h1 D/ρg Analytic Solution BEM-Based Solution Relative Error

0.1

105 0.01056 0.01102 0.04356
106 0.02972 0.02851 0.04071
107 0.09113 0.09254 0.01547
108 0.14655 0.14962 0.02094

0.2

105 0.03826 0.03751 0.01960
106 0.09944 0.09786 0.01588
107 0.15316 0.15759 0.02892
108 0.23088 0.23147 0.00255

0.3

105 0.07847 0.07954 0.01363
106 0.13355 0.13627 0.02036
107 0.20064 0.20283 0.01091
108 0.30990 0.31006 0.00051

0.4

105 0.10529 0.10725 0.01861
106 0.16001 0.16230 0.01431
107 0.24912 0.25013 0.00405
108 0.37425 0.37870 0.01189

0.5

105 0.12367 0.12427 0.00485
106 0.18771 0.18927 0.00831
107 0.29405 0.29514 0.00370
108 0.42597 0.42647 0.00117

6.2. Trenches/Breakwaters in the Absence of Semi-Infinite Plate

The reflection coefficient Kr versus trench width w/L1 is plotted in Figure 4 for
different number N of rectangular (a) trenches and (b) breakwaters in the absence of
semi-infinite plate with gap d/L1 = 0.6, L1 = 40π m. Figure 4a depicts the occurrence of
common zero minima in wave reflection irrespective of the number of trenches when w/L1
is an integer multiple of 0.6 and alternately maxima occur between two consecutive zero
minima in wave reflection. On the other hand, Figure 4b reveals that, in case of breakwaters,
zeros in reflection occur when w/L1 is an integer multiple of 0.35, whilst maxima in wave
reflection occurs between consecutive minima. Further, both the sub-figures depict that the
reflection coefficient increases as the number of submerged trenches/breakwaters increases.
A comparison of both the sub-figures reveals that optima in wave reflection occur for
smaller values of w/λ in case of submerged breakwaters than that of the submerged
trenches. Further, for the same number of trenches/breakwaters, it may be noted that the
maximum amplitude of wave reflection is smaller in the case of submerged trenches than
that of the breakwaters. Further, both the sub-figures depict that Bragg reflection occurs
in the presence of multiple submerged trenches and breakwaters. Moreover, occurrence
of sub-harmonic peaks are noticed when the number of trenches/breakwaters are more
than two, which is similar to the observation made in Kar et al. [29,30]. In the subsequent
analyses, the values of w/L1 = 0.6 in case of submerged trenches and w/L1 = 0.35 in case
of breakwaters are kept fixed, unless otherwise mentioned.

In Figure 5, reflection coefficient Kr is plotted against gap 2d/L1 for different number
N of rectangular (Figure 5a) trenches with width w/L1 = 0.6 and (Figure 5b) breakwaters
with width w/L1 = 0.35 in the absence of semi-infinite plate with L1 = 40π m. Figure 5a
shows that all the curves attain their minima for 2d/L1 = 0.72, 1.72, 2.71 in the case of
trenches, whereas, in Figure 5b, all curves attain their minima for 2d/L1 = 0.21, 1.21, 2.21.
Therefore, both the figures reveal that, in the case of an even number of trenches or
breakwaters, all the curves match if the gap in between the adjacent sides of trenches or
breakwaters is half of the wavelength of the incident wave, i.e., d = n L1

2 , n ∈ Z+. Hence,
we keep fix the values of d/L1 = 0.86 in case of trenches, whereas d/L1 = 0.60 in case of
breakwaters for which minima in wave reflection occur in case of even and odd number of
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trenches or breakwaters. Further, it may be noted that, between two harmonic peaks, N− 2
sub-harmonic peaks occur, with N being the number of submerged trenches/breakwaters
with Bragg reflection occurring in the presence of multiple undulations irrespective of
submerged trenches or breakwaters. A similar observation has been noticed in Figure 4.
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Figure 4. Reflection coefficient Kr versus width w/L1 for different number N of rectangular
(a) trenches; (b) breakwaters in the absence of semi-infinite ice sheet with gap d/L1 = 0.6,
L1 = 40π m.
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Figure 5. Kr versus gap 2d/L1 for different number N of rectangular (a) trenches with width
w/L1 = 0.6; (b) breakwaters with width w/L1 = 0.35 in the absence of the semi-infinite plate with
L1 = 40π m.

In Figure 6, the variation of the reflection coefficient Kr versus wave number k1h1 is
shown for a single rectangular submerged (Figure 6a) trench and (Figure 6b) breakwater
in the absence of semi-infinite plate for different widths w/L1, as mentioned in Table 3.
It is observed that a complete cycle occur when wave number k1h1 = 0.25n, n ∈ Z+

irrespective of single trench or breakwater (see Table 4). Further, common maxima/minima
occur in wave reflection in case of trenches and breakwaters within periodic range of the
values of k1h1. Similar results has been observed in Figures 4 and 5 with variation of gap, as
well as width of trenches/breakwaters, and also in Reference [18]. Moreover, Figure 6a,b
reveal that the amplitude of the peaks are constant irrespective of the width w/L1 for a
single trench/breakwater.

In Figure 7, the variation of reflection coefficient Kr versus wave number k1h1 is
exhibited in case of double rectangular (Figure 7a) trenches with width w/L1 = 0.6 and
(Figure 7b) breakwaters with w/L1 = 0.35 for different values of 2d/L1 in the absence of
semi-infinite plate. Figure 7a,b reveal that cycles are completed at the same values of wave
number k1h1. Moreover, amplitude of peak in the reflection coefficient Kr remains constant
for different values of 2d/L1 in case of both of trenches and breakwaters. Further, Figure 7
reveals that, with an increase in gap 2d/L1, amplitude of harmonic peak in wave reflection
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increases in each cycle with an increase in wave number k1h1. Further, it may be noted that
sub-harmonic peak does not occur as reflection coefficient Kr is plotted in case of double
trenches and breakwaters.
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Figure 6. Kr versus wave number k1h1 in case of single rectangular (a) trench; (b) breakwater in the
absence of semi-infinite plate with different widths w/L1, L1 = 40π m.

Table 3. Values of w/L1, 2d/L1 for common min/ max of Kr in case N number of
trenches/breakwaters.

min{Kr} max{Kr}
Trenches w/L1 0.6 1.2 1.8 0.33
Trenches 2d/L1 0.72 1.72 2.73 1.22

Breakwaters w/L1 0.35 0.70 1.06 0.89
Breakwaters 2d/L1 0.20 1.20 2.20 1.71

Table 4. Values of k1h1 for common minimum of reflection coefficient for different values of w/L1.

min{Kr}
Single trench k1h1 0.25 0.51 0.76

Single breakwater k1h1 0.25 0.50 0.75
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Figure 7. Kr versus k1h1 in case of double rectangular (a) trench width w/L1 = 0.6; (b) breakwater
with width w/L1 = 0.35 in the absence of the semi-infinite plate for different values of gaps 2d/L1.

In Figure 8, the reflection coefficient Kr is plotted against wavenumber k1h1 for dif-
ferent number N of rectangular (Figure 8a) trenches with width w/L1 = 0.6, d/L1 = 0.86
and (Figure 8b) breakwaters with w/L1 = 0.35, d/L1 = 0.60 in the absence of semi-
infinite plate. Figure 8a reveals that three full cycles are completed in case of trenches at
k1h1 = 0.25, 0.5, 0.75, whereas, in Figure 8b, in case of breakwaters, three full cycles are
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completed for the same wavenumber in the range 0 < k1h1 < 0.8 with an increase in N
for different values of trenches and breakwaters widths and gap as mentioned in Table 3.
Figure 8a,c describes the comparison between the trenches and breakwaters. It is observed
that the number of full cycles in the case of trenches is two less than that of breakwaters.
This happens due to the formation of nodes or anti-nodes along the interface boundaries of
the trenches and breakwaters. Moreover, the number of common zero minima in the case
of breakwaters is two greater than that of trenches. Further, the amplitude of the harmonic
peaks, i.e., peaks in each bandwidth are not equal as the number of trenches or breakwaters
increases. As the number of trenches or breakwaters N increases, the sub-harmonic peaks
occur, which is similar to that of the phenomena observed in Kar et al. [29] in the case of
scattering of gravity waves by an array of trenches.
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Figure 8. Reflection coefficient Kr versus wave number k1h1 for different number N of rectangular
trenches with (a) width w/L1 = 0.6, gap d/L1 = 0.86, and breakwaters with (b) width w/L1 = 0.35,
gap d/L1 = 0.60 and (c) width w/L1 = 0.6, gap d/L1 = 0.86 in the absence of the semi-infinite plate.

In Figure 9, the reflection coefficient Kr is plotted against wave number k1h1 for
different depths h2/h1 of (Figure 9a) submerged trenches with w/L1 = 0.6, d/L1 = 0.86
and (Figure 9b) breakwaters with w/L1 = 0.35, d/L1 = 0.6 in the absence of semi-infinite
plate with N = 2. Figure 9a reveals that, with an increase in trench depth, the reflection
coefficient increases with a rise in wave number. Figure 9b reveals that, as breakwater
height decreases, wave reflection coefficient Kr decreases with an increase in wave number
k1h1, which occurs as more wave energy is trapped due to higher values of breakwaters
height. From Figure 9a,b, it is observed that, for a smaller wave number, phase-shift of the
wave reflection matches, whereas, for a higher wave number, it does not occur.
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Figure 9. Kr versus k1h1 in case of different depth h2/h1 of double rectangular (a) trenches with
w/L1 = 0.6, d/L1 = 0.86; (b) breakwaters with w/L1 = 0.35, d/L1 = 0.6 in the absence of a
semi-infinite plate.

6.3. Plate-Trench Combination

In Figure 10, the variation of the reflection coefficient Kr versus wavenumber k1h1 is
demonstrated for different values of single (Figure 10a) trench and (Figure 10b) breakwater
width w/L1 (as mentioned in Table 3) with plate rigidity D/ρg = 105m4 in the presence of
semi-infinite plate. Figure 10a reveals that results obtained by both analytic and numerical
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methods agree well in the presence of a single trench and a semi-infinite plate. Figure 10a
depicts that number of complete cycles are fixed, as observed in Figure 6a. However,
because of the presence of floating plate, wave reflection increases, in general, irrespective
of the values of the wavenumber k1h1, and zero minima in wave reflection does not occur
for higher values of wave number, which is due to the partial reflection of surface waves
with an increase in wavenumber, as observed in Figure 3. The notation ‘◦’ denotes the
points where minima in wave reflection occur exactly for the same wave number except
for certain non-zero values of the reflection coefficient. Further, Figure 10b reveals that the
number of common minima in wave reflection remains the same as observed in Figure 6b
in the absence of floating plate. Similar phenomena is observed in the case of Bragg
reflection of surface gravity waves by an array of rectangular breakwaters in the presence
of a floating dock, as in Kar et al. [30]. Figure 10a,b reveals that the number of bandwidth
remain constant irrespective of the increase in the width of the trench/breakwater w/L1.
However, the number of oscillations in each cycle/bandwidth increases apart from an
increase in the value of minima in wave reflection, which is due to the presence of the
floating elastic plate.
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Figure 10. Reflection coefficient Kr versus wave number k1h1 in case of single (a) trench and (b) break-
water in the presence of the semi-infinite plate for different values of w/L1 with Lg/L1 = 0.25 and
D/ρg = 105 m4.

In Figure 11, the variation of the reflection coefficient Kr versus wave number k1h1
is exhibited for different number N of trenches in Figure 11a,b with w/L1 = 0.6 and
d/L1 = 0.86, and breakwaters in Figure 11c,d with w/L1 = 0.35 and d/L1 = 0.6 in the
presence of the semi-infinite plate with Lg/L1 = 0.25 and D/ρg = 105 m4. Figure 11
reveals that, with an increase in the number N of trenches and breakwaters, the amplitude
of peak in the band-width increases, whereas the length of the band-width decreases. The
decrease in bandwidth is due to an increase in the resonating interaction within the gap
between the trenches and breakwater, whilst the increase in the amplitude of the resonating
peaks is due to the superposition of the higher number of standing waves generated
within the trenches/breakwaters and the gaps between them. Further, it is observed that,
irrespective of trenches and breakwaters, for a certain wave-number, common minimum
occurs when N is even, whereas maximum occurs at 180o out of phase when N is odd. A
similar observation has been found in the absence of the semi-infinite plate in Kar et al. [18],
except the rise in the minima in wave reflection in the presence of the plate. However,
Bragg reflection occurs in both the cases of multiple trenches and breakwaters in isolation
in the presence of the semi-infinite plate. Moreover, at k1h1 = 0.5, one cycle is completed
in the case of breakwaters, whereas, in the case of trenches, one sub-harmonic peak is
observed, which is similar to Figure 10. A comparison among the Figures 6, 8, 10, and 11
depicts that, in the presence of semi-infinite plate, the position of cycle shifts upward, as
observed in the absence of semi-infinite plate.
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Figure 11. Kr versus k1h1 for different number N of (a,b) trenches with w/L1 = 0.6, d/L1 = 0.86;
(c,d) breakwaters with w/L1 = 0.35, d/L1 = 0.6, in the presence of a semi-infinite plate with
Lg/L1 = 0.25, D/ρg = 105 m4.

In Figure 12, the reflection coefficient Kr is plotted against the wavenumber k1h1 for
different values of depth ratios h2/h1 of (Figure 12a) trenches with w/L1 = 0.6 d/L1 = 0.86,
and (Figure 12b) breakwaters with w/L1 = 0.35, d/L1 = 0.6 in the presence of a semi-
infinite plate. Figure 12 reveals that the reflection coefficient Kr increases, in general,
with an increase in depth ratio h2/h1 in case of multiple trenches, whilst wave reflection
decreases in the case of breakwaters, which is similar as observed in Figure 9. Further, zero
reflection does not occur in the presence of a semi-infinite plate. Further, it is observed
that higher wave reflection occur with an increase k1h1, which is due to the combined
effect of Bragg reflection due to multiple bottom undulations and the wave reflection by
the semi-infinite plate, which is clear from Figures 3 and 9. Moreover, optima in wave
reflection occur for smaller values of wavenumber with an increase in depth of the trench
and the height of the breakwater due to the variation in the wavelength of the standing
waves generated over the trench/breakwater.

In Figure 13, the reflection coefficient Kr is plotted against the wavenumber k1h1
for different values of rigidity D/ρg in case of (Figure 13a) trenches with w/L1 = 0.6,
d/L1 = 0.86 (Figure 13b) breakwaters with w/L1 = 0.35, d/L1 = 0.6 in the presence of
semi-infinite plate with Lg/L1 = 0.25 and N = 3. It is observed that the wave reflection
increases as in oscillatory for higher values of wave number with an increase in the
structural rigidity D/ρg, which is due to the reflection of the higher amount of wave
energy by the semi-infinite plate, as observed in Figure 3a. However, the number of
oscillation remains the same as the number of submerged trenches/breakwaters remain
unchanged. As the rigidity of the plate D/ρg increases, the wave reflection increases, which
is similar as observed in Figure 3a. Moreover, the number of oscillations in wave reflection
remains unchanged with an increase in rigidity D/ρg, which is due to the presence of the
same no of trenches/breakwaters.
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Figure 12. Kr versus k1h1 in case of different depth h2/h1 of double (a) rectangular trenches with
w/L1 = 0.6, d/L1 = 0.86; (b) breakwaters with w/L1 = 0.35, d/L1 = 0.6 in the presence of a
semi-infinite plate.
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Figure 13. Kr versus k1h1 for different values of rigidity D/ρg in the case of (a) trenches with
w/L1 = 0.6, d/L1 = 0.86; (b) breakwaters with w/L1 = 0.35, d/L1 = 0.6 in the presence of a
semi-infinite plate with Lg/L1 = 0.25 and N = 3.

In Figure 14, the variation of reflection coefficient Kr versus gap width 2d/L1 is demon-
strated for different number of (Figure 14a) submerged trenches with w/L1 = 0.33 and
(Figure 14b) breakwaters with w/L1 = 0.89 in the presence of the semi-infinite plate with
D/ρg = 105 m4 and Lg/L1 = 0.25. Figure 14 demonstrates that the reflection coefficient
Kr is periodically oscillatory in nature with an increase in the gap width 2d/L1, which is
similar to that of Figure 5. However, wave reflection increases, in general, with an increase
in the gap width in the presence of the semi-infinite plate. A comparison of Figure 14a,b
reveals that both the sub-figures have the same number of harmonic peaks, whereas the
bandwidth of each harmonic peaks shifts forward in the case of breakwaters than that of
trenches, which is due to the change of phase of the seabed profiles from trenches to that
of breakwaters.

Figure 15 exhibits the variation of the reflection coefficient Kr versus the gap between
the semi-infinite plate and the adjacent submerged trench/breakwater Lg/L1 for different
number N of (Figure 15a) trenches with w/L1 = 0.33, d/L1 = 0.61, and (Figure 15b)
breakwaters with w/L1 = 0.89, d/L1 = 1.37 in the presence of the semi-infinite plate
with D/ρg = 105 m4. Figure 15 reveals that irrespective of No. of trenches/breakwaters,
periodic oscillatory patterns in the wave reflection is observed. Further, with an increase in
number of trenches/breakwaters N, amplitude of reflection increases. Moreover, the reflec-
tion pattern in the case of submerged trenches is 180◦ out of phase to that of breakwaters,
which is similar to that of Figure 11c,d.
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Figure 14. Reflection coefficient Kr versus gap 2d/L1 for different number of (a) trenches with
w/L1 = 0.33; (b) breakwaters with w/L1 = 0.89 in the presence of a semi-infinite plate with
D/ρg = 105 m4, Lg/L1 = 0.25.
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Figure 15. Reflection coefficient Kr versus gap Lg/L1 in case of different number N of trenches with
(a) w/L1 = 0.33, d/L1 = 0.61, and breakwaters with (b) w/L1 = 0.89, d/L1 = 1.37 in the presence of
the semi-infinite plate with D/ρg = 105 m4.

7. Time Dependent Displacement

Using Equation (42), the free surface displacement ζc(x, t), as a combination of the
free surface elevation ζ(x, t) and the flexible plate deflection τ(x, t), is obtained as

ζc(x, t) =

{
ζ(x, t), x < p,
τ(x, t), x > p,

(43)

where τ(x, t) and and ζ(x, t) are computed using the formulae

ζ(x, t) = Re

{ ∫ ∞

−∞
f̃ (ω)ζ(x, ω)e−iωtdω

}
, (44)

τ(x, t) = Re

{ ∫ ∞

−∞
f̃ (ω)τ(x, ω)e−iωtdω

}
, (45)

with f̃ (ω) being the Fourier transform of the incident wave pulse. In Equations (44) and (45),
ζ(x, ω) and τ(x, ω) are the frequency dependent surface displacement of the open water
and the semi-infinite plate covered region, respectively. Assume the incident wave pulse

as a Gaussian wave packet which is of the form f̃ (ω) =
√

b
π e−b(ω−ω0)

2
, with b being the

spreading function, and ω0 being the central frequency of the incident wave pulse.
In Figures 16–20, the free surface displacement ζc(x, t) is plotted as a function of

space x and time t for a semi-infinite plate with flat bed, in the presence of single and
double trenches, as well as in the presence of single and double breakwaters, respectively.
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All the figures reveal that Bragg scattering of the wave pulses that occurs at each boundary
of trench/breakwater and at one edge of the semi-infinite plate, which is similar to the
observation made in Kar et al. [18]. It is observed that wave energy vanishes for extended
times irrespective of the presence of the trench or breakwater. Moreover, it is observed
that, in the case of multiple undulations, the resonance of wave pulse becomes higher as
compared to that of single undulation.

Figure 16. Variation of the free surface displacement ζc(x, t) (m) versus x (m) and time t (s) in the
case of a semi infinite plate in the case of flat seabed.

Figure 17. Variation of the free surface displacement ζc(x, t) (m) versus x (m) and time t (s) in the
case of a semi-infinite plate in the presence of a single trench.

Figure 18. Variation of the free surface displacement ζc(x, t) (m) versus x (m) and time t (s) in the
case of a semi-infinite plate in the presence of double trenches.
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Figure 19. Variation of the free surface displacement ζc(x, t) (m) versus x (m) and time t (s) in the
case of a semi-infinite plate in the presence of single breakwater.

Figure 20. Variation of the free surface displacement ζc(x, t) (m) versus x (m) and time t (s) in the
case of a semi-infinite plate in the presence of double breakwaters.

8. Conclusions

In the present study, Bragg scattering by multiple submerged trenches/breakwaters
in isolation has been studied in the presence of a semi-infinite plate under the assumption
of linear small amplitude water wave theory, as well as structural response in finite water
depth, using BEM. Further, the closed-form analytical solution is obtained under the
premise of linear long wave theory by matching the continuity of pressure and mass flux
at the interface boundaries. Results obtained through the BEM approach are validated
using energy identity and compared with the analytic solutions based on shallow water
approximation. Further, the present study reveals that Bragg resonance of long waves
occurs due to the presence of an array of trenches or breakwaters, along with a semi-infinite
floating plate apart from the array of trenches or breakwaters in isolation. The amplitude
of oscillation in the reflection coefficient Kr increases as the rigidity of the plate D/ρg
increases. Further, both peak amplitude and band-width in Bragg reflection increase in
the case of an array of submerged breakwaters compared to trenches. The pattern of
wave reflection is a periodically oscillatory function of the gap between trenches and the
semi-infinite plate. The free surface displacement is plotted in the presence of the seabed
undulations and the semi-infinite plate using time-series analysis. The study will help to
understand wave transformation in the marginal ice zone and in the design of very large
floating structures in the presence of bottom undulation. Moreover, the study can have
potential application in the extraction of wave energy and creation of the tranquility zone
in marine environment. The current work can be extended to study the effect of lateral
compression and variable thickness of the semi infinite plate on Bragg scattering of surface
wave due to undulated seabed.
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Appendix A

The boundary of the computational domain, as exhibited in Figure 2, is divided into
finite number of boundary elements. Assuming φ and ∂φ/∂n are linearly varying over
each element, the integral equation in Equation (23) is converted into a system of linear
equations as given by

Nl

∑
j=1

(
Hij − ik1Gij

)
φj

∣∣∣
Γl
+

Np

∑
j=1

(
φj Hij − GijG(φj)

)∣∣∣
Γp

+
Nr

∑
j=1

(
Hij − ip1Gij

)
φj

∣∣∣
Γr

+
Nb

∑
j=1

(
Hij
)

φj

∣∣∣
Γb
+

N f

∑
j=1

(
Hij + KGij

)
φj

∣∣∣
Γ f

=
Nl

∑
j=1

(
∂φI

j

∂n
− ik1φI

)
Gij
∣∣∣
Γl

,

where Hij = Ciδij + Ĥij, with

Ĥij =

{
hi1

1 + hiN
2 for j = 1

hij
1 + hi,j−1

2 for j = 2 · · ·N
, Gij =

{
gi1

1 + giN
2 for j = 1

gij
1 + gi,j−1

2 for j = 2 · · ·N
,

are termed as the influence coefficients. Here, Ci = −αi/2π with αi being the angle between
the boundary elements Γi and Γi−1. Further, NJ represents the total number of boundary
elements over the boundary ΓJ for J ∈ {l, b, r, p, f }. Moreover, in the above equation,

the expressions for gij
k and hij

k for k = 1, 2 are given by

gij
1 =

lj

4

∫ 1

−1
G(x(ξ), y(ξ); xi, yi)(1− ξ)dξ,

gij
2 =

lj

4

∫ 1

−1
G(x(ξ), y(ξ); xi, yi)(1 + ξ)dξ,

hij
1 =

lj

4

∫ 1

−1

∂G
∂n

(x(ξ), y(ξ); xi, yi)(1− ξ)dξ,

hij
2 =

lj

4

∫ 1

−1

∂G
∂n

(x(ξ), y(ξ); xi, yi)(1 + ξ)dξ,

with lj being the length of the boundary element Γj.
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