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Abstract: Long-term changes in air and water temperatures and the resulted stratification phenomena
were observed for Soyang Lake (SY), Paldang Lake (PD), Chungju Lake (CJ), and Daecheong Lake
(DC) in South Korea. Non-parametric seasonal Kendall and Mann-Kendall tests, Sen slope estimator,
and potential energy anomaly (PEA) were applied. The lake surface water temperatures (LSWTs)
of SY and DC increased at the same rate (0.125 ◦C/y), followed by those of CJ (0.071 ◦C/y) and PD
(0.06 ◦C/y). Seasonally, the LSWT increase rates for all lakes, except PD, were 2–3 times higher than
the air temperature increase rates. The lake stratification intensity order was similar to those of the
LSWT increases and correlations. SY and DC displayed significant correlations between LSWT (0.99)
and PEA (0.91). Thus, the LSWT significantly affected stratification when the water temperature
increased. PD demonstrated the lowest correlation between LSWT and PEA. Inflow, outflow, rainfall,
wind speed, and retention time were significantly correlated, which varied within and between lakes
depending on lake topographical, hydraulic, and hydrological factors. Thus, hydraulic problems and
nutrients should be managed to minimize their effects on lake water quality and aquatic ecosystems
because lake cyanobacteria can increase as localized water temperatures increase.

Keywords: Lake Paldang; Mann-Kendall; seasonal Kendall; potential energy anomaly; lake surface
water temperature; air temperature

1. Introduction

Surface water temperature is one of the most important factors for water quality [1].
Among the numerous factors impacting lake surface water temperature (LSWT), the near-
surface (at elevation 3.4 m above site) air temperature plays a critical role [2,3]. Observations
show that inland water bodies are increasingly warming worldwide, with the LSWT
increasing at faster rates than the oceans [4]. Furthermore, lake warming can be higher
than that of the surrounding air temperature [5], particularly at mid-latitudes.

Paerl and Paul [6] found that the LSWT increases the vertical stratification intensity
in freshwater and marine systems. Additionally, the stratification cycle is extended by
seasonal warming. Stratification begins early in spring and continues through summer in
freshwater environments, while destratification occurs later in fall [7–9].

A temperature difference of a few degrees can prevent complete water circulation [10].
Increased lake thermal stratification can change internal nutrient loads and lake produc-
tivity [11–13], intensify lake anoxia [11,14], and cyanobacteria blooms [6]. In Northern
Europe, lakes with long-term (decade-scale) warming signs, such as cold LSWTs, deep and
permanent vertical stratification, early ice cover melting, prolonged warm water temper-
atures, and long growing seasons, show increased dominant cyanobacteria, bloom rates,
and durability [9,15,16].

Water temperature is not only influenced by the air temperature but also by factors,
such as radiant heat, degree of radiant heat blocked by obstacles, temperatures of river
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water flowing from a watershed, and heat exchange at the water surface. Hence, the effect
of air temperature on the water temperature can vary among different lakes [17,18].

Recent studies have indicated significant water warming in lakes globally [19–23].
However, the spatial and temporal coherence associated with these trends remains un-
clear [24]. Lakes are especially vulnerable to changes in environmental factors, thus, serving
as a useful proxy for assessing climate change impacts [25–27].

Hence, analyzing long-term water temperature trends according to air temperature
changes is necessary. These long-term trends of air and water temperatures must be
analyzed for each lake individually because results vary among different lakes. To study
the hydrological patterns, the Mann-Kendall test and seasonal Kendall test are mostly used.
These non-parametric approaches have several benefits, including the ability to handle
incomplete data, the need for few hypotheses, and independence from the data distribution.
The World Meteorological Organization (WMO) also recommends these tests because they
can estimate both annual and monthly changes [28].

The total water intake in South Korea is 6918 million m3/y, and the amount of lake
water intake through dams is 3217 million m3/y, accounting for 45.1% of the total water
intake. The annual water supply from Chungju (CJ) is the highest (3380 million tons (MT)),
followed by Daecheong (DC, 1649 MT) and Soyang (SY, 1213 MT). Although Paldang Lake
(PD) has a water storage capacity of 244 MT/d and a water supply of 880 MT/d, it is an
important water source for the capital’s 26 million residents [29].

The effect of increasing air temperature on the water temperature due to climate
change can manifest differently depending on the lake’s hydraulic and hydrological con-
ditions and regional topographical characteristics. Therefore, this study analyzed the
long-term trends of air temperatures and LSWTs in SY, PD, CJ, and DC, which are large
water sources in South Korea, to examine the increasing trends of water temperature in each
lake and the air temperature changes. In addition, the stratification index was calculated to
analyze the effect of water temperature increase on stratification.

2. Materials and Methods
2.1. Study Sites and Lake Characteristics

SY, PD, CJ, and DC were selected as representative artificial water-source lakes in
South Korea (Table S1). SY, located in the Bukhan River upstream of PD, was created after
the construction of a multipurpose dam in 1973. It is the deepest artificial lake in South
Korea (118 m at the full water level) and the largest lake in South Korea, with a basin
area of 2703 km2, a water storage capacity of 2900 MT, and an annual water supply of
1213 MT. PD was formed in 1973 by the construction of the downstream Paldang dam,
where the Bukhan River, Namhan River, and Gyeongan Stream intersect. The Paldang dam
was originally constructed for power generation, but it currently serves as a multipurpose
dam for supplying water to 26 million people in South Korea. The PD has a basin area
of 23,800 km2, a total water storage capacity of 244 MT, and a daily water supply plan
of 880 MT. CJ was formed in 1985 by the construction of a multipurpose dam, and it
exhibits the second-largest water storage capacity after SY. Located on the Namhan River
upstream of PD, CJ has a basin area of 6648 km2, a water storage capacity of 2750 MT, and
an annual water supply of 3380 MT. DC was created when the multipurpose Daecheong
dam was constructed in 1980. Located in the central region of South Korea, it exhibits a
basin area of 3204 km2, a water storage capacity of 1490 MT, and an annual water supply
of 1649 MT [28].

2.2. Air and Surface Water Temperatures and Data Analyses

Monthly average air temperatures provided by the Chuncheon, Yangpyeong, Chungju,
and Cheongju weather stations were used to analyze SY, PD, CJ, and DC, respectively [30].
The survey period was from 1973, when the weather stations initiated data collection for
air temperature, to 2019. The locations for measuring the water temperature are displayed
in Figure 1. The water temperature data used in the study were provided by the Water
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Environment Monitoring Network. The water temperatures were measured in the lake
surface layers (0–0.5 m from the surface layer) monthly from 1993 for SY and DC, and
weekly from 2003 for PD and CJ. The exact locations of measurement points, which were in
front of the dams because the water in this area was the deepest, are presented in Table S2.
Among the studied lakes, SY displayed the highest latitude and maximum water depth
(100 m), followed by CJ (70 m), DC (46 m), which exhibited the lowest latitude, and PD
(20 m). The PD data lacked some values in winter due to the high freezing rate in January
and February caused by a small water depth and in summer due to heavy rains of the rainy
season. The exact locations of measurement points, which were chosen to be in front of the
dams because the water there was at its deepest, are presented in Table S2. Among the lakes
studied, SY displayed the highest latitude and maximum water depth (100 m), followed
by CJ (70 m), DC (46 m), which exhibited the lowest latitude, and PD (20 m). The PD data
lacked some values in winter and summer because of the shallow lake becoming frozen
in January and February and difficulty in data collection due to heavy rains in summer.
In order to examine the relationship between surface water temperature, stratification
intensity, and hydrological factors (inflow, outflow, rainfall, wind speed, and retention
time), water samples from each lake were collected using a boat. For factors except for the
retention time, data provided by the Water Resources Management Information System
(WAMIS) was used. The retention time was obtained by calculating the water volume based
on the water level-volume equation: dividing the range of water level by discharge amount.
A Pearson correlation analysis was performed using the statistical program R (ver. 3.6.1)
while Sigmaplot 12.0 (Systat Inc., Point Richmond, CA, USA) was used for graphing.

Figure 1. Locations of water temperature measurement points of (a) all the studied lakes and in
(b) SY, (c) CJ, (d) PD, and (e) DC.

2.3. Statistical Methods for Long-Term Trend Analysis
2.3.1. Mann-Kendall Test

The Mann-Kendall statistical test was widely used to determine the importance of
time series patterns of hydro-meteorological factors, such as temperature, water quality,
streamflow, and precipitation [31–33]. To perform the Mann-Kendall test, differences
between the later measured and earlier measured values, (xj-xi), were computed, where
j > i and positive differences, no differences, and negative differences were assigned the
integer values of 1, 0, and −1, respectively. Subsequently, the measurement statistic, S, was
calculated as the number of the integers as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sign(xj − xi) (1)

where

sgn
(
xj − xi

)
=


+1 i f

(
xj − xi

)
> 0

0 i f
(
xj − xi

)
= 0

−1 i f
(
xj − xi

)
< 0

(2)
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The variance of S is given by:

VAR(S) =
1

18
(n(n− 1)(2n + 5)) (3)

If a tie is present in the data, then the variance of S is given by:

VAR(S) =
1

18

{
n(n− 1)(2n + 5)−

g

∑
j=1

tp
(
tp − 1

)(
2tp + 5

)}
(4)

where g denotes the number of tied groups in the data set, tp denotes the number of
data points in the pth tied group, and n denotes the total number of data points in the
time series.

By the following Z-transformation for standardization, the statistic S would be ap-
proximately normally distributed as follows:

Z =


S−1√
VAR(S)

i f S > 0

0 i f S = 0
S+1√
VAR(S)

i f S < 0
(5)

Later measured values are usually higher than earlier measured values, while S is a
significant positive integer, indicating an upward trend. When S is a large negative number,
however, later values are smaller than earlier values, indicating a downward trend. Finally,
no trend was indicated when the absolute value of S was zero. The significance trend was
determined at the 95% confidence limit (α = 0.05).

If a major trend is discovered, the rate of change can be estimated using the Sen slope
estimator [34], which is the magnitude of the monotonic increase or decrease and is given
as follows [35]:

β1 = median

(
yj − yi

xj − xi

)
(6)

Here, i < j, where I = 1, 2, ..., n−1, and j = 2, 3, ..., n. The median of the slopes
corresponds to the Sen slope estimator value.

2.3.2. Seasonal Kendall Test

Seasonality was considered for the seasonal Kendall test, which computes the Mann-
Kendall test independently for each season and then combines the results [36]. During
monthly analysis, the observations of a particular month were only related to other obser-
vations of the same month. This test was used by previous studies to examine the annual
patterns of the monthly mean temperature [32,37,38].

By measuring the weighted sums after applying the Mann-Kendall test for each season,
unified patterns were obtained, thus, eliminating seasonality [31]. The total statistic Sk was
derived by adding the seasonal Kendall statistics Si.

Sk =
m

∑
i=1

Si (7)

VAR(Sk) =
m

∑
i=1

VAR(Si) (8)
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Finally, the Z-test statistic was calculated, and the following prediction was tested:

Z =


Sk−1√
VAR(Sk)

i f Sk > 0

0 i f Sk = 0
Sk+1√
VAR(Sk)

i f Sk < 0
(9)

When the number of seasons and years is greater than 25, a normal distribution is used
to estimate the distribution of Sk, with the probability equal to the sum of the individual
Si expectations (zero) under the null hypothesis and the deviation equal to the sum of
the individual Si variances. Sk was standardized (Equation (8)) by dividing its value by
its standard deviation σsk and subtracting its expectation Uk = 0. A standard normal
distribution table was used to test the results. If |ZSk |> Zcrit, where Zcrit is the value of
the standard normal distribution with an excess probability of α/2, the null hypothesis is
rejected at the significance level α. The seasonal Kendall test is equivalent to the Mann-
Kendall test in terms of significance. The applicability of the standard normal tables was
not tested for a low number of seasons or years. Using a simplified version of the above-
mentioned Sen slope estimator, an approximation of the trend slope for Y over time can be
calculated as the median of all the slopes between data pairs within the same season.

The Sen slope for each season is determined as follows:

dijk =
Xij − Xik

j− i
(10)

Here, i = 1, 2, . . . , m for each (Xij, Xik) pair, (where Xij is the datum for month i of the
year j and Xik is the datum for month i of the year k), 1 ≤ k ≤ j ≤ ni, and ni is the number
of known values in the ith season. The median of the values was used to calculate the
seasonal slope estimator. A significant statistical trend was observed at a p-value less than
0.5 at 95% confidence.

2.3.3. Long-Term Air and Surface Water Temperature Trends in Lakes

The temperature and hydrological patterns could be undetectable due to seasonal-
ity [39]. Hence, the monthly average air and water temperatures were analyzed using
the seasonal Kendall test, which generates a static outline for the whole year and does
not include monthly or seasonal details. Thus, we used 4 seasonal mean temperatures
to repeat the Mann-Kendall test and the Sen method [39]. The air temperatures were
divided into 2 periods, 1973–2019 (47 years) and 1993–2019 (27 years), while monthly
averages from 1993–2019 were used for the water temperatures. The increasing trends of
seasonal air and water temperatures were grouped into 4 categories: spring (March–May),
summer (June–August), fall (September–November), and winter (December–February of
the next year).

2.4. Thermal Stratification Intensity in Lakes and Its Effect on Surface Water Temperature

The stratification intensity was calculated based on the water temperature at varying
water depths during 2004–2019 using Equation (11) by applying the potential energy
anomaly (PEA) as suggested by Simpson [40]. PEA represents the work per volume
required to mix water layers fully, and it is equal to the difference between the current
potential energy of the water layer and the potential energy when the water layers are fully
mixed vertically. A larger PEA value implies a larger stratification intensity.

ϕ =
1
D

∫ n

−H
gz
(
ρ′ − ρ

)
dz (11)

ρ′ =
1
D

∫ n

−H
ρdz (12)
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where g is the acceleration of gravity, z is the vertical coordinate (positive top from the
bottom (–H) to the surface of the lake (η)), and ρ(z) is the density profile of the water
column at depth D = H + η. The PEA, ϕ, is 0 for a totally mixed water column, positive
for stable stratification and negative for unstable stratification. The amount of energy per
volume used to vertically homogenize the entire water column is provided by ϕ. Pearson’s
correlation analysis was performed to determine the relationship between the monthly
stratification intensity and the monthly average surface water temperature.

3. Results and Discussion
3.1. Long-Term Air Temperature Trends in Lakes

The air temperature was low in Chuncheon, which exhibited the highest latitude. The
air temperature of Yangpyeong was lower than that of Chungju before 1997. However,
after 1997, the air temperature of Yangpyeong increased marginally. In addition, Cheongju,
with the lowest latitude, exhibited a high range of air temperatures (Figure 2).

Figure 2. Regional changes in the annual average air temperature (1973–2019).

Application of the Mann-Kendall test to the time series data of annual surface air
temperature showed an increasing trend with a high p-value. As previously mentioned, this
finding is insufficient to suggest that no statistically significant patterns existed annually.
Therefore, we performed the seasonal Kendall test on the monthly results [36]. Application
of the seasonal Kendall test to the monthly average air temperatures during 1973–2019
and 1993–2019 demonstrated increasing trends and high statistical significance (p < 0.0001).
Regarding the seasonal Sen slope estimator, the increase in air temperatures in the past
27 years was higher than that over the past 47 years in all regions as shown in Figure 3.
The Intergovernmental Panel on Climate Change [41] reported that since the pre-industrial
period, the temperature of the land surface air increased almost as much as the global
average temperature. From 1850–1900 to 2006–2015, the average air temperature increased
by 1.53 ◦C, and the global average surface temperature (land and ocean) increased by
0.87 ◦C. In addition, the global average surface air temperature between 2015 and 2019
was approximately 1.7 ◦C higher than pre-industrial temperatures and 0.3 ◦C warmer than
between 2011 and 2015 [42].

The air temperature increase for the past 27 years was higher than for the past 47 years
in Chungju, which exhibited the highest degree of change from 0.030 ◦C to 0.055 ◦C, which
was followed by Yangpyeong from 0.048 ◦C to 0.06 ◦C, and Cheongju demonstrated the
least degree of air temperature increase. Urbanization can affect regional air tempera-
tures [43–45]. Park et al. [46] found that urbanization affected the local warming trends
for three different periods (40 year, 60 year, and 100 year) over South Korea by 30–45%,
25–30%, and 3–11%, respectively. Urbanization factors, such as urban growth, land use,
and land cover change due to anthropogenic activities, have influenced the increase in
local air temperatures despite large uncertainties in the estimation of the contribution of
urbanization by period. Because these regions witnessed a low level of land-use changes,
the population changes in these regions due to urbanization were examined. As illustrated
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in Figure 4a, the population density in 2019 was the highest in Cheongju (892 persons/km2)
and the lowest in Yangpyeong (133 persons/km2). The population density of Cheongju
has steadily increased since 2012 because Sejong city, a national administrative city, was
built near Cheongju. This is thought to have caused population dispersion. However,
the population growth rates (Figure 4b) in Yangpyeong and Chungju demonstrated a
continuously increasing trend, suggesting that the effects of urbanization contributed to
the changes in the air temperature in certain regions.

Figure 3. Long-term variations in seasonal Sen slope of surface air temperature in the surveyed area.

Figure 4. (a) Population densities in 2019 and (b) population density variation in Chuncheon, Yangpyeong, Chungju,
and Cheongju.

The seasonal Kendall test generates an overview figure of the whole year that does
not include monthly or seasonal statistics [39]. Therefore, we used annual seasonal means
(spring, summer, fall, and winter) to repeat the Mann-Kendall test and the Sen method by
year. The Mann-Kendall test results (Table S3) displayed statistically significant increases
in the air temperature by season except for some winters (p < 0.05). Excluding seasons
without statistical significance, the slope of the air temperature increases for the past
27 years (0.033–0.075 ◦C) increased more than that for the past 47 years (0.024–0.058 ◦C).
This increase was greater in summer (0.057–0.075 ◦C).
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3.2. LSWT Long-Term Trends

Similar to the long-term trend analysis of air temperature wherein the monthly average
surface water temperatures were analyzed using the seasonal Kendall test and the seasonal
average surface water temperatures were analyzed using a Mann-Kendall test, the LSWTs
for 1993–2019 (27 years) demonstrated statistically significant increasing trends (p < 0.005)
(Table 1). SY and DC displayed the highest slope static at 0.125 ◦C/y, followed by CJ at
0.071 ◦C/y and PD at 0.066 ◦C/y. The increase rate of the water temperatures was higher
than the increase rate of the air temperatures for the same period. SY and DC demonstrated
the highest water temperature increase rate, followed by CJ and PD. As compared to local
air temperature averages, many lakes warmed faster than the local air temperature, with
the difference becoming more pronounced in colder lakes and at higher latitudes [20].

Table 1. Long-term and seasonal trends of LSWT.

Lake Season
Surface Water Temp.

S p Seasonal Sens Slope

SY

Year (‘93-’19) 1584 2.2 × 10−16 0.125 ***
Spring 163 0.006 0.116 **

Summer 153 0.002 0.519 **
Fall 200 2.94 × 10−5 0.331 ***

Winter 116 0.016 0.057 *

PD

Year (‘93-’19) 727 1.22 × 10−5 0.066 ***
Spring 145 0.003 0.078 **

Summer 79 0.103 0.095
Fall −27 0.587 −0.017

Winter 57 0.241 0.023

CJ

Year (‘93-’19) 1093 3.95 × 10−11 0.071 ***
Spring 178 0.0002 0.175 ***

Summer 178 0.0002 0.157 ***
Fall 96 0.047 0.056 *

Winter −20 0.691 −0.010

DC

Year (‘93-’19) 1263 7.17 × 10−15 0.125 ***
Spring 129 0.007 0.130 **

Summer 173 0.0003 0.370 ***
Fall 128 0.008 0.209 **

Winter 27 0.584 0.000

p-value: * p < 0.05; ** p < 0.01, *** p < 0.001.

SY demonstrated statistically significant increases (p < 0.05) in all the seasons. The
water temperature increased in summer and fall at a rate of 0.519 ◦C/y and 0.331 ◦C/y,
respectively, whereas the increase rate was low in winter (0.057 ◦C/y). PD exhibited
statistical significance only in spring, with an increased rate of 0.078 ◦C/y. CJ displayed
statistical significance in all seasons except winter (p < 0.05), with increasing rates of
0.175 ◦C/y and 0.157 ◦C/y in spring and summer, respectively. DC also demonstrated
statistically significant increases in all seasons except winter, with the largest increase
rate in summer (0.370 ◦C/y). Each lake displayed different increase rates, and most lakes
exhibited a high, increasing water temperature in summer and statistically significant
increases in spring and summer. The significant intra-annual trend variation indicates
that each season’s trends do not represent the lake’s response to climate change well. For
example, the north of Europe is dominated by fall trends, while the south is dominated
by winter trends. Because of the intra-lake trend fluctuations, the trend at single in-
situ stations does not always reflect the response of the whole lake [20]. The degree of
amplification of LSWT varies annually during summer. It is larger in cold lakes (high
latitudes and altitude) and characterized by short warming seasons, and is represented
by longer temperature and time scales in deep lakes due to increased heat inertia. Such
lakes are more likely to display responses above the local inter-annual summer surface
air temperature variability and exhibit a response beyond the variability of surface air
temperature between local summers [47].
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3.3. Stratification Intensity and Its Guiding Factors

Stratification typically begins to form in spring during an increase in the surface wa-
ter temperature, and it later weakens when the surface water temperature decreases.
The stratification intensity was calculated using monthly average PEA based on the
water temperature data from 2004 during the initiation of water temperature measure-
ments by water depth. Consequently, SY displayed the highest stratification intensity at
53.7 J/m3 (0–169.1 J/m3), followed by DC at 33.4 J/m3 (0.0–119.7 J/m3), CJ at 21.5 J/m3

(−2.5–121.6 J/m3), and PD at 4.8 J/m3 (−0.1–28.1 J/m3) (Figure 5). The average PEA
of Saemangeum Lake, a domestic coastal area, ranged from 16.9 J/m3 to 27.7 J/m3 by
zones [48], and the average PEA in Gwangyang Bay and Jinju Bay Sea areas ranged from
2.2 J/m3 to 33.2 J/m3 [49].

Figure 5. Monthly variations in PEA at the four lakes.

The stratification intensities of SY and DC, which are freshwater lakes, were much
higher than those of the sea areas, and the monthly maximum stratification intensity
was particularly high in summer. Stratification reached full scale in May. The maximum
stratification observed in June for PD, with a low water depth, was faster than that in the
other lakes. Stratification was observed in August for CJ and in September for SY and
DC. The stratification intensity weakened at the start of September for PD and CJ, which
demonstrated a mixing pattern that was initiated in December. The stratification weakened
from October in DC and SY but remained until December. The monthly average PEA
exceeded 30 J/m3 from June to December for SY, from July to November for DC, and from
July to October for CJ. PD displayed an increasing pattern of PEA from June to August, but
it was not higher than the monthly average.

The dependence of the model parameters (such as lake surface area, surface layer
volume, maximum depth, mean depth, the equivalent diameter of a circle having the
same surface as the lake, and retention time) on the primary morphological variables (as
stated by Toffolon et al. [50]) allowed for a quantitative description of the strong effect
of the lake mean depth on thermal inertia, and the hysteresis trend between the air and
lake surface temperatures. An and Lee [51] also illustrated that the relationship between
air and water temperatures can be altered depending on the increasing and decreasing
trends of air temperatures due to the water temperature hysteresis and because water has a
greater specific heat than air. Due to intensive rainfalls in summer in South Korea, the low-
temperature water flowing from the upstream of the lake weakens the lake stratification.
The retention time of each lake can vary according to its hydrologic management. Physical
factors of lakes, such as differences in water temperature, upstream river inflow rate, and
retention time, significantly affect the delivery and accumulation of thermal energy of
water bodies [10,52–54]. Particularly for PD, the average water temperature change in the
surface layer and water depth is considered to be complex because mixing occurs inside the
lake due to the flow of the Namhan River and the Bukhan River, which have different water
temperatures during various periods [55]. Although various factors affect the formation
and retention time of stratification, the effect of retention time is also a major reason why
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CJ exhibits faster stratification formation and weakening periods despite CJ exhibiting a
higher water depth and storage capacity than DC.

3.4. Factors Influencing Stratification

Stratification varies based on topographical, hydrological, and meteorological fac-
tors [56]. According to a local study on Saemangeum Lake [48], the causes of stratification
were low wind velocity and high flow rate in summer, and the causes for stratification in
Gwangyang Bay and Jinju Bay were increased in the flow rate and water temperature due
to solar radiation [49]. Magee and Wu [12] studied three lakes with different morphome-
tries in the United States, and the subsequent Pearson’s correlations and environment
perturbation scenarios revealed that wind speed had a more significant impact on tempera-
ture and stratification variables than shifts in air temperature, and that depending on the
path of local wind speed changes, wind may either intensify or reduce the influence of
warmer air temperatures on the lake thermal structure.

In South Korea, fluctuations in water temperatures vary greatly depending on the
season and region due to intensive rainfall during the rainy or typhoon season in summer
resulting from the regional monsoon climate. Consequently, fluctuations in the lake inflow
amount are high, and fluctuations in the retention time can also affect stratification.

Figure 6 shows the seasonal retention time in lakes. The average retention time was
the highest in SY, followed by DC, CJ, and PD. SY exhibited a retention time of over 200 d
in every season. Its retention time was the shortest in summer (232.9 d) and longest in fall
(451.7 d). DC exhibited the shortest retention time (128.0 d) in summer and the longest
(307.8 d) in fall, whereas CJ exhibited the shortest retention time (116.5 d) in summer and
the longest (247.9 d) in fall. PD displayed the shortest retention time throughout the year.
Thus, the retention time was the longest in fall, followed by winter, spring, and summer.
Except for PD, the retention time was the longest in fall and the shortest in summer due to
the intensive rainfall during this period. PD displayed the shortest retention time (5.6 d) in
summer and the longest (14.7 d) in winter (December–February of the following year).

Figure 6. Seasonal average retention time (d) in lakes (1993–2019).
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Correlations between the LSWT and stratification intensity (PEA), inflow, outflow,
temperature, rainfall, wind speed, and retention time were analyzed (Table 2). The LSWT
typically displayed a statistically significant correlation with the PEA, and the descending
order of the correlation coefficients was as follows: SY (0.85) > DC (0.74) > CJ (0.71) > PD
(0.69). LSWT and PEA showed strong positive correlations in SY and DC. The correlations
were particularly strong in spring at r = 0.99 and r = 0.91 for SY and DC, respectively. Hence,
the LSWT exhibited considerably affected stratification during the period of increase in
water temperature. Additionally, it was strongly correlated with air temperatures in spring
and fall. PD is known to be a river-type lake due to its fast retention time and shallow
water depth. It exhibited a weaker correlation between LSWT and PEA than that of other
lakes. Additionally, the correlations between LSWT and inflow, outflow, rainfall, wind
speed, and retention time in summer, with heavy rainfall, varied, but the correlations
were statistically significant. In CJ, the PEA was correlated with wind velocity and air
temperature. According to Piccolroaz et al. [57], unusual warming may be caused by two
factors: increased stratification intensity and high summer air temperature anomalies.
These can result from a warm spring, which can be measured by the lumped model
air2water to simulate the lake surface temperature as a function of air temperature alone.

Table 2. Correlation between LSWT and the influencing factors in the four lakes.

Lake Season PEA Inflow Outflow Air Temp. Rainfall Wind Retention
Time

SY

Year (‘93-’19) 0.85 * 0.4 0.17 0.67 0.49 −0.33 0.02

Spring 0.99 * 0.15 0.36 0.86 * 0.52 −0.19 −0.16

Summer 0.89 * 0.33 0 0.54 0.29 −0.25 0.04

Fall 0.44 0.48 −0.17 0.94 * 0.46 0.17 0.17

Winter 0.83 * 0.14 0.1 −0.36 0.06 0.12 0.11

PD

Year (‘93-’19) 0.69 * 0.34 0.34 0.96 * 0.53 −0.28 −0.46

Spring 0.87 * 0.22 0.22 0.98 0.28 −0.45 −0.3

Summer 0.69 * −0.55* −0.55 * 0.6 −0.34 * 0.32 0.52*

Fall 0.75 * 0.3 0.3 0.98 * 0.37 −0.34 −0.32

Winter 0.43 * −0.3 −0.24 0.33 −0.09 0.01 0.28

CJ

Year (‘93-’19) 0.71 * 0.39 0.31 0.86 * 0.54 −0.42 −0.05

Spring 0.79 * 0.15 0.29 0.97 * 0.39 −0.28 −0.38

Summer 0.54 * −0.11 −0.15 0.87 * 0.03 −0.41 0.09

Fall 0.63 * 0.45 0.34 0.98 * 0.54 −0.17 −0.21

Winter 0.55 * 0.38 0.01 −0.11 −0.04 −0.43 0.3

DC

Year (‘93-’19) 0.74 * 0.44 0.39 0.77 * 0.54 −0.25 −0.39

Spring 0.91 * −0.05 0.36 0.93* 0.31 −0.17 −0.46

Summer 0.61 0.41 0.19 0.59 0.33 0.15 0.13

Fall 0.61 * 0.34 0.33 0.92 * 0.43 0.28 −0.64

Winter 0.80 * 0.18 0.27 −0.33 −0.27 −0.33 0.1

p-value: * p < 0.05.

In large lakes with long retention times, the surface water temperature that has
increased due to the hysteresis of the water temperature following an increase in the air
temperature typically remains high for long durations. Yu et al. [58] claimed that due to the
hysteresis phenomenon, which demonstrates a gradually decreasing water temperature
trend during the period of increase in air temperature similar to the period of decrease
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in PD, the increase in air temperature during summer continues for a prolonged period,
further delaying the decrease in water temperature when the water body is large.

The PEA displayed statistically significant correlations with air temperature and wind
velocity in CJ and PD as presented in Table 3. This was because lakes in which the surface
water temperature is significantly affected by air temperature, the air temperature increases
in summer, and the continuation of stratification that occurs in spring directly affect the
increase in the surface water temperature. If the correlation between air and surface water
temperatures is not high, it is more substantially affected by various factors, such as wind
velocity, inflow, outflow, and retention time. The correlation between air and surface water
temperatures varies between rivers and lakes and among lakes according to topographical,
hydraulic, and hydrological factors. Moreover, correlations can also vary within the same
lake at different locations with varying water depths and retention times. Therefore, a
localized increase in water temperature can have potentially negative influences, such
as food web communication [22], the dominance of nitrogen-fixing phytoplankton [9],
lake water chemistry, primary production, plankton population composition, nutrient
cycling [23], and hydrologic modifications [6] in the entire lake. Therefore, hydraulic
problems in the lakes should be addressed, and nutrients should be managed, especially
in those parts of lakes that are vulnerable to localized temperature increases, to minimize
their effects on the lake aquatic ecosystem.

Table 3. Correlation between PEA and influencing factors in the four lakes.

Lake Season Inflow Outflow Air Temp. Rainfall Wind Retention
Time

SY

Year (‘93-’19) 0.2 0.09 0.38 0.24 −0.45 0.01

Spring 0.15 0.33 0.81 * 0.51 −0.19 −0.13

Summer 0.22 0.16 0.55 0.18 −0.19 −0.03

Fall 0.08 0.17 0.42 −0.01 −0.23 −0.15

Winter −0.03 0.27 −0.24 0.16 0.06 −0.15

PD

Year (‘93-’19) 0.02 0.02 0.67 * 0.27 0.13 −0.09

Spring −0.11 −0.1 0.81 * 0.07 −0.32 * 0.03

Summer −0.58 * −0.57 * 0.21 −0.34 * 0.66 * 0.86 *

Fall 0.08 0.07 0.73 * 0.19 −0.1 −0.13

Winter −0.36 * −0.36 * 0.11 −0.17 0.14 0.37

CJ

Year (’93-’19) 0.3 0.16 0.58 * 0.37 −0.41 * 0.07

Spring 0.21 0.41 0.71 * 0.36 −0.31 * −0.35

Summer 0.08 −0.04 0.47 * −0.01 −0.28 −0.04

Fall 0.25 0.05 0.61 * 0.34 −0.24 * 0.12

Winter 0.50 * −0.38 * 0.23 0.11 −0.48 * 0.76 *

DC

Year (’93-’19) 0.31 0.32 0.37 0.31 −0.37 −0.03

Spring −0.05 0.32 0.80 * 0.34 −0.06 −0.47

Summer 0.44 0.44 0.39 0.32 0.17 −0.15

Fall 0.24 0.26 0.53 0.34 0.18 −0.28

Winter 0.25 0.14 −0.09 −0.31 −0.46 0.36

p-value: * p < 0.05.

4. Conclusions

Lake water quality management is essential for regional water resource security. The
LSWT increases as air temperatures rise as a result of climate change, influencing lake
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stratification, aquatic habitats, and water quality. The effect of rising LSWT due to long-
term increases in air temperature on stratification intensity in SY, PD, CJ, and DC was
investigated in this study. In the past 27 years (1993–2017), the rate of air temperature rise
(0.05–0.06 ◦C/y) was greater than the rate (0.03–0.055 ◦C/y) over the previous 47 years
(1973–2019); with a higher air temperature increase in the summer (0.057–0.075 ◦C). Except
for PD, the pace of increase in the LSWT was normally 2–3 times that of the air temperature
increase in the summer. SY, such as the LSWT rise, had the highest average stratification
intensity from 2004–2019, followed by DC, CJ, and PD. Stratification started in May and
peaked in September. The relationship between LSWT and PEA was substantial, however,
due to its shorter retention time and shallower water depth than the other lakes, PD
had the lowest correlation. Because of the short retention time in summer with heavy
rainfall, the inflow, outflow, rainfall, wind speed, and retention time associations were
statistically significant. As water and air temperatures increased from spring to summer,
stratification continued in large lakes with long retention times. However, lakes with weak
correlations between air and surface water temperatures were affected by wind velocity,
inflow, outflow, and retention time. Therefore, topographical, hydraulic, and hydrological
factors influenced the relationship between air and surface water temperatures in lakes.
Furthermore, the correlation varied within the lake. Hydraulic issues and nutrients should
be controlled to limit their impact on lake water quality and aquatic ecosystems since
localized water temperature increases can enhance lake cyanobacteria.
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