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Abstract: Earth observation technologies have strong potential to help map and monitor wildlife
habitats. Yellow Rail, a rare wetland obligate bird species, is a species of concern in Canada and
provides an interesting case study for monitoring wetland habitat with Earth observation data.
Yellow Rail has highly specific habitat requirements characterized by shallowly flooded graminoid
vegetation, the availability of which varies seasonally and year-to-year. Polarimetric Synthetic
Aperture Radar (SAR) in combination with optical data should, in theory, be a great resource for
mapping and monitoring these habitats. This study evaluates the use of RADARSAT-2 data and
Landsat-8 data to characterize, map, and monitor Yellow Rail habitat in a wetland area within the
mineable oil sands region. Specifically, we investigate: (1) The relative importance of polarimetric
SAR and Landsat-8 data for predicting Yellow Rail habitat; (2) characterization of wetland habitat
with polarimetric SAR data; (3) yearly trends in available habitat; and (4) predictions of potentially
suitable habitat across northeastern Alberta. Results show that polarimetric SAR using the Freeman–
Durden decomposition and polarization ratios were the most important predictors when modeling
the Yellow Rail habitat. These parameters also effectively characterize this habitat based on high
congruence with existing descriptions of suitable habitat. Applying the prediction model across all
wetland areas showed accurate predictions of occurrence (validated on field occurrence data), and
high probability habitats were constrained to very specific wetland areas. Using the RADARSAT-2
data to monitor yearly changes to Yellow Rail habitat was inconclusive, likely due to the different
image acquisition times of the 2014 and 2016 images, which may have captured seasonal, rather than
inter-annual, wetland dynamics. Polarimetric SAR has proved to be very useful for capturing the
specific hydrology and vegetation structure of the Yellow Rail habitat, which could be a powerful
technology for monitoring and conserving wetland species habitat.

Keywords: SAR; wetlands; polarimetric SAR; wildlife; Earth observation; RADARSAT-2

1. Introduction

The recent proliferation of Earth observation (EO) data has facilitated tremendous
growth in applications of this technology. EO data have become progressively more used in
species modeling, due to easy access to data almost anywhere in the world and the ability
to have repeat observations of the same area, i.e., monitoring [1]. Additionally, EO data
can provide continuous predictor variables which require no interpolation or sampling
biases [1]. These predictor variables are often the most useful in modern presence/absence
species distribution models using techniques like Boosted Regression Trees [2]. Wetland
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species, in particular, can benefit from habitat/species modeling with EO because these
habitats are typically remote/inaccessible (boreal wetlands especially), and they are also
very dynamic in both space and time. Wetland mapping and monitoring with EO sensors,
such as optical, Synthetic Aperture Radar (SAR), and Light Detection and Ranging have
been well studied [3–7], but the application of these technologies to characterize species
habitat within wetlands is the next logical step which can help habitat monitoring and
conservation efforts.

The species of interest for this study is the Yellow Rail (YERA–Coturnicops novebora-
censis), which is an obligate wetland species that are typically very secretive. The majority
of its known habitat is in the boreal forest zone [8], and it is thought to have a small and
declining global population (ca. 10,000–25,000 individuals [9]). However, the species is also
listed as data deficient because of the challenges associated with sampling and mapping
the habitat this species requires. This led to it being listed as a species of special concern
under Canada’s Species at Risk Act. Most descriptions characterize its breeding habitat as
graminoid wetlands with shallow standing water, and an understory layer of senescent
vegetation [10,11]. The Yellow Rail’s suitable habitat is expected to be highly specific,
dynamic, and sensitive to human hydrological disturbance making it an ideal test case for
EO species habitat modeling/monitoring applications.

Most previous studies using EO data to study wetlands have focused on wetland
mapping and monitoring, rather than directly modeling wildlife habitat. The mapping of
wetland areas versus other landcover can typically be accomplished with either optical
data [12–14] to identify wetland vegetation or with a Digital Elevation Model to identify
topographically wet areas [5,15]. The seasonal and dynamic nature of wetlands is typically
captured with SAR backscatter, due to its ability to see through clouds and its strong ability
to detect surface water/flooded vegetation [3]. This hybrid data approach can typically
achieve very high accuracies for wetland, wetland class, and landcover maps [5,7,16], but, in
the end, this categorical data may not be very useful for characterizing meaningful habitat
for wetland species. Using these EO sources directly to model the species’ habitat may be a
better method [16]. This method can directly correlate a species’ habitat to EO data without
the intermediate step of running a species model on top of the landcover classification
models, which may compound errors. These categorical landcover classifications are often
not updated regularly, making species monitoring difficult when using such approaches [1].
Further, EO data can be specifically chosen to detect habitat features of interest to a given
species. In the case of YERA, we would want EO data to detect and monitor the changing
hydrology and capture the specific vegetation structure rather than a coarser wetland
type designation.

SAR, and specifically polarimetric SAR, including both fully polarimetric and com-
pact polarimetric configurations, have shown a strong ability to detect water/vegetation
interactions and characterize wetland vegetation structure [17,18]. Certain decompositions
from SAR, such as the Freeman–Durden decomposition [19], can separate SAR backscatter
into useful parameters for characterizing wetland habitat: Double bounce–typically asso-
ciated with flooded vegetation in wetlands; volume scattering–higher values associated
with higher biomass, and rough surface–rougher surface at the scale of the wavelength.
Moderate-resolution optical data should also theoretically detect graminoid vegetation,
but may be limited for characterizing vegetation/water interactions. A DEM may not be
of interest for YERA modeling as DEMs are typically used to distinguish wetland from
upland areas, and we would expect habitat to only occur in flat wetland areas.

While species habitat modeling with EO is less common than landcover mapping
with EO, there have been numerous studies that use EO for species conservation purposes.
Prior studies have used optical data for species distribution models of the bird’s breeding
habitat [20–22] or used SAR/LiDAR to model specific habitat vegetation structures for bird
species [23,24]. Other studies have used SAR to map and monitor Panda habitat [25], and
to characterize wetland habitat in the Brazilian Pantanal [26]. Similar polarimetric SAR and
bird habitat studies have been done with Black Tern habitat in the Great Lakes region [27].
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In a related study to ours, [16] used Sentinel-1, Sentinel-2 (multi-spectral optical), and DEM
data to predict YERA species abundance. Species habitat monitoring is potentially a very
powerful and under-utilized application of this technology, especially when monitoring
dynamic habitats.

This study aims to build on the work from [16,28] by investigating the importance
of polarimetric SAR from RADARSAT-2 for developing more accurate predictive models
of the YERA habitat. We also investigate yearly and seasonal habitat dynamics with
RADARSAT-2 and Landsat-8 data to determine if we can track changes in habitat suitability
in time. The objectives of this study are divided into four parts: (1) Investigate the relative
importance of polarimetric SAR for predicting YERA wetland habitat, (2) characterize
YERA habitat based on the EO variables (3) explore the ability of EO data to detect changes
in YERA habitat year-to-year, and (4) assess the ability of polarimetric SAR and optical
data to predict suitable YERA habitat across larger areas.

2. Materials and Methods
2.1. Study Area

The area of interest for this study is a 3480 km2 region in northeastern Alberta, Canada
(Figure 1). This is in the Boreal Plains Ecozone/Boreal Forest Natural Region, and elevation
in this area is relatively flat from 200–600 m above sea level. Vegetation in this area is mainly
conifer, mixed and deciduous forests, along with large peatland complexes in low-lying
areas [29]. As seen in panel (a) of Figure 1, the study area is the main mining area in the
Athabasca oil sands mineable area. The area has numerous open mines with associated
tailing ponds and resource roads. The current extent of wetlands in the area is located
around the blue field points seen in Figure 1. According to DeLancey, Simms, Mahdianpari,
Brisco, Mahoney and Kariyeva [7], 30% of the study area is wetland habitat, with most of
this being treed, shrub, and graminoid fens.

2.2. Yellow Rail Abundance Data

The YERA abundance data comes from previous studies in [17,29]. This data comes
from autonomous recording units during field campaigns in 2013–2019. There were
203 recording units placed within wetland sites in the study area. The presence/absence of
YERA at each site was determined using automated processing and human interpretation.
First, a recognizer was used to filter out potential YERA calls, then, a human interpreter
would validate this call. Prior work has shown that the effective detection radius for these
recording units is about 250 m [30], and therefore, these sites were buffered by 250 m.
These sites were then clipped to include only wetland areas using the ABMI Wetland
Inventory [7], which has been suggested as best practice in Thuiller, et al. [31].

2.3. Earth Observation Data

This study used RADARSAT-2 and Landsat-8 data from 2014 and 2016 listed in Table
1. RADARSAT-2 Fine Quad-Pol data was provided by the Canadian Centre for Mapping
and Earth Observation. The 2016 data consisted of two ascending orbit images, while the
2014 data was one ascending orbit image. The images were processed in PCI Geomatica
with the following steps: 9 × 9 boxcar filter, matrix symmetrization, Freeman–Durden
decomposition [19], and finally ortho-rectification and terrain correction using the ALOS
digital elevation model. Parameters extracted from this data for YERA habitat modeling
were the three components of the Freeman–Durden decomposition (volume scattering,
double bounce, and rough surface; see [17] for a more detailed physical description of these
parameters), Vertical-Vertical (VV), Horizontal-Horizontal (HH), and Horizontal-Vertical
(HV) backscatter, cross-pol ratio (HH/VV), and co-pol ratio (HH/HV) (see Table 2). The
Freeman–Durden decomposition is a technique that uses the phase and amplitude part
of the SAR wave to analyze the scattering characteristics of polarimetric SAR data. The
volume scattering component typically represents random scattering of the SAR wave off
targets like tree canopies, double bounce represents a SAR wave which bounces off two
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reflectors and back to the sensor (like water then vegetation), and rough surface represents
scattering off of rough surfaces at the scale of the wavelength. The other parameters used
from SAR are the amplitude of the SAR return in different send and receive configurations
(HH, HV, VV) or ratios between their parameters (cross-pol ratio = HH/VV).

Figure 1. Study area. Panel (a) shows the true color image of the area with field sites in green (YERA present) and grey
(YERA absent), panel (b) shows the elevation of the area, and panel (c) show the study area located in relation to the rest of
western Canada.

Table 1. List of images used for the analysis of the Yellow Rail habitat. Two RADARSAT-2 images
were used for the 28 June 2016 date.

Satellite Date Resolution (m) Data Type

RADARSAT-2 06 Aug 2014 8 Fine Quad-Pol

RADARSAT-2 28 June 2016 8 Fine Quad-Pol

Landsat-8 02 Aug 2014 30 Surface reflectance

Landsat-8 29 June 2016 30 Surface reflectance
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Table 2. List of EO inputs for Yellow Rail modeling.

Variable Satellite Description

HH RADARSAT-2 Horizontal-Horizontal backscatter

HV RADARSAT-2 Horizontal-Vertical backscatter

VV RADARSAT-2 Vertical-Vertical backscatter

CrossPolRatio RADARSAT-2 HH/VV

CoPolRatio RADARSAT-2 HH/HV

DoubleBounce_FD RADARSAT-2 Double bounce component of the Freeman–Durden decomposition

RoughSurface_FD RADARSAT-2 Rough surface component of the Freeman–Durden decomposition

VolumeScattering_FD RADARSAT-2 Volume scattering component of the Freeman–Durden decomposition

B2–7_ Landsat-8 Bands 2–7 from Landsat 8

NBR_ Landsat-8 Normalized Burn Ratio (B5−B7)
(B5+B7)

NDVI_ Landsat-8 Normalized Difference Vegetation Index (B5−B4)
(B5+B4)

NDWI_ Landsat-8 Normalized Difference Water Index (B5−B6)
(B5+B6)

Landsat-8surface reflectance data were acquired and processed in Google Earth En-
gine [32]. Cloud free Landsat-8 images were chosen as close to the RADARSAT-2 dates as
possible (see Table 1). From the Landsat-8 images, the Normalized Difference Vegetation
Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Burn Ratio
(NBR) were calculated. Parameters extracted and downloaded from this data for YERA
habitat modeling were Bands 2–7, NDVI, NDWI, and NBR (see Table 2).

2.4. Habitat Modeling, Prediction, and Monitoring

The YERA abundance data were reduced to presence/absence for modeling by col-
lapsing all 2013–2019 records. If YERA were detected at all during the 2013–2019 period,
the site was considered occupied (presence), and if they were never detected, the site was
considered absent. In the end, the presence/absence data were buffered polygons clipped
to wetland boundaries with an associated presence/absence value. For each of these
208 polygons, the mean value for each of the RADARSAT-2 and Landsat-8 parameters
were extracted. With these data, a Boosted Regression Tree model [33] was run with similar
tuning parameters as in McLeod et al. (2021) [16]: Tree complexity = 5, learning rate = 0.03,
and bag fraction of 0.5. Boosted Regression Trees is an ensemble modeling technique that
uses multiple, averaged classification trees using boosting. These models are typically
good for species modeling because they try to reduce overfitting and can model nonlinear
responses and complex interactions. Outputs of this model were used to produce model
statistics, variable importance charts (importance of RADARSAT-2 versus Landsat-8 for
characterizing habitat), and response curves (specific YERA habitat characterization). The
model was also run two additional times with RADARSAT-2 inputs only and Landsat-8
inputs only to further assess the relative importance of SAR versus optical. For each model
variation, the Area Under the receiver operating characteristic curve (AUC) model statistic
was compared. The receiver operating characteristic curve is a plot of the true positive rate
and the false positive rate at different thresholds, and thus, the AUC is the calculated area
of that curve. AUCs close to 1 are considered great classifiers, while anything near 0.5 is
considered poor.

To predict YERA habitat across the study area, a hexagonal grid was generated with
individual hexagons approximating the area of a 250 m radius circle. These hexagons were
then clipped to wetland areas, and polygons were removed under 17,671 m2

(5 × 5 Landsat-8 pixels). The 208 sites were split into 70% training and 30% test data
to assess the prediction accuracy. Input variables into the Boosted Regression Tree model
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were reduced to exclude redundant inputs. The final list of input variables were: Volume
scattering, double bounce, rough surface, cross-polarization ratio, and co-polarization ratio
from RADARSAT-2 and NDVI, NDWI, B3, B5, B6, and B2 from Landsat-8. These variables
were then used to predict the probability of YERA occupancy in the hexagonal grid. We
assessed the accuracy of this prediction by predicting the probability of occurrence in the
30% test data. To assess the ability of EO data to monitor changes in habitat sites were
split into three categories: (1) Loss of YERA occupancy from 2014 to 2016, (2) no change
in occupancy, and (3) gain in occupancy. From this, the yearly trend in the EO inputs was
charted to see if loss of occupancy was associated with any loss/gain in the EO indicator.

3. Results

An initial exploratory analysis of the inputs in relation to occupancy of YERA showed
noticeable differences between presence/absence sites in some of the inputs (Figure 2).
The rough surface component of the Freeman–Durden decomposition showed a large
difference between occupied and unoccupied sites, with YERA preferring lower surface
roughness (Figure 2 panel a). Most non-backscatter RADARSAT-2 inputs showed distinct
differences between present/absent sites (Figure 2 panel b and c), while the Landsat-8
indices tended to overlap more between the two site types (Figure 2 panel d).

Figure 2. Box plots showing the difference between the EO inputs and YERA site occupancy. Panel (a) is the rough surface
component of the Freeman-Durden, (b) is the double bounce component of the Freeman-Durden, (c) is the cross polarization
ratio, and (d) is NDVI.

Figure 3 shows the relative importance of each variable in the Boosted Regression Tree
model. As expected, based on the figures above, the three most important variables are
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RADARSAT-2 inputs which control the majority of the model. RADARSAT-2 backscatter
inputs (HH, HV, and VV) appear to have the lowest importance, while polarization ratios
or indicators which incorporate phase information (Freeman–Durden components) appear
to be the most important for YERA habitat prediction. Some Landsat-8 indices and bands
are seen to be moderately important in predicting suitable habitats. The model with all
inputs recorded an AUC value of 0.86, which is generally considered high. The model
with RADARSAT-2 inputs only showed an identical AUC of 0.86 (rounding up), while the
Landsat-8 only mode showed an AUC of 0.75.

Figure 3. The relative importance of inputs in the prediction model.

Response of predicted YERA occupancy probability to all EO inputs was generated
to assess ideal habitat. Figure 4 shows some of the more interesting/important response
curves. CrossPolRatio (Figure 4b) and DoubleBounce_FD (Figure 4c) were generally posi-
tively correlated with occupancy probability. RoughSurface_FD (Figure 4a) was strongly
negatively associated with occupancy. VolumeScattering_FD (Figure 4d) showed a more
complex relationship with occupancy with probability peaking at low to moderate amounts
of volume scattering. Landsat-8 inputs, such as B3 and B6 (Figure 4e,f), showed higher
predicted probability associated with higher reflectance values.

The two-year trend data can be seen in Figure 5. All site types (loss, gain, no change)
had the same positive/negative change between the years, but the slope of the change did
differ between site types. Sites with a loss of YERA occupancy saw a stronger dip in the
cross-pol ratio than sites with no change or gain. Double bounce values increased less for
sites that gained YERA while sites that lost YERA were associated with lower NDVI slope.
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Figure 4. Response plots (how occupancy probability changes with changing EO values) for six potential YERA model
inputs. (a) Rough surface (b) cross polarization ratio, (c) double bounce, (d) volume scattering, (e) band 3, (f) band 6.

Predicted YERA occupancy can be seen in Figure 6. Most wetland areas were found
to not be suitable YERA habitat (darker colors). The majority of high probability habitat is
localized to a few small areas in the fen immediately west and east of McClelland Lake.
Other prime habitat areas were small hexagons near the edges of lakes or streams. All treed
wetland areas were shown to have near-zero YERA occupancy probability. Overall, this
predicts YERA occupancy with an 82% accuracy when compared to the 30% test field sites.
This prediction had a near-equal number of commission and omission errors, indicating a
relatively useful prediction.
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Figure 5. Yearly trends in three EO indies between 2014 and 2016 for three sites types. (a) cross polarization ratio (b) double
bounce, and (c) NDVI.

Figure 6. Hexagonal YERA occupancy probability for the study area. Yellows represent high YERA occupancy probability,
and darker colors represent low probabilities. Insets on the right zoom in on areas with suitable YERA habitat (center and
graminoid areas of wetland habitat) and poor habitat (edge/treed wetland).
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4. Discussion
4.1. Relative Importance of EO Inputs

Figures 2 and 3 revealed that polarimetric SAR is much more important for predicting
YERA wetland habitat than Landsat-8 optical data. Polarization ratios or decomposition
parameters from SAR were shown to have a much larger numerical difference between
occupied and unoccupied sites and were much more important in the model. The prediction
models were shown to be much more powerful with RADARSAT-2 data included. In fact,
it appears that Landsat-8 variables did not improve model performance as a RADARSAT-
2-only model generates the same AUC as the RADARSAT-2 + Landsat-8 models. This
highlights a limitation of optical data in that it does not penetrate to the vegetation/water
surface like SAR. Polarimetric SAR can detect important vegetation flooding and hydrology,
due to the 180-degree phase shift of a double bounce SAR return [3,18]. This information is
expressed in the cross-pol ratio and double bounce parameters. In addition to the relative
importance of RADARSAT-2 data for habitat modeling, the parameters from certain SAR
decompositions, such as the Freeman–Durden, can be intuitively related back to on-the-
ground habitat characterization, which can be important for conservation efforts.

4.2. Yellow Rail Habitat

Figure 4 can facilitate the interpretation of YERA habitat from EO indices. The
relationship between YERA occupancy probability and cross-pol ratio/double bounce
shows YERA prefer habitat with flooded vegetation (i.e., there is water/veg interaction in
the SAR return). Figure 4a shows a preference for smooth habitat, both vegetation, and
topography-wise. Panel (d) of Figure 4 shows an interesting result with YERA preferring
habitat with low to moderate amounts of volume scattering. This is most likely associated
with graminoid habitat interspersed with tree and shrub habitat that would register high
values of volume scattering and open water/barren areas, which would register very low
volume scattering values. Landsat-8 index responses to occupancy are harder to interpret,
but most bands show higher occupancy at high reflectance. This could be an association
with more senescent vegetation (i.e., green vegetation is darker with low reflectance).
Figure 7 shows an example of one of these YERA-occupied (verified in the field) habitats
which demonstrated one of the highest predicted probability of occupancy hexagons seen in
Figure 6. All the wetland habitat associations detected by the EO data are visible: Flooded
vegetation, low to moderate biomass, smooth surface, and more senescent vegetation.
These interpretations of EO data seem to be consistent with existing descriptions of YERA
habitat based on on-the-ground data [10,11], which is a positive finding as EO data does
not always match with field observations.

4.3. Monitoring Trends

The yearly trends in YERA habitat from 2014 to 2016 show inconclusive results.
All sites, no matter whether the change in occupancy was negative or positive, had the
same slope direction. This may indicate that the seasonal changes from August to June
produce a stronger signal than the changes from 2014 to 2016. The relative change from
2014 to 2016 may tell us something about changing YERA habitat between years. For
example, sites that lost YERA from 2014 to 2016 had a larger drop in cross-pol ratio
than sites with no change or gain. This may indicate that sites that lost YERA dried out,
corresponding with a lower flooded vegetation signal in 2016; however, this data does not
provide conclusive evidence. It is likely that future studies monitoring yearly changes in
wetland habitat will need to have consistent image acquisitions dates from year-to-year
to capture wetlands in similar seasonal states. Optical data, such as Sentinel-2, may can
accomplish this with a 5 day repeat imagery, although, consistent cloud or haze may make
this difficult. RADARSAT Constellation Mission (RCM) data and future SAR missions may
be a solution as it can provide a rich time series data stack that allows for more control
on the observation of seasonal wetland dynamics. Ideally, rather than monitoring indices,
multi-year/dynamic occupancy models [34] could be run for YERA or other species based
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on yearly EO data. This could better capture dynamic wetland habitats and estimate the
extinction and colonization rates of many sites. With the increasing availability of high
temporal resolution optical and SAR EO data, this will likely be achievable with the right
multi-year field data.

Figure 7. Field site picture capture in May 2014. This site is frequently occupied by YERA and had
one of the highest predicted occupancy probabilities.

4.4. Habitat Prediction

The prediction of YERA occupancy probability showed good results, with most sites
accurately predicting YERA habitat (82%). This prediction came with a 75% true-positive
rate and an 86% true-negative rate. We believe this model/similar models should be
generalizable to larger areas in the Boreal regions of Canada/North America, as seen in
McLeod et al. (2021) [16]. Figure 6 shows that most wetland areas are not suitable habitat
highlighting that YERA have very specific habitat needs. All treed wetland areas show
near-zero occupancy probability, and most high probability areas were constrained to
graminoid wetland areas with a flooded vegetation signature. The prediction results may
be biased towards larger YERA habitat patches, due to the large size of the prediction
hexagons. Many hexagons can have both treed and graminoid habitat, and therefore, the
SAR response for the whole hexagon may not show ideal habitat even though much of
the hexagon could be good habitat. A more sensitive model (i.e., fewer false negatives
with more false positives) may be more appropriate in many cases for species modeling,
especially in areas with development like this study. In the end, the sensitivity can be
altered by end-users of these models to shift towards a more desired true positive rate.

Ideally, this prediction map could be updated yearly with new input RADARSAT-2
and Landsat-8 data every year to monitor seasonal changes in the YERA wetland habitat.
This study, unfortunately, was data-limited for RADARSAT-2 data (only two available
images during the growing season) and could not accomplish yearly monitoring, but
moving forward, the RCM data can provide similar data with a dense time series for most
areas in Canada.

5. Conclusions

The application of polarimetric RADARSAT-2 data proved to be very powerful for
characterizing and predicting YERA habitat. Although optical data from Landsat-8 is
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likely useful for these applications, it is somewhat limited for detecting flooded vegetation
and capturing specific vegetation structures that may be important for wetland-associated
wildlife species. Parameters from the RADARSAT-2 Freeman–Durden decomposition
provided somewhat intuitive interpretations of YERA habitat, which did match with on-
the-ground expected habitat (flooded vegetation, with graminoid vegetation, and more
senescent vegetation). Predicting this habitat across a larger area was found to be suc-
cessful as high probability YERA habitat was constrained to wetland areas corresponding
closely to existing descriptions of habitat from the literature (i.e., graminoid, shallow water,
senescent vegetation). Results from 2014–2016 habitat trends proved to be somewhat
inconclusive. This may be because the magnitude of seasonal change in wetlands (from
June to Aug) may have been greater than the magnitude of year-to-year change. This
highlights the need for more temporally consistent data with a better temporal resolution
for wetland habitat monitoring. Fortunately, this data is now becoming available with the
RADARSAT Constellation Mission, which should provide consistent polarimetric SAR data
for capturing intra- and inter-year wetland variability. This data can then be a powerful
tool for wetland habitat monitoring/conservation efforts.
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