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Abstract: Understanding, development and integration of pre-fire and post-fire watershed hydro-
logical processes into a watershed hydrological model in a wild-fire repeating region similar to
parts of California is critical for emergency assessments. 95% of the upper Arroyo Seco watershed
located in Los Angeles County in southern California was burned by the Station fire that occurred in
August 2009, significantly increasing the watershed observed runoff. This watershed was employed
to develop the January 2008 rainfall runoff model as a pre-fire event-based watershed hydrological
model. This pre-fire watershed model was subsequently employed in the rainfall events of 18 January
2010 and 27 February 2010, a few months after the fire event of August 2009. The pre-fire watershed
model when employed in the post-fire rainfall events without considering the fire effects vastly
underestimated the simulated discharge. For this reason, in this study of the post-fire catchment
runoff modeling the following points are taken into consideration: (a) a realistic distributed ini-
tial soil moisture condition; (b) a formulation that includes a reduction factor and a burn severity
factor, as multiplying factors to soil hydraulic conductivity in the soil characteristic curve; and (c)
runoff routing parameterization under burned conditions. Developing the post-fire Arroyo Seco
watershed model by using the above-mentioned points enhanced the Nash–Sutcliffe Efficiency from
−24% to 82% for the 18 January 2010 rainfall event and from −47% to 96% for the 27 February 2010
rainfall event.

Keywords: post-fire hydrology; hydraulic conductivity; soil moisture; arroyo seco watershed

1. Introduction

The atmospheric oxygen and the carbon-rich vegetation makes Earth an intrinsically
flammable planet [1]. Wildfires are regarded one of the main cause of global tree and
vegetation mortality [2–4]. Wildfires are common in climates where vegetation growth
takes place in a relatively short span of wet periods followed by extended dry periods [5].
Studies suggests that a reason for the increase in fire risk in different parts of the world is
attributable to changes in climate extremes due to human induced changes [6,7].

Wildfires alter a watershed’s normal hydrologic function thereby increasing runoff for
a post-rainfall event of the burned watershed. Watershed hydrological changes in a post-
fire condition primarily arise from decreases in infiltration due to increases in soil water
repellency [8–11]. Changes to hydrodynamic and geophysical processes and associated
parameter behavior in a post-fire condition is the result of the loss of vegetation and soil
organic matter [12]. These changes elevate the runoff magnitude and shortens the lag
time of the peak flows resulting in an increased stream power, erosion potential, and
pollutant delivery [13–18]. Therefore, it is critical to integrate post-fire hydrological process
understanding into a physics-based distributed hydrologic model to facilitate improved
predictions for post-fire land and water management decisions [19].

Soil water repellency due to burned conditions depends on the burned severity [20].
This soil water repellency effect decreases with increasing soil moisture content [20]. There
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are not many observations to suggest a soil moisture threshold to transition from hydropho-
bic to hydrophilic conditions. With few site study observations at this time, the literature
suggests a wide range for this soil moisture threshold [21–23]. Under this present soil
moisture threshold uncertainty, a realistic initial soil moisture condition would demon-
strate a significance in deriving an effective parameterization of reduced infiltration in
event-based watershed post-fire hydrological modeling. For these reasons, in this study
of the post-fire catchment runoff modeling of a rainfall event, the following points are
taken into consideration: (a) a realistic distributed initial soil moisture condition; (b) a
formulation that includes hydraulic conductivity reduction factor and burn severity fac-
tor as multiplying factors for soil hydraulic conductivity in the soil characteristic curve
during the infiltration/runoff generation process; and (c) runoff routing parameterization
under burned conditions. Unlike earlier post-fire modeling studies, including all of the
above-mentioned relevant studies, this study takes account of realistic fine-resolution
distributed initial soil moisture condition with an infiltration reduction formulation and
routing parameters alteration according to severity of burned condition at a spatial location.
The post-fire modeling study is conducted for upper Arroyo Seco watershed, 41.7 km2 in
Los Angeles County, CA, USA. This study watershed was approximately 95% burned in
the August 2009 fire event called Station Fire.

2. Study Area

The Arroyo Seco Watershed is a sub-watershed of the Los Angeles National Forest
and is located in northeast Los Angeles County, between the San Gabriel Mountains and
the Los Angeles River. The outlet of the watershed in this study, as shown in Figure 1, is
at 34◦13′20′ ′ north and 118◦10′36′ ′ west and makes a watershed drainage area of approxi-
mately 41.7 km2. The streams in this upper Arroyo Seco watershed are dry most of the year.
A threshold of 1 km2 upslope contributing area was used to generate the stream network,
as shown in Figure 1.
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moved into the Arroyo Seco area overnight engulfing most of the watershed, 95%, in this 
study as shown in Figure 2. The burned severity map in Figure 2 was obtained from 
https://www.mtbs.gov/viewer/index.html?region=all (accessed 1 January 2021). 

The United States Geological Survey (USGS) has a runoff gaging station at the outlet 
of this study area which is referenced as USGS gaging station number 11098000 near Pas-
adena (https://waterdata.usgs.gov/nwis/inventory/?site_no=11098000&agency_cd=USGS 
(accessed 15 December 2020)). This study area is mainly steep mountainous terrain located 
within the Angeles National Forest [24].  
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In August 2009, the ‘Station Fire’ started in the Angeles National Forest. The fire
moved into the Arroyo Seco area overnight engulfing most of the watershed, 95%, in this
study as shown in Figure 2. The burned severity map in Figure 2 was obtained from
https://www.mtbs.gov/viewer/index.html?region=all (accessed 1 January 2021).
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Figure 2. Upper Arroyo Seco burned severity map after the ‘Station Fire’ of August 2009.

The United States Geological Survey (USGS) has a runoff gaging station at the outlet
of this study area which is referenced as USGS gaging station number 11098000 near
Pasadena (https://waterdata.usgs.gov/nwis/inventory/?site_no=11098000&agency_cd=
USGS (accessed 15 December 2020)). This study area is mainly steep mountainous terrain
located within the Angeles National Forest [24].

In general, the climate of the region where the Arroyo Seco is located can be described
as being of Mediterranean type with long, hot, dry summers and cooler, wet winter with
95% of the precipitation occurring from November to April, with 75% occurring from
December to March. The average annual precipitation is approximately 500 mm in the
lower elevations and up to approximately 760 mm in the higher elevations [25].

The observed hourly discharge from the USGS gaging station number 11098000 near
Pasadena (retrieved from https://waterdata.usgs.gov/nwis/inventory/?site_no=110980
00&agency_cd=USGS (accessed on 1 January 2021)) was used for calibration, parameter
identification and verification of the post-fire watershed hydrological model. The hourly
precipitation employed in this study was obtained from Department of Public Works, Los
Angeles County. The information for this rain gage station, ‘Inspiration Pnt Precip’ gaging
station at 34◦13′18′ ′ north and 118◦06′34′ ′ west and at an elevation of 1366.7-m above sea
level, was obtained at https://www.ladpw.org/wrd/precip/index.cfm?Product=alertlist
accessed on 1 January 2021. The US Geological Survey [26] Earth Resources Observation
and Science (EROS) Center Science Processing Architecture (ESPA) (https://espa.cr.usgs.
gov/ (accessed 1 January 2021)) on-demand interface provides 30-m Landsat Surface
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Reflectance, with atmospheric corrections applied, Level-2 science products that include
the spectral indices products for Landsat 4–5 Thematic Mapper (TM), Landsat 7 Enhanced
Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI)/Thermal
Infrared Sensor (TIRS). The Normalized Difference Vegetation Index (NDVI), one of the
on-demand spectral indices products, was used in the soil moisture estimation model
carried out in this study.

The wilting point (θwp) and field capacity (θfc), used in the soil moisture estima-
tion model and hydrological models in this study, were derived from the Natural Re-
sources Conservation Service (NRCS) Soil Survey Geographic Database (SSURGO) http:
//websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx (accessed 1 January 2021),
using established pedotransfer functions that yield θwp and θfc as functions of soil tex-
ture [27]. The land-cover maps for the study area were derived from the National Land
Cover Database (NLCD), http://www.mrlc.gov/ (accessed 1 January 2021).

3. Methodology

In this study of the post-fire catchment runoff modeling, the following three points,
related to initialization condition, runoff generation process and runoff transport process,
are taken into consideration: (a) a realistic distributed initial soil moisture condition; (b) a
formulation that includes reduction factor and burn severity factor as multiplying factors
to soil hydraulic conductivity in the soil characteristic curve of the infiltration/runoff-
generation process; and (c) runoff routing parameterization under burned condition.

3.1. Realistic Distributed Initial Soil Moisture Condition

Soil infiltration capacity reduction and water repellency effects due to burned condi-
tions decrease with increasing soil moisture [20]. Recent studies have shown advances in
the remote-sensing techniques for the estimation of subsurface hydrological state [28–30].
SERVES (Soil moisture Estimation of Root zone through Vegetation index-based Evap-
otranspiration fraction and Soil properties), Pradhan [28], was deployed to estimate a
realistic distributed soil moisture. SERVES estimates distributed soil moisture via veg-
etation index-based evapotranspiration fraction and soil properties globally at a scale
of 30-m grid resolution. The phenology of vegetation and soil physical properties are
directly affected under burned condition. Therefore, SERVES soil moisture estimating
method directly accounts for the burned condition. The SERVES method is computationally
straightforward and employs widely available web-based digital data (i.e., vegetation in-
dexes from the joint NASA and United States Geological Survey (USGS) Landsat program
(https://espa.cr.usgs.gov/index/ (accessed 1 January 2021)) and soil properties from the
SSURGO database. The SERVES method/model demonstrated its successful estimation of
effective root zone soil moisture at several locations in the arid, semi-arid region of United
States, in the states of Idaho, Montana and Wyoming [28]. Arroyo Seco is also considered a
semi-arid climate with long, hot and dry summers.

In the SERVES method, the relationship between reference evapotranspiration fraction,
ETrf, with soil moisture is defined as [28]:

θi = ETr f i

(
θ f ci − θwpi

)
+ θwpi (1)

where θ = soil moisture content; θfc = field capacity soil moisture content; θwp = wilting point
soil moisture content; i = any spatial location or grid/tin address for a numerical model.

From the parametric uncertainty analysis of the linear deterministic relationships
between ETrf and the normalized difference vegetation index, NDVI, the likelihood function
of evapotranspiration fraction inversion through NDVI is defined as [28]:

ETr f = 1.33 NDVI− 0.049 (2)

http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
http://www.mrlc.gov/
https://espa.cr.usgs.gov/index/
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From Equations (1) and (2), spatially distributed soil moisture content is derived as:

θi = (1.33 NDVI− 0.049)
(

θ f ci − θwpi

)
+ θwpi (3)

The SERVES estimated soil moisture was used as an initial condition in the Gridded
Surface Sub-surface Hydrological Analysis (GSSHA) model [29,31]. The GSSHA model
was deployed to drive physics-based distributed watershed hydrological simulations of
rainfall and runoff events.

3.2. Multiplying Factors Formulation for Burned Hydraulic Conductivity

A formulation that includes multiplying factors, soil hydraulic conductivity reduction
factor, and burned severity factor is included for vadose zone soil hydraulic conductivity
in the unburned condition soil characteristic curve.

Kburned = RFk BDF Kunburned (4)

where Kburned = the hydraulic conductivity of the soil at burned condition; Kunburned = the
soil hydraulic conductivity at normal unburned condition; Kburned <= Kunburned. BDF = the
burned degree factor; RFk = the reduction factor of hydraulic conductivity under burned
condition (highly burned locations).

Then, unsaturated soil hydraulic conductivity Kunsaturated is defined as [32]:

Kunsaturated = Kburned

(
θ − θr

θs − θr

)3+2/λ
(5)

where θ = water content of the soil; θs = saturated water content of the soil; θr = residual
water content of the soil; and λ = is soil distribution index.

Watershed soil map and the watershed burn severity map is combined to show the
spatial location of burned soil. Equation (4) is used as per this combined soil and burn
severity map.

3.3. Adjustment of the Land Cover Roughness Condition

Numerical models of hydrology and hydraulics implement the Manning equation to
relate surface roughness to flow rate [33–36] as:

Q =
1
n

AR2/3S f
1/2 (6)

where Q is the flow rate; n is the Manning roughness coefficient; A is the flow area; R is the
hydraulic radius; and Sf is the friction slope.

The surface roughness is represented by the Manning roughness coefficient, n. Sur-
face roughness is dependent on the surface irregularity, vegetation density, and other
obstructions [37–40]. Therefore, the roughness value is directly linked to the land cover
and land-cover changes, such as in a post-fire scenario.

The current state of the practice for hydrologic modeling (especially distributed hy-
drologic modeling) is to acquire a digital land use/land cover (LULC) dataset and to assign
Manning roughness values in a GIS using a look-up table based on Manning roughness
values available in the literature [39,41]. A post-fire burned map overlay with the pre-fire
LULC datasets from the National Land Cover Dataset (NLCD) by the US Geologic Survey
(USGS) provides new sets of roughness values under changed vegetation conditions.

4. Results and Discussion
4.1. Visual Analysis

Visualization of the reality provides vital information for a realistic model develop-
ment and simulation results. Figure 3 shows the composite natural-color satellite image
obtained from the MODIS Surface Reflectance (MOD09GA) bands 1 (red), 4 (green) and
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3 (blue) on 30 August 2009. The MODIS/Terra daily Land Surface Temperature was used
to identify the spreading ‘Station Fire’ burning areas on 30 August 2009. In Figure 3,
the actively burning areas detected by MODIS’s thermal bands are outlined in red. An
image like that shown in Figure 3 is helpful for determining the extent of a fire in an
emergency assessment.
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Figure 4 was obtained from the public domain site: https://www.usgs.gov/media/
images/post-wildfire-arroyo-seco (accessed 1 March 2021). Figure 4 shows the burn
severity impact on the vegetation and land cover. Figure 4 gives a clear hint that most of
the vegetation in the upper Arroyo Seco was wiped out due to the ‘Station Fire’. Figure 4
shows the significance to the adjustment of the land cover roughness condition as defined
in Section 3.3.

4.2. Pre-Fire and Post-Fire Soil Moisture Condition

Figure 5 illustrates the SERVES estimated soil moisture in the pre-fire condition and
the post-fire condition. The soil moisture is originally estimated at 30-m resolution and
then resampled to 90-m resolution to match the topographic and computational GSSHA
model grid resolution that was fixed at 90-m. Both soil moisture estimated in Figure 5a,b
are the representative soil moisture of January. The pre-fire soil moisture in Figure 5a is
significantly higher than the estimated soil moisture in the post-fire condition in Figure 5b.

If this difference in distributed soil moisture is not included in the hydrological model,
the simulation results lead to:

(a) misleading parameter value identification in the process of matching the simulated
discharge with the observed discharge.

(b) misleading concepts of post-fire burn effect in the runoff generation process.

The second point is directly related to this study, as the reduction of infiltration and
the water repellent soil property in a post-fire scenario is diminished at higher initial soil
moisture content.
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Figure 5. SERVES estimated upper Arroyo Seco soil moisture in the pre-fire condition and the post-fire condition.

4.3. Pre-Fire Hydrologic Model Development

The hydrological model was developed with the infiltration [42] and soil moisture
accounting processes [29]. Pedotransfer functions estimated the soil water properties, of
the soil texture identified as sandy loam, as defined by Table 1. In Table 1, except for soil
hydraulic conductivity, the source for soil physical parameter value assignments was based
on Rawls et al. [27]. Although the calibrated saturated soil hydraulic conductivity is at the
lower limit for sandy loam soil, according to USDA [43], the soil in this steep terrain can be
categorized as Hydrologic Soil Group B.

Diffusive wave approach was deployed to route the generated overland runoff. The
Manning roughness parameter values for the two-dimensional hillslope/overland routing
model as shown in Table 2 were employed from the literature [38,44]. With Arroyo Seco
being a seasonal river, the channel sections are often covered with grass and shrub with
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underlain cobble and boulder. Therefore, the Manning roughness in the one-dimensional
channel routing was fixed at 0.05 s/m1/3 [45].

Table 1. Soil infiltration parameter values based on soil texture.

Soil Infiltration Parameter Value

Saturated hydraulic conductivity (cm/h) 0.81

Capillary head (cm) 11.0

Porosity (m3/m3) 0.41

Pore distribution index (cm/cm) 0.37

Residual point (m3/m3) 0.04

Field capacity (m3/m3) 0.2

Wilting point (m3/m) 0.09

Table 2. The Manning roughness parameter values for the routing model.

Land Cover Type/Condition Manning Roughness Value (s/m1/3)

Woody wetland 0.14

Developed. open space 0.15

Developed. low intensity 0.15

Barren land 0.20

Evergreen forest 0.45

Mixed forest 0.45

Shrub 0.44

Grassland 0.43

The land-use types defined in Table 2 are from the NLCD land cover data set prior
to the 2009 wild-fire, as presented in Figure 6a. The state of the initial soil moisture
distribution and its application resolution directly affects a physics-based distributed
hydrological model’s parameter values and the model’s results [29]. The soil moisture
condition in 2008 January shown in Figure 5a is employed as the soil moisture initial
condition for the hydrological model. In previous GSSHA model calibrations [29,46–48],
parameter values were adjusted manually by bounding the parameter values within the
physical limits obtained through theoretical understanding and the experience with the
model. This study undertook a similar manual calibration approach for the event of
4 January 2008. The rainfall event of 4 January 2008 was taken as a pre-fire rainfall event
for pre-fire Arroyo Seco model calibration. The Nash–Sutcliffe efficiency maximization
was the objective function in the model performance optimization. The Nash–Sutcliffe
efficiency obtained in Figure 7 is 88%.

4.4. Post-Fire Hydrologic Model Development

The pre-fire calibrated Arroyo Seco model was deployed for the post-fire rainfall
events of 18 January 2010 and the simulated result is shown in Figure 8a. The simulation
result in Figure 8a is significantly underestimated as compared to the observed results, with
a Nash–Sutcliffe Efficiency of −24%. Similarly, the calibrated model was also deployed
for the post-fire rainfall events of 27 February 2010 and the simulation result is shown in
Figure 8b, showing there was no discharge.
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Figure 8. Upper Arroyo Seco pre-fire event calibrated model applied to post-fire events of (a) 18 January 2010 and
(b) 27 February 2010.

This underestimation of the runoff when applying the pre-fire calibrated model to the
post-fire events clearly shows that in a post-fire scenario, the actual runoff, even from a
relatively small magnitude of rainfall, is significantly enhanced, as shown by the rainfall
runoff events in Figures 7 and 8. The burned event occurred in the fall of 2009. The post-fire
rainfall events of January and February of 2010 were just a few months away from that
fire event.

Figure 2 shows the burned condition due to the ‘Station Fire’ of August 2009. A total
of 95% of this study area in Figure 2 was burned, of which 18% was low burned, 42%
was medium burned and 35% was high burned. This increased runoff magnitude in a
post-fire rainfall event was due to watershed hydro-physical changes in a post-fire scenario
that included enhanced soil water repellency and decreased infiltration [8–11]. The loss
of vegetation and soil organic matter in a post-fire condition also results in the significant
changes to geophysical and hydro-dynamic parameters [12].

Considering these post-fire hydrological changes, the first item of consideration is the
initial soil moisture condition. SERVES estimated distributed initial soil moisture condition,
shown in Figure 5b was employed as the initial soil moisture for the 18 January 2010
rainfall-runoff simulation and February 2010 rainfall-runoff simulation. As described in the
methodology section, above, Equation (4) was used to reduce the hydraulic conductivity
that conceptually takes into account of the soil water repellency and decreased infiltration
due to burned condition.

A soil burn severity factor was introduced in Equation (4) to vary the influence of
the hydraulic conductivity reduction factor as per the burn severity at a location. A
burn severity factor adjustment for a location was made as per the burn severity map, as
shown in Figure 2, overlaid with the uniform sandy loam soil map. Table 3 shows the
final adjusted/calibrated values of the ‘hydraulic conductivity reduction factor’ and ‘soil
burned degree factor’ for different burned conditions.

Table 3. Values of the hydraulic Conductivity Reduction Factor and the Burnt Degree Factor of
Equation (4) for different burned conditions.

Burned Condition Hydraulic Conductivity
Reduction Factor (RFk) Burned Degree Factor (BDF)

High 0.1 1

Medium 0.1 2

Low 0.1 3
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Figure 6b shows the land cover map overlaid with the burn condition map. To take
account of the changed vegetation density after the fire, as shown by Figures 4 and 6b , the
Manning roughness parameter value was readjusted. Figure 4 shows that the headwater
region of Arroyo Seco watershed vegetation was significantly wiped-out after the fire.
Therefore, the Manning roughness parameter value for high burned area is considered that
of a bare land and is taken as 0.15 as per Engman [38]. Likewise, the Manning roughness
for medium burned and low burned condition is taken as 0.18 and 0.2, respectively, to
represent an increased unburned vegetation. Table 4 shows the Manning roughness
parameter values for burnt section for the post-fire hillslope/overland runoff modeling. To
account for cobble and boulder in the Arroyo Seco channels, the Manning roughness was
fixed at 0.05 s/m1/3 [45].

Table 4. Manning roughness value for different burned conditions.

Burned Condition Manning Roughness Value (s/m1/3)

No burned condition As per Table 2

Low burned condition 0.2

Medium burned condition 0.18

High burned condition 0.15

Figure 9 shows the post-fire model simulated discharge that is compared to the
observed discharge. With the development of the post-fire Arroyo Seco watershed model,
the Nash–Sutcliffe Efficiency for 18 January 2010 enhanced from −24% in Figure 8a to
82% in Figure 9a. This post-fire model was employed also for the rainfall events of
27 February 2010 and the Nash–Sutcliffe Efficiency enhanced from −47% in Figure 8b to
96% in Figure 9b. Equation 4 played the most dominant role in enhancing the simulated
runoff and Nash–Sutcliffe Efficiency in the post-fire simulated results shown in Figure 9.
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5. Summary and Conclusions

Wildfires are among the most common forms of natural disasters in regions with
arid, semi-arid and Mediterranean climates found in locations like California, U.S.A. The
frequency of the wild-fire disaster has increased over the years is attributed to extended
dry periods due to climate change. Floods and erosion are a serious problem in a post-
fire rainfall event. Therefore, understanding and development of pre-fire and post-fire
hydrological processes and integrating those processes into a physics-based distributed
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hydrological modeling of a watershed in a wild-fire repeating reason is critical for emer-
gency assessments. The 2009 Station fire in the Los Angeles County burned 95% of the
upper Arroyo Seco watershed. The watershed was employed in this study to develop
the hydrological model of January 2008 rainfall event as a pre-fire event-based watershed
hydrological model.

This pre-fire watershed model was then employed in the rainfall events of 18 January
2010 and 27 February 2010 after the fire event of August–September 2009 in the watershed.
The pre-fire watershed model, when employed in the post-fire rainfall events without
considering the fire effects, vastly underestimated the simulated discharge. For this reason,
in this study of the post-fire catchment runoff modeling the following points are taken into
consideration: (a) a realistic distributed initial soil moisture condition; (b) a formulation
with reduction factor and burn severity factor to reduce the soil hydraulic conductivity
due to fire effects in the soil characteristics in the process of infiltration; and (c) runoff
routing parameterization under burned conditions. Developing the post-fire Arroyo Seco
watershed model by taking into account the three points mentioned above improved the
Nash–Sutcliffe Efficiency from −24% to 82% for 18 January 2010 rainfall event and from
−47% to 96% for the 27 February 2010 rainfall event.

This event-based post-fire modeling method can be used in an event-based post-fire
flooding emergency assessment. With the advancement of various geospatial data and
machine learning techniques the forest fire susceptible regions can be demarcated [49,50].
Running this event-based post-fire modeling method with return-period rainfall scenarios
in such forest fire susceptible regions can help identify critical flooding zones. Identifying
critical flooding zones helps to plan mitigation measures. Increased runoff with higher
concentration of sediment-laden post-fire flow condition leads to transitioning from New-
tonian to Non-Newtonian fluid-flow condition [51,52]. The post-fire hydrologic model
developed in this study will be used in the analysis of this Newtonian to Non-Newtonian
fluid flow transition.

In this study, the post-fire hydrological analysis is limited to rainfall events within
few months after the wild-fire disaster. Hydrological modeling for a long-term effect of a
wild-fire in a watershed requires understanding and a method to represent the wild-fire
affected watershed-hydrology recovery process. Hydrological modeling to analyze such
long-term effect of the wild-fire is a future research work.
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