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Abstract: Ten years after the Predictions in Ungauged Basins (PUB) initiative was put forward,
known as the post-PUB era (2013 onwards), reducing uncertainty in hydrological prediction in un-
gauged basins still receives considerable attention. This integration or optimization of the traditional
regionalization approaches is an effective way to improve the river discharge simulation in the
ungauged basins. In the Jialing River, southwest of China, the regression equations of hydrolog-
ical model parameters and watershed characteristic factors were firstly established, based on the
block-wise use of TOPMODEL (BTOP). This paper explored the application of twelve regionalization
approaches that were combined with the spatial proximity, physical similarity, integration similarity,
and regression-augmented approach in five ungauged target basins. The results showed that the
spatial proximity approach performs best in the river discharge simulation of the studied basins,
while the regression-augmented regionalization approach is satisfactory as well, indicating a good
potential for the application in ungauged basins. However, for the regression-augmented approach,
the number of watershed characteristic factors considered in the regression equation impacts the
simulated effect, implying that the determination of optimal watershed characteristic factors set
by the model parameter regression equation is a crux for the regression-augmented approach, and
the regression strength may also be an influencing factor. These findings provide meaningful in-
formation to establish a parametric transfer equation, as well as references for the application in
data-sparse regions for the BTOP model. Future research should address the classification of the
donor basins under the spatial distance between the reference basin and the target basin, and build
regression equations of model parameters adopted to regression-augmented regionalization in each
classification group, to further explore this approach’s potential.

Keywords: BTOP model; ungauged basins; river discharge simulation; regionalization approaches;
regression-augmented

1. Introduction

An ungauged basin is a relative concept, which mainly refers to a basin lacking high
temporal and spatial resolution (higher observing site density), long historical records,
and continuous ground precipitation and river flow data [1,2]. From a global perspective,
due to the limited number of hydrological and meteorological observations, plenty of
ungauged basins are widely distributed worldwide, especially in developing countries.
Small and medium-sized basins are usually defined as basins with a catchment area of
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50–3000 km2 [3]. Compared with large basins, these small and medium-sized basins
are more common and typical ungauged basins, due to natural conditions or social and
economic constraints [1,4,5]. Moreover, discharge simulation is an essential part of water
resources management [6], water environment protection [7] and risk management [8].
Therefore, it is a significant challenge for hydrologists to simulate discharge in small and
medium watersheds with insufficient data.

In 2003, the International Association for Hydrological Sciences (IAHS) issued a hydro-
logical ten-year plan called the Prediction in Ungauged Basins (PUB) for the next ten years
(2003–2012) at the 23rd International Union of Geophysics and Geodesy. It aims to vigor-
ously promote the development of hydrological forecasting in ungauged basins [1,4,9]. The
implementation of this project has promoted the development of parametric regionalization
approaches for ungauged basins [5,10,11]. Among them, there are three regionalization
approaches widely used in river discharge simulation with relatively stable simulation re-
sults: regression approach [11–13], spatial proximity approach (SP) [11,14,15], and physical
similarity approach (PS) [1,16,17]. The regression approach is the most popular approach
in regionalization, and usually utilizes hydrological reference information of the basin to
establish the regression equation between model parameters and watershed characteristic
factors, such as basin area, the annual average rainfall, and so on [5,11]. SP is based on
the climate, and underlying surface conditions change uniformly in the space between the
donor basins and the target one [18]. At present, there have been many improvements
to the SP, such as the use of inverse distance weighting (IDW) and Kriging for parameter
interpolation in the participating basins [19,20]. PS was founded on the existence of similar
watershed attributes among basins. For example, Oudin et al. (2008) [11] proposed an
integration similarity approach (SP − PS), which takes the spatial distance as an attribute,
showing certain advantages over the PS in the 913 studied watersheds in France.

Although nearly ten years have passed since the end of PUB in 2012, the research on
regionalization approaches for river discharge simulation in the ungauged basin has never
stopped. Arsenault and Brissette (2014) [13] introduced the regionalization approach of
regression-augmented (RA) for the first time, essentially combining the multiple linear
regression approach with the SP and PS approach, and found RA outperformed SP and PS
regionalization approaches in 268 Canadian watersheds. Hong et al. (2017) [21] carried
out spatial interpolation for a runoff simulation in the ungauged basin, based on the
information diffusion model of the genetic algorithm in the Yellow River Basin. The results
showed SP combined with a machine learning method has better simulation results than the
SP combined with the IDW method or Cokriging method. In Tyrol, Pugliese et al. (2018) [22]
simulated rainfall-runoff on a macro-scale. The results showed that the SP combined with
the data assimilation method could significantly improve the runoff prediction of the basin
with very low station density (one gauge per 2000 km2). Arsenault et al. (2019) [18] used six
regionalization approaches (SP, SP-IDW, SP-IDW-RA, PS, PS-IDW, PS-IDW-RA) to predict
streamflow, based on three hydrological models in ungauged catchments in Mexico. The
results showed that the SP approach performed best, and the regression-augmented spatial
similarity approach was also a great choice in certain conditions. Kanishka and Tieldho
(2020) [23] pointed out that before utilizing regionalization approaches for river discharge
simulation in an ungauged basin, isomap and principal component analysis could be used
to classify the reference basins. This kind of procedure can improve the result of river
discharge simulation in the target basin.

More studies have shown that optimizing and combining the spatial proximity ap-
proach, physical similarity approach, or regression approach is a favorable method to
improve the accuracy of simulation results of the regionalization approach [13,18,21–23].
However, it is difficult to determine the best proper regionalization approach, due to
various factors, such as the heterogeneity of the basin surface condition and the diversity
of hydrological models [1]. As a semi-physically distributed hydrological model, the block-
wise use of TOPMODEL (BTOP) has been applied in many watersheds in the world [24–31].
The model has fewer tuning parameters, and each parameter holds the physical interpreta-
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tion. Therefore, it has the potential for its parameters to be related to basin features, and can
show superiority in the parameter transfer functions in the ungauged basins [32]. However,
limited research with inadequate data is related to regionalization approaches based on
the BTOP, to the authors’ best knowledge. Ao et al. (2006) [32] linked the parameters of
the BTOP model with the physical features of the watershed through multiple regression
equations, to explore the possibility of establishing an improved physically-based a priori
parameter estimation technique. They found that ‘improved’ a priori parameter estimation
techniques have the potential to reduce parameter uncertainty and enable prediction in
ungauged basins. Huang et al. (2015) [33] attempted to build a simple linear relationship
between BTOP sensitive parameters and possible watershed features. They defined two
new characteristics (mean soil particle size and mean root depth) based on the model input
data, showing that the newly defined characteristics played an essential role in building the
relationship between the stability of parameters and watershed features. However, none of
the above research specifically studied the regionalization approaches for the BTOP model
in the ungauged basin. Accordingly, this paper is committed to filling the gap.

This study explores whether the RA regionalization approach could improve discharge
simulation, compared with the traditional regionalization approach. We selected 11 small
and medium basins in the middle and lower reaches of the Jialing River, the largest
tributary of the Yangtze River in the southwest of China. Then, a total of 12 regionalization
approaches, which combined with the SP, PS, SP − PS, and the regression approach,
are applied to the study area to facilitate the BTOP model in obtaining river discharge
simulation results. Finally, an evaluation is conducted to compare the RA regionalization
approach with the traditional regionalization approach.

2. Materials
2.1. Study Area

Jialing River is an important tributary of the Yangtze River, and is an essential source
of flood water and sediments for the Three Gorges Reservoir [34–36]. We selected 11 small
and medium basins in the middle and lower reaches of the Jialing River basin with similar
distance and discharge observation data of sub-basins as the study area (Figure 1). The
selected basins are located in mountainous regions, and can be considered a typical small
and medium-sized ungauged basin, due to sparse gauges density.

As shown in Figure 1, the studied catchments are located between 30–32◦ N and
105–109◦ E, and each catchment area is monitored by a river gauge. The study basins belong
to a subtropical monsoon humid climate, with an annual average rainfall of about 1000 mm
and an annual average temperature range of 14.7–17.6 ◦C. Except for MB(ID6), which is
located at the edge of the Sichuan Basin and has a high altitude and low temperature, there
is little difference in other basins. Most of the basins in the study area have a relatively
small mean slope, with a range of 3.93~23.60◦. Study area has similar spatial distance and
hydrological characteristics. The 11 basins selected in this study can be considered as a
typical ungauged mountainous catchments, which have a great reference significance for
the discharge simulation of ungauged basins worldwide.
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Figure 1. Location, ground observation, and DEM of the 11 catchments in the study area. Abbreviations and the identification
number for each study basin: Shuixiazi is SXZ (ID1); Boyang is BY (ID2); Yonghong is YH (ID3); Changtanqiao is CTQ (ID4);
Yuantuo is YT(ID5); Hongyan is HY(ID6); Maoba is MB (ID7); Jingbian is JB (ID8); Zhaojiaci is ZJC (ID9); Mingyuetan is
MYT (ID10); Qingxi is QX (ID11).
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2.2. BTOP Model

The BTOP model, a semi-distributed hydrological model, is designed to perform
simulations of rainfall-runoff, soil moisture, unsaturated and saturated groundwater, and
river discharge processes at each BTOP grid in watersheds [37,38]. Moreover, BTOP is
referred to as BTOPMC when the Muskingum-Cunge (MC) method is applied for the
flow routing phase [32,39]. As a significant part of the Yamanashi Hydrological Model
(YHyM) system for river basin simulation, BTOP has been applied to many river basins
worldwide, especially in warm, humid catchments [25,33,40,41]. The current version of the
BTOP model has five calibrated parameters of n0c, m, α, SDbar, and Do (which is calculated
by the fraction and dischargebility of sand, silt, and clay). Table 1 summarizes a range of
parameter values with the default BTOP model parameters obtained for the Mekong River
basin [24,38].

Table 1. Model parameters of BTOP.

Zone Model Parameters
Value of Parameters

UnitDefault Lowest Highest

Flow gen-
eration

Root Block-wise drying parameter (α) −6 −10 10 \
Unsaturated/Saturated Decay factor (m) 0.057 0.01 0.1 m

Unsaturated Block-average saturation deficit
(SDbar)

0.048374 0.001 0.9 m

Saturated

Groundwater dischargeability of
the sand (D0sand) 0.09 0.01 2.0

m/hGroundwater dischargeability of
the silt (D0silt)

0.04 0.01 2.0

Groundwater dischargeability of
the clay (D0clay) 0.01 0.01 2.0

Flow
routing Channel Block average Manning’s

coefficient (n0c) 0.0006 0.00001 0.8 s/m1/3

Compared with other conceptual hydrological models, the BTOP model parameters
have specific physical interpretations. Moreover, the number of tuning parameters is
fewer than other physically-based distributed hydrological models, such as SWAT, which
means that the parameter interaction and uncertainties are less [32]. Therefore, a robust
relationship between the model parameters and the physical characteristics of the river
basin is more likely to be established for the BTOP model. In summary, applying the
BTOP model to the study of the regionalization approach of the data-sparse watershed has
apparent advantages.

2.2.1. Core of BTOPMC

The structure of BTOP includes core components and optional modules. For the runoff
simulation section, the BTOP core modules are briefly introduced as follows [33].

(a) Topographic sub-module

The topographic module of BTOP is based on DEM and soil type data. Topographic
processing includes digital river network generation, sub-basin division using river station
locations for delineating drainage area boundaries, effective contributing area calculation,
and topographic index calculation [42].

(b) Runoff generation sub-module

The runoff generation in BTOP is calculated in each grid cell. The processing divides
into four zones vertically: vegetation, root, unsaturated, and subsurface [38]. There are four
model parameters involving calibration and optimization for each BTOP block, which can
be less or equal to the number of study basins (see Table 1). Furthermore, the Hortonian
overland flow option was selected in our study. The detailed rainfall-runoff calculation of
each zone can be referred to in the user manual of BTOP [38].
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(c) Flow routing sub-module

The flow routing sub-module of BTOP was constructed by the Muskingum-Cunge
(MC) method [43,44], but the original MC method could not explain the backwater phe-
nomena. Thus, the modified MC method was developed to overcome this problem [45,46],
by solving the inherent negative outflow problem and ensuring the flow routing accuracy
of BTOP. The modified MC method also indicated a better performance than the original
MC method implemented in earlier applications of BTOP [32,37]. Moreover, at this stage,
there is just one model parameter, the block-average Manning’s coefficient n0c, that needs
to be optimized and calibrated, and n0c is used to calculate the Manning’s coefficient at
each grid using grid slope.

2.2.2. Evaluation Criteria

An appropriate objective function should be used to evaluate the proximity between
simulated and measured river discharge. In this study, the coefficient of determination
(R2) and Nash–Sutcliffe Efficiency (NSE) [47] were selected as the objective function of the
model simulation evaluation. The formula of evaluation criteria are as follows:

R2 = [
n

∑
i=1

(Qs
i −Qs)(Qo

i −Qo)]2/
n

∑
i=1

(Qs
i −Qs)2 ·

n

∑
i=1

(Qo
i −Qo)2 (1)

NSE = 1−
n

∑
i=1

(Qs
i −Qo

i )
2/

n

∑
i=1

(Qo
i −Qo)2 (2)

where, Qs and Qo represent the simulated flow rate and the measured flow rate, respectively.
The i is the number of time series of discharge, n is time steps in the evaluation period. The
value range of R2 is 0~1. The closer R2 is to 1, the more consistent the change process lines
between the simulated value and the measured value. The value range of NSE is −∞–1.
The closer NSE is to 1, the better is the simulation efficiency [47].

2.3. Data

We collected 37 rainfall stations and 11 hydrological stations in the study basins. Each
basin includes at least three rainfall stations and a hydrological station at the outlet. Daily
streamflow records and daily rainfall records from 1981–1987 were derived from hydrologic
year books published by the Hydrologic Bureau of the Ministry of Water Resources of
China. Other input data of the BTOP model are globally available data: the topography is
represented by the DEM with an original resolution of 30 m, obtained from the geospatial
data cloud [48]. The land cover dataset on a grid-scale of 500 m was accessed from the USGS
Land Cover Institute [49]. Food and Agriculture Organization (FAO) provides the soil
map at the scale of 1:5 million [50]. The National Centers for Environmental Information
(NCEI) provides the leaf area index (LAI) with an original resolution of 0.05 degree [51]. We
employed the potential evapotranspiration from the Climatic Research Unit (CRU), with an
original resolution of 0.5 degree [52]; the potential intercept evaporation with an original
resolution of 0.25 degree was obtained from the Global Land Evaporation Amsterdam
Model (GLEAM) [53]. All the above datasets were resampled to 500 m for BTOP model
simulation. The BTOP models were set up for 11 study catchments of Jialing River, and
each catchment boundary was controlled by the river hydrological station.

3. Methodology

Figure 2 shows the framework of this research. First, the model calibration was carried
out for 11 study basins to obtain the parameter calibration values of the hydrological model.
Then, each type of model calibrated parameter and each type of watershed attribute charac-
teristic factor were calculated as correlation coefficients to select the influential watershed
characteristic factors. After that, the SPSS software [54,55] was used to establish the linear
regression equation between 5 parameters of the BTOP model and the watershed attribute
characteristic factors with a higher correlation coefficient (R > 0.6). In the establishment of
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the regression equation for model parameters, to explore whether the more consideration
of the basin characteristic factors leads to a better model fitting effect, we established a
one-variable linear regression equation (regression I), two-variable linear regression equa-
tion (regression II), and a multivariate linear regression equation (regression III) for the
corresponding model parameters. In regression III, the basin characteristic factors that had
an R greater than 0.6 with parameters were considered. The fitting effect of the regression
equation was evaluated by R2.
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Figure 2. The framework of the study. SP, PS, and SP − PS are abbreviations for spatial proximity approach, physical
similarity approach, and an integration similarity approach (SP − PS); the R I, RII, and RIII represent regression equations
with different numbers of independent variables.

According to the hydrologic year books, in the 1986 daily river discharge data, the
YH and MB basins were missing for several days, and there were a few discharge data
estimated by hydrological methods in the basins of SXZ, YT, and ZJC. Therefore, those
five basins were selected as basins with a lack of river discharge data, and SP, PS, and
SP − PS approaches were analyzed in turn. According to the target data-deficient basin,
the similarity ranking of gauged basins was carried out, and the appropriate donor basins
were selected.

The next step was based on the BTOP model, using traditional regionalization ap-
proaches and RA regionalization approaches to simulate discharge in the ungauged basin.
The output averaging approach was adopted to deal with the discharge simulation results.

Finally, we compared the evaluation criteria of simulation results of traditional
and RA regionalization approaches. The details of the methodology are described in
Sections 3.1–3.4.
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3.1. Selection of Watershed Characteristic Factors

When using the PS and SP − PS to carry out parameter transplantation in the un-
gauged basins, it involved the selection of basin descriptors. Basin characteristic descriptors
selection in the regionalization study of runoff could be classified into two categories: phys-
ical descriptors and hydroclimatic descriptors. Basin area (Ac, km2), average elevation
(E, m), average slope (S, ◦), forest cover fraction (W, %), and average topographic index
(λ) are usually selected as physical descriptors. The annual average rainfall (P, mm) and
annual runoff coefficient (RC) are generally chosen as the hydroclimatic descriptors [11].
In addition, soil type and land cover type are two essential characteristics of the basin.
They are also important influencing factors in the process of rainfall and runoff simulation
of hydrological models. According to the simple linear modeling method explored by
Huang et al. (2015) [33], two new watershed characteristic factors, mean soil particle size
(Φ) and mean root depth (r), are employed as factors in this study as well. The Φ not only
introduces the proportion information of each component of soil type but also introduces
the ordering information of soil particle size. Its formula is as follows:

φ =
n

∑
i=1

φi · ri (3)

where, Φi is the proportion of i kinds of soil components, ri refers to the sorting number of
the size of the i kinds of soil components (each soil type of BTOP is composed of clay, soil,
and sand), n refers to total types of soil components.

Similarly, land-cover types in the BTOP model were classified into 17 categories
by IGBP of USGS Land Cover Research Institute. The r introduces information on the
proportion of each type of land use type in the watershed and its root depth information:

r =
m

∑
i=1

ri · ti (4)

where, ri is the root depth corresponding to each land-use type, ti is the proportion of
the area occupied by each land-cover type in the watershed, and m is 17 categories of
land-cover in the research watershed.

In summary, nine watershed characteristic factors selected in this study are shown in
Table 2.

Table 2. Attribute characteristics of research basins.

Basin
Number

River
Basin

Calibration
Period

Basin
Area

(Ac, km2)

Mean
Elevation

(E, m)

Mean
Slope
(S, ◦)

Mean To-
pographic

Index
(λ)

Fraction
of Forest

Cover
(W, %)

Mean
Annual
Rainfall
(p, mm)

Annual
Runoff

Coefficient
(RC)

Mean
Root

Depth
(r, m)

Mean Soil
Particle

Size
(ϕ)

ID1 SXZ 1981–1985 487.52 475.06 9.74 11.06 25.95 1310 0.42 0.77 2.08
ID2 BY 1981–1985 274.89 401.43 6.97 11.12 8.15 1068 0.45 0.74 2.04
ID3 YH 1983–1985 553.1 657.25 13.11 9.84 46.85 1259 0.52 0.88 2.01
ID4 CTQ 1981–1985 458.74 404.34 3.93 11.57 11.05 1058 0.45 0.76 2.05
ID5 YT 1981–1985 322.19 520.58 11.87 10.57 22.87 1218 0.49 0.74 2.04
ID6 HY 1981–1985 382.29 610.57 11.21 10.38 16.05 1053 0.3 0.73 2.04
ID7 MB 1981–1985 1454.41 1036.99 23.6 9.55 67.83 1540 0.71 1.06 1.99
ID8 JB 1981–1984 2539.25 440.78 8.57 11.22 13.39 1160 0.43 0.74 2.09
ID9 ZJC 1981–1985 457.39 348.79 4.13 11.61 9.49 959 0.36 0.75 2.05

ID10 MYT 1981–1983 845.33 532.69 8.94 11.36 42.84 1323 0.54 0.95 2.02
ID11 QX 1984–1985 249.75 952.47 16.45 9.57 55.05 1604 0.54 1.09 2.00

3.2. Traditional Regionalization
3.2.1. Spatial Proximity Approach (SP)

The basic principle of the SP approach is that the climate and underlying surface
conditions change uniformly in space, and it is believed that similar fields have similar
hydrological behaviors [18]. In this study, the centroid coordinates of each watershed was
calculated by ArcGIS software, and the spatial distance value from each participating basin
to the target basin was obtained, respectively.
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3.2.2. Physical Similarity Approach (PS)

The PS approach refers to the approach of transmitting hydrological information in a
data-deficient basin using reference basins that are similar in terms of basin characteristics.
It is usually divided into two categories: basin feature ranking and physical weight meth-
ods [11,18]. According to the hydrological characteristic values of each basin, the PS is used
to calculate the physical similarity values of each reference basin to the ungauged basin.
The smaller the attribute similarity value is, the higher the watershed similarity is [18]. The
formula of the physical similarity approach is as follows:

x =
k

∑
i=1

∣∣xG
i − xU

i

∣∣
∆xi

(5)

where, xi
G is the i-th watershed characteristic factor of the reference basin; xi

U is the
corresponding watershed characteristic factor of the data-sparse basin; ∆xi is the difference
between the maximum and minimum value of the i-th watershed characteristic factor of
the donor basins; and k is the number of selected watershed characteristic factors.

3.2.3. Integration Similarity Approach (SP − PS)

Oudin et al. (2008) [11] proposed an integration similarity approach (SP − PS) com-
bining the SP approach and the PS approach in the comparative study of 913 watersheds’
regionalization approaches in France in 2008. This approach takes the spatial distance as an
attribute. Then, the PS approach formula is used to calculate the similarity value between
the donor basin and the target basin.

3.3. ‘Regression-Augmented’ (RA) Regionalization

The regression-augmented (RA) regionalization approach combines the regression-
based approach with the SP, PS, and SP − PS approach: the regression equation was used
to obtain the relevant model parameters, and the remaining parameters of the model were
transplanted according to the reference basins selected by the SP, PS, and SP− PS approach.
The regression-based approach establishes regression equations for the model parameters
that have a high correlation with watershed attributes. It is generally believed that the
correlation coefficient between model parameters and watershed characteristic factors
is greater than 0.5, indicating that the established regression equation has application
significance [11,18]. Usually, to build the regression equation of model parameters and
watershed characteristic factors, only the basins with better simulation performance judged
by model calibration results are selected in the study. Then, the corresponding model
parameters in the data-deficient area can be estimated based on the regression equations.
Thus, each model parameter is independently evaluated in the regression-based approach.
However, the model parameter set cannot be evaluated and established simultaneously,
which leads to the partial cohesion of the hydrological model parameter set being lost, and
affects the simulation performance of the model [11,18]. The RA regionalization approach
overcomes the shortcoming of the regression-based approach and makes full use of the
watershed attribute characteristics of the ungauged basin and the parameter set of the
reference catchment in the parameter transfer process, thus retaining the cohesion of the
transferred parameter set [13].

3.4. Output Averaging of Regionalization

When the regionalization approach of parameter transplantation is applied to the
ungauged basin, the number of reference basins will affect river discharge simulation and
the prediction of the target basin [1]. When 2–5 reference basins are used for the regional-
ization approach, the model simulation efficiency is more satisfactory [56]. In this study,
three reference basins were selected when the regional approach was used for parameter
transplantation of the ungauged basin. When the traditional regionalization approach uses
parameter sets of reference basin to simulate the runoff of the target watershed based on
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the hydrological model, there are two approaches to deal with the transplanting process:
one is the parameter averaging, and the other is the output averaging [11,13]. Parameter
averaging is conducted by taking the average value of the model parameters of the selected
reference basins, and then transplanting them to the target basin for river discharge simula-
tion. The output averaging indicates that the calibrated parameter sets of each reference
basin are transplanted to the target basin respectively, and then the average river discharge
simulation results are taken. Previous studies have shown that some reference watershed
information may be lost in the process of parameter averaging, and the simulation results
are often not as good as the output averaging [11,13,57]. Moreover, in this study, some
parameters of the RA approach were obtained by regression equations, which could not be
averaged. After comprehensive consideration, the output averaging approach was adopted
to obtain the river discharge simulation results of the target basin in this study.

4. Results and Discussions
4.1. Model Calibration and Validation

Table 3 shows the calibration and validation results of river discharge simulation using
the BTOP model of each basin, and Table 4 shows their calibrated parameters. The NSE of
the research basin during calibration was basically above 0.60 (except for the QX (ID11), the
model performance was generally good, and the model performance of small basins, such
as JB (ID8), MB (ID7) and MYT (ID10) were excellent. The R2 of BTOP simulation results
were all greater than 0.6, and the hydrographs of river discharge simulation results and the
measured hydrographs had a good fit degree. In the validation period, the NSE values were
all above 0.50, and the R2 values were above 0.60, reflecting good performance of the BTOP
model simulation. The NSE values of the BY (ID2), JB (ID8), MB (ID7), QX (ID11), SXZ (ID1),
and YT (ID5) during the validation period were even higher than that during the calibration
period. Since the study basin belongs to the small and medium-sized mountain basins, and
in the 1980s, the hydrological and meteorological monitoring had certain limitations, and
the rainfall data itself had a large error. Therefore, according to the simulation results in
Table 3, the BTOP hydrological model presented a good simulation effect in the daily river
discharge simulation of 11 study basins, and the regression equation between the model
calibration parameters and the characteristic factors of the basin were reliable.

Table 3. Model performance during calibration and validation period of research basins.

Basin
Abbrevi-

ation

Simulation
Period

SXZ
(ID1)

BY
(ID2)

YH
(ID3)

CTQ
(ID4)

YT
(ID5)

HY
(ID6)

MB
(ID7)

JB
(ID8)

ZJC
(ID9)

MYT
(ID10)

QX
(ID11)

NSE Calibration
(1981–1985)

0.69 0.63 0.70 0.66 0.64 0.64 0.71 0.71 0.67 0.73 0.60
R2 0.71 0.64 0.73 0.66 0.64 0.64 0.71 0.72 0.68 0.76 0.63

NSE Validation
(1987)

0.71 0.65 0.55 0.61 0.71 0.52 0.71 0.72 0.57 0.60 0.61
R2 0.79 0.71 0.60 0.64 0.73 0.67 0.74 0.72 0.68 0.79 0.73

Table 4. Model calibrated parameters of 11 study basins.

Basin
Number

River
Basin D0clay D0sand D0silt SDbar m n0c α

ID1 SXZ 0.902669 0.662340 1.063725 0.429484 0.036628 0.025459 −3.985685
ID2 BY 0.111670 0.807359 0.920748 0.343624 0.032453 0.038815 −5.102666
ID3 YH 0.026699 0.025412 0.024224 0.884511 0.040897 0.484106 7.408702
ID4 CTQ 1.032118 1.278913 0.879630 0.487423 0.028796 0.197 −7.186764
ID5 YT 1.088008 1.227803 1.035062 0.418472 0.030564 0.228849 −4.919591
ID6 HY 0.591840 1.255793 0.768696 0.733941 0.031305 0.055943 0.447747
ID7 MB 0.912159 1.475803 1.247493 0.891302 0.050496 0.009972 7.992502
ID8 JB 1.269936 1.227124 0.868861 0.418652 0.031874 0.026879 −1.158098
ID9 ZJC 0.507032 0.339045 1.768506 0.66618 0.029071 0.495117 −2.983849

ID10 MYT 0.020146 0.020113 0.020131 0.899949 0.046421 0.495833 7.951358
ID11 QX 0.802537 0.611314 0.578350 0.736381 0.033526 0.02746 1.397548
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4.2. Regression Equations Establishment

This study individually analyzed the correlation between the BTOP calibrated pa-
rameters of the 11 small and medium basins in Table 4, and the watershed characteristic
factors in Table 2. We found that only three parameters (SDbar, m, and α) in the BTOP model
had correlation coefficient values higher than 0.6 with watershed characteristic factors.
As shown in Figure 3a, the correlation coefficient of parameter SDbar with the mean soil
particle size ϕ, the forest coverage rate W, the average root depth r, the average watershed
elevation E are −0.773, 0.739, 0.696, and 0.620, respectively. The parameter SDbar was deter-
mined in the unsaturated zone of the model river discharge simulation, which describes the
condition of soil water content [38], and the ϕ, W, r, and E had an apparent impact on the
soil water content in the runoff phase. Thus, the research results are reasonable and have
physical significance. In Figure 3b, the correlation coefficient between the model parameter
m and W was 0.813, the annual runoff coefficient RC was 0.781, and the r was 0.690. The
m is the decay factor of the lateral transmittance of the groundwater [33]. Therefore, the
research results show that the high correlation between this parameter and W (reflecting
land-cover), r (reflecting land-cover), and RC (affected by soil type) can be explained. As
for parameter α shown in Figure 3c, the correlation coefficient of α and W, r, ϕ, and E were
0.810, 0.711, −0.690, 0.645. The parameter α is the drying coefficient of the root zone, which
reflects the drying capacity of the soil surface in the root zone. Therefore, soil type and
land use are statistically significant influencing factors.

The multiple linear regression analysis module of the SPSS software was used to
establish the regression equation between model parameters and basin characteristic factors.
According to the results of correlation analysis, each of the three model parameters, SDbar,
m, and α, had more than three basin characteristic factors with their correlation coefficient
R > 0.6. The SPSS fitting results of each regression approach are shown in Table 5, and we
can see that the deterministic coefficients of regression I, II, and III increased successively.
It indicates that the more watershed characteristic factors were considered, the better
the fitting effect between model parameters and selected watershed characteristic factors
would be. However, when the regression equation was combined with the traditional
regionalization approach, the combination effect of regression III may not be as good as
regression I and II. This issue is analyzed in the following two sections.
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Table 5. Regression equations of model parameters and attribute characteristics of research basins and their fitting
evaluation indexes.

Regression Type Model Parameters Analytic Equation R2

Regression I
(one-variable)

SDbar SDbar = 11.379275 − 5.276112·ϕ 0.598
m m = 0.027348 + 0.000285·W 0.661
α α = −6.354825 + 0.218348·W 0.656

Regression II
(Two-variable)

SDbar SDbar = 7.654843 − 3.495046·ϕ + 0.003276·W 0.630
m m = 0.019598 + 0.000188·W + 0.022371·RC 0.692
α α = 2.186949 + 0.297397·W − 12.924569·r 0.669

Regression III
(Multivariate)

SDbar SDbar = 9.513535 − 4.228658·ϕ + 0.007865·W − 0.358424·r − 0.000339·E 0.661

m m = −0.202705 + 0.000641·W + 0.02875·RC − 0.000032·p − 0.00019·s +
0.000975·r + 0.121263·ϕ 0.824

α
α = 134.584381 + 0.336402·W + 14.951869·r − 63.658863·ϕ − 0.038991·E

+ 0.968231·s − 31.084738·RC 0.771
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4.3. Similarity Ranking of Basins

While exploring the effect of each regionalization approach on river discharge simula-
tion of the data-deficient basin, an independent “data-deficient basin” should be selected.
According to Figure 1, except for the JB (ID8), which contains an inset sub-basin, SXZ (ID1),
all other watersheds were independent catchments. Here, we selected SXZ (ID1), YH (ID3),
YT (ID5), MB (ID7), and ZJC (ID9) as the data-deficient basins, which were drained by
different tributaries of the Jialing River. The similarity sorting was performed for each data-
deficient basin according to the SP, PS, and SP − PS, and are shown in Figure 4. Table 6
displays the three most similar reference basins selected, according to the above three
approaches and their similar values to the ungauged basin. The river discharge simulation
results of the three reference basins corresponding to the target basin were obtained based
on the weight of similarity values in Section 4.4.
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Figure 4. Similarity value between reference basin and target basin calculated by (a) SP; (b) PS; (c) SP − PS approach. The
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solid triangle represents the target basin. The solid circle reflects the three most similar reference basins selected for the
corresponding target basin.
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Table 6. Reference basins selected for each ungauged basin and their corresponding similarity values
based on SP, PS, and SP − PS.

Target Basins SP PS SP − PS

SXZ(ID1)
JB(ID8) 15.1 YT(ID5) 1.46 YT(ID5) 1.6
YT(ID5) 17.6 BY(ID2) 1.73 JB(ID8) 1.98
BY(ID2) 51 JB(ID8) 1.86 BY(ID2) 2.14

YH(ID3)
QX(ID11) 40.6 MYT(ID10) 1.72 MYT(ID10) 2.14
YT(ID5) 61.7 YT(ID5) 2.09 YT(ID5) 2.49

MYT(ID10) 63.1 QX(ID11) 2.32 QX(ID11) 2.59

YT(ID5)
SXZ(ID1) 17.6 HY(ID6) 1.15 SXZ(ID1) 1.6
JB(ID8) 32.6 BY(ID2) 1.3 BY(ID2) 1.85

YH(ID3) 61.7 SXZ(ID1) 1.46 HY(ID6) 2.13

MB(ID7)
QX(ID11) 49.6 QX(ID11) 2.46 QX(ID11) 2.7
YH(ID3) 65.2 YH(ID3) 4.35 YH(ID3) 4.67

MYT(ID10) 104.2 MYT(ID10) 5.33 MYT(ID10) 5.83

ZJC(ID9)
BY(ID2) 76 CTQ(ID4) 0.61 CTQ(ID4) 1.04

CTQ(ID4) 78.9 BY(ID2) 1.11 BY(ID2) 1.53
JB(ID8) 107.8 HY(ID6) 1.99 HY(ID6) 2.73

4.4. The Results of Regionalizations

In this study, a total of 12 regionalization approaches were used for each data-deficient
basin. Therefore, it is necessary to conduct an overall evaluation of the river discharge
simulation results of the regionalization approaches for each ungauged basin. Figure 5
shows the Taylor diagram [58] of each BTOP simulation result using different regional-
ization approaches for five target basins. It uses three indicators (correlation coefficient
(R), normalized standard deviation (NSD), and normalized root mean square deviation
(NRMSD)) in one graph to evaluate how close the simulation is to the measured discharge.
The R shows correlation, NSD reflects the degree of dispersion, and NRMSD is sensitive to
outliers in data series. In general, the river discharge simulation results of all regionaliza-
tion approaches in the study basin were inferior to the simulation results during the model
validation period, except for the YH(ID3). Both the traditional and RA regionalization ap-
proaches showed satisfied simulation results in the YH basin, even better than the validated
simulation results (as other markers are closer to the reference point (REF) than the black
circle in Figure 5b). However, for the regionalization approaches, the traditional approach
was superior to the regression-augmented ones. For the SXZ(ID1), YH(ID3), and ZJC(ID9)
basins, as shown in Figure 5a,b,e, the triangle is closer to the REF, followed by the square
and the five-star icon, indicating that “SP/PS/SP − PS + RI” and “SP/PS/SP − PS + RII”
have more significant simulation effects than “SP/PS/SP − PS + RIII”. In the same way,
for the YT(ID5) and MB(ID7) basins, the simulation effect of “SP/PS/SP − PS + RI” is
better, and the simulation effect of “SP/PS/SP − PS + RII” and “SP/PS/SP − PS + RIII”
are very close. The evaluation of these regionalizations in each target basin provide some
implications for the following regionalization analysis.

Table 7 shows the BTOP model simulation evaluation results of all regionalizations
conducted in this study. The application of traditional regionalization approaches in
the study area showed that the simulation effect in SXZ(ID1) and YH(ID3) is good. The
simulation results were satisfactory in target basin YT(ID5). In watershed MB(ID7), the
simulation results were generally good. The traditional regionalization approach had a
favorable application effect in the five selected basins. On the whole, among the three
traditional regionalization approaches of SP, PS, and SP − PS, SP had the best simulation
effect in the research area, which is consistent with Figure 5.
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Table 7. The river discharge simulation results of each regionalized approach in the target basins.

Data-
Deficient

Basin
Evaluation

Index Validation SP PS SP − PS
SP SP SP PS PS PS SP − PS SP − PS SP − PS
+ + + + + + + + +

R I RII R III RI R II R III R I R II R III

SXZ(ID1) NSE 0.71 0.66 0.65 0.64 0.62 0.62 0.60 0.60 0.60 0.57 0.60 0.59 0.57
R2 0.79 0.75 0.72 0.72 0.73 0.73 0.72 0.70 0.70 0.69 0.70 0.70 0.69

YH(ID3) NSE 0.55 0.71 0.67 0.67 0.63 0.64 0.59 0.61 0.61 0.56 0.60 0.61 0.56
R2 0.60 0.75 0.72 0.72 0.70 0.70 0.67 0.66 0.66 0.62 0.66 0.66 0.62

YT(ID5) NSE 0.71 0.61 0.61 0.62 0.61 0.58 0.60 0.61 0.59 0.60 0.60 0.58 0.60
R2 0.73 0.66 0.66 0.67 0.67 0.67 0.68 0.66 0.66 0.67 0.66 0.66 0.67

MB(ID7) NSE 0.71 0.51 0.54 0.53 0.38 0.37 0.36 0.40 0.39 0.38 0.40 0.39 0.38
R2 0.74 0.54 0.57 0.57 0.40 0.39 0.38 0.43 0.42 0.41 0.43 0.42 0.40

ZJC(ID9) NSE 0.57 0.49 0.46 0.46 0.35 0.34 0.19 0.40 0.40 0.25 0.40 0.40 0.25
R2 0.68 0.60 0.60 0.60 0.49 0.49 0.39 0.50 0.51 0.37 0.50 0.51 0.37

The RA regionalizations generally presented a good simulation effect in SXZ (ID1), YH
(ID3), and YT (ID5). However, the results in MB (ID7) and ZJC (ID9) were not ideal. Taking
YH (ID3) as an example, the R2 and NSE of river discharge simulation results of the SP + RI
approach were 0.70 and 0.63, respectively. The R2 and NSE of SP + RII were 0.70 and 0.64,
respectively, representing an excellent simulation effect and indicating a certain simulation
potential. As shown in Figure 6a, the SP performed better, and SP− PS + RIII performed the
least, but overall, the difference was not prominent. The river discharge simulation results
of the regional approach showed that the low-flow simulation was on the high side, while
the high-flow simulation was on the low side, and the difference in simulation results of
various regional approaches was mainly reflected in the maximum flow peak simulation.
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Figure 6b–d intuitively show the simulation of the RA approaches in the peak flow period
of YH (ID3): among the approaches with regression equation, the RII performed the best
simulation effect, while RIII received the worst simulation effect. In Table 7, the simulation
effect of RI and RII combined with the traditional regionalization approaches were generally
better than that of RIII in five study basins. The distinction of RI, RII, and RIII lied in the set
of watershed characteristic factors, taken into account by the regression equation in the RA
approach, which implies that the watershed characteristic factors set of the model parameter
regression equation had a non-negligible influence on the simulation results. Therefore,
determining the optimal characteristic factors set in the parameter transfer equation of the
BTOP model parameters should be focused on in future research. Figure 6e shows that
“SP + RII” had the best simulation effect among “SP/PS/SP − PS + RII”. It indicates that
the regression-augmented spatial similarity approach could get a good regionalization in
some circumstances, which agrees with the findings from Arsenault et al. (2019) [18].
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Moreover, there are three parameters (see Table 5) that were replaced by linear regres-
sion in the RA regionalization approaches, accounting for 60% of the calibration parameters
of the BTOP model. This regression strength analysis showed that in the RA approach,
more than half of the parameters of the BTOP model were obtained from the regression
equation. Thus, its simulation performance was directly related to the regression equa-
tion, and this analysis leads to additional considerations for the RA approach, in that the
regression strength may also be a significant factor affecting the simulation result.

In summary, the five “data-deficient basins” results in this study indicated that the
traditional regionalization approach is superior to the RA regionalization approach. We
summarized several possible reasons for the outcome. First, due to the limited number of
small watersheds, the established relationship between the parameters and the watershed
characteristic factors was not accurate enough. Thus, there is still room for improvement in
the regression equation, as the regression is vital for the RA approach. Secondly, the re-
gression strength was an influence coefficient for the simulation result of the RA approach.
Lastly, compared with previous research which adopts the SP approach [11,18], the small
and medium basins in the study area were relatively closely situated. Traditional region-
alization approaches are based on the characteristics of watersheds or spatial distances,
which makes the traditional regionalization approaches have more advantages than RA. In
contrast, the preponderance of RA regionalization approaches have not been highlighted.
Introducing more donor basins and establishing representative regression equations that
are combined with traditional regionalization approaches are critical to improving the
applicability of RA regionalization approaches in ungauged basins.

5. Conclusions

Relying on the nine processed watershed characteristic factors (including two new
characteristic factors: mean soil particle size (Φ) and mean root depth (r)), this study
carried out correlation analysis on the five model parameters of the BTOP model. We
established the regression equation between the parameters and the selected watershed
characteristic factors with 12 regionalization approaches, combining regression equations
with traditional regionalization approaches. Overall, we explored the application of the
regression-augmented approach for the BTOP model in five small ungauged target basins
in the Jialing River Basin, China. The main conclusions are as follows:

(1) This paper initially determined that among the five parameters of the BTOP model,
the three parameters SDbar, m, and α have high correlation (R > 0.6) basin characteristic
factors, and the Φ and r both played a significant role in establishing regression equations.
We constructed linear regression equations between these three parameters, and the rele-
vant watershed characteristic factors, which could contribute to the establishment of the
parameter transfer function of the BTOP model in sparsely gauged regions.

(2) The present work verifies the applicability of the regression-augmented (RA)
regionalization approach. In the case of the limited number of the research basins, the RA
regionalization approach showed a considerable simulation effect in specific circumstances,
indicating that the RA approach has some great potential.

(3) This paper fills the gap in the regionalization research of the BTOP model in the
data-deficient basin. It also preliminarily evaluated the application of traditional and RA
regionalization approaches, based on BTOP in the ungauged basins. The outcome of this
study provides a reference for seeking the optimal BTOP regionalization approach in the
target catchment, and a valuable experience for the river discharge simulation of small
and medium-sized data-sparse catchments worldwide, especially for some developing
countries with limited conditions.

Future work of the regression-augmented regionalization approach of ungauged or
sparsely gauged basins, to establish a more representative regression equation and find
a regression equation that better combines with the traditional regionalization approach,
should focus on the following aspects: introducing more donor basins, classifying the
participating basins in advance, increasing the number of watershed characteristic factors,
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and establishing the regression equation by determining the optimal set of watershed
characteristic factors for each sensitive parameter.
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