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Abstract: Stormwater control measures (SCMs) are decentralized technical elements, which can
prevent the negative effects of uncontrolled stormwater flow while providing co-benefits. Optimal
SCMs have to be selected and designed to achieve the desired hydrological response of an urban
catchment. In this study, automated modeling and domain-specific knowledge in the fields of
modeling rainfall-runoff (RR) and SCMs are applied to automate the process of optimal SCM design.
A new knowledge library for modeling RR and SCMs, compliant with the equation discovery tool
ProBMoT (Process-Based Modeling Tool), was developed. The proposed approach was used to (a)
find the optimal RR model that best fits the available pipe flow measurements, and (b) to find the
optimal SCMs design that best fits the target catchment outflow. The approach was applied to an
urban catchment in the city of Ljubljana, Slovenia. First, nine RR models were created that generally
had »very good« performance according to the Nash–Sutcliffe efficiency criteria. Second, six SCM
scenarios (i.e., detention pond, storage tank, bio-retention cell, infiltration trench, rain garden, and
green roof) were automatically designed and simulated, enabling the assessment of their ability to
achieve the target outflow. The proposed approach enables the effective automation of two complex
calibration tasks in the field of urban drainage.

Keywords: stormwater control measures; rainfall-runoff model; automated modeling; domain
knowledge; equation discovery; process-based modeling

1. Introduction

Stormwater control measures (SCMs), also known as Sustainable urban drainage
systems (SUDS), Low impact development (LID), Best management practices (BMP), Water
sensitive urban design (WSUD), and Nature-based solutions (NBS) [1,2], are technical ele-
ments that are designed to prevent and mitigate negative effects of uncontrolled stormwater
flow (e.g., urban floods or excessive combined sewer overflows) [3,4]. Common to all of
them is a decentralized (or on-site) approach to rainwater management by using pro-
cesses typical for the natural water cycle (e.g., infiltration, retention . . . ) while providing
ecosystem services and additional benefits for the city. Many studies have investigated
the influence of individual SCMs on the quantity and quality of stormwater in urban
sub-catchments, i.e., on a micro-scale [5–8]. Moreover, models are being used to design
SCMs and predict SCM performance for different design and weather scenarios [9–11]. To
investigate the impact of SCMs at meso-scale and macro-scale these models need to be
integrated into or coupled with catchments rainfall-runoff (RR) models. Models incorpo-
rate the previously acquired knowledge on water-related physical phenomena (e.g., water
percolation [12,13], surface runoff [14] . . . ) in a form of mathematical formulations.

In this context, the open-source Stormwater Management Model (SWMM) [15] is
one of the most widely used models [16–19] enabling RR and hydraulic modeling of
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urban drainage. It also contains several SCM elements that can be integrated within
the model, after being designed by the user separately. SWMM does not enable any
automation that would speed up the calibration process of the RR model. Thus, search
techniques (e.g., genetic algorithms, neural networks, regression trees . . . ) [20,21] and
parameter optimization tools (e.g., PEST, OSTRICH) [22–24] are used to automate RR
model calibration.

SCMs with predetermined design can be integrated into the RR model to simulate
and evaluate their efficiency and performance through hydrological parameters (e.g., peak
flow reduction, total volume . . . ) [4,16,19]. However, SCM benefits can also be evaluated
from the non-hydrological perspective (e.g., economic, social, environmental) [23]. In the
above approach, the performance of SCMs is merely observed, and their optimal design
for reaching a target function (e.g., allowed surface runoff or determined hydrograph),
can only be achieved through an iterative expert-driven process. Therefore, approaches
that encompass auto-calibration of the RR model and objective-driven automated SCM
design are more favorable. Zhu et al. [25] investigated this approach by coupling SWMM
and PEST [26] to auto-calibrate the parameters of the RR model and two SCMs (i.e., bio-
retention cell and permeable pavement). In their study, four target hydrographs were
generated, by four reductions of the original impervious cover of each sub-catchment and
by simulating a 5-year, 2-h duration design rainfall. The authors reported favorable results;
however, the SWMM model has some limitations (e.g., a limited number of parameters
representing SCMs).

Furthermore, SWMM, similar to other mechanistic models, uses one mathematical
model (predetermined by the modeler) at a time to describe hydrological processes within
the urban catchment. In case there are alternative mathematical models for describing the
same type of process (e.g., hydrological), their suitability needs to be investigated sepa-
rately. This limits the possibilities for discovering new models that could potentially better
describe the observed natural phenomena (i.e., RR). To overcome the above-mentioned
drawbacks, automated modeling (AM) based on equation discovery can be used to (a)
find the most suitable RR model combining the choices among multiple alternatives for
describing each hydrologic process modeled, (b) to calibrate the RR model parameters
against measured data, and c) to design SCMs based on a target function.

Equation discovery is an area of machine learning that develops methods for au-
tomated discovery of mathematical models, expressed in the form of equations, from
collections of measured data [27]. Process-based modeling, employed in this paper, is a
specific approach to equation discovery that allows for integrating domain knowledge in
the process of equation discovery. The knowledge is encoded as a library that represents
a collection of components for modeling systems in the domain of interest. Automated
modeling by using knowledge libraries of model components has been already successfully
applied for modeling aquatic ecosystems [28], watersheds [29], dynamic biological sys-
tems [30], and water-tank dynamics [31]. To the best of our knowledge, no such attempts
have yet been made in the field of urban RR modeling and SCM design.

This paper provides integration of automated equation (model) discovery and domain-
specific knowledge in the fields of rainfall-runoff (RR) and stormwater control measures
(SCMs) modeling. More specifically, the goals of this paper are:

1. To develop a library of components for modeling RR and SCMs, compliant with the
equation discovery tool ProBMoT (Process-Based Modeling Tool) [32];

2. To apply the proposed automated model discovery approach to find the optimal RR
model for an urban sub-catchment in the city of Ljubljana, Slovenia, which best fits
the available pipe flow measurements;

3. To find an optimal design of SCMs that would best fit the target catchment outflow.
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2. Data and Methods
2.1. Case Study Area

The case study area is located in the western part of the city of Ljubljana, Slovenia, and
covers about 30 ha. The predominant land use in this area is family houses with gardens
(Figure 1). The area has a temperate continental climate, with a mean long-term (1986–2016)
annual rainfall of about 1380 mm [33]. The largest part of the area is served by a mixed
sewer system with a length of approx. 5.4 km.

Figure 1. Case study area.

2.2. Data

Precipitation data were provided by the Slovenian Forestry Institute, for a rain
gauge station located on the north side of the case study area (location: 46◦03′06.82′ ′ N,
14◦28′47.58′ ′ E, 306 m above mean sea level (MAMSL) [34]. The measurements were per-
formed with a Davis® (0.2 mm) Rain Gauge Smart Sensor [35]. Data on extreme rainfalls
were obtained from the IDF curves for the Ljubljana–Bežigrad weather station [36]. These
served for the simulation of design rain events with a duration of 1 h, and return periods of
5, 10, 25, and 50 years, with total precipitation depth of 38 mm, 44 mm, 53 mm, and 59 mm,
respectively.

The local public utility company (JP VODOVOD KANALIZACIJA SNAGA d.o.o.)
provided the information on the combined sewer network and the flow measurement data.
The flow measurements were performed between 1 March 2019 and 30 September 2020
in a pipe (of the combined sewer system) collecting all contributing water from the case
study area (location: 46◦02′44.56′ ′ N, 14◦29′01.82′ ′ E, 295 MAMSL) (Figure 1). The flow rate
was calculated based on the combination of non-contact radar velocity measurements and
ultrasonic water level measurements [37]. As the focus was only on rainfall-runoff (RR)
(i.e., stormwater) modeling and the measurements were conducted in a combined sewer
system, the dry weather flow, which is independent of the RR and cannot be explained
with the RR model, was deduced from the total measured flow. For the preparation of
precipitation and flow data, a 5-min time step was used.

Within the entire flow measurement period, rainfall data were collected corresponding
to the measured flow. To test the usefulness of the proposed approach for single events and
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continuous simulations, as defined by the EPA SWMM [15], two types of rainfall periods
were selected: shorter (approximately 1 day) and longer (approximately 6 days). Four
rainfall periods were selected for model calibration (C1–C4) and another four for model
validation (V1–V4) (Table 1). Hence, two short (C1 and C2) and two long (C3 and C4)
rainfall periods were selected for model calibration. The longer calibration periods include
multiple rainfall events of different intensities and durations so that the ProBMoT tool
could learn from the different surface runoff responses of the catchment. The validation
periods were selected based on the following criteria: (a) duration, with shorter (V1 and
V2) and longer (V3 and V4) periods; (b) seasonal distribution; (c) similarity in peak flows;
(d) stability of measured flows; and (e) antecedent weather conditions [38,39].

Table 1. Characteristics of the selected rainfall periods used for calibration and validation.

Period ID Rainfall Period
—Start

Rainfall Period
—End

Duration
(h) Season

Total
Precipitation

(mm)

Total
Precipitation

Time (h)

Average
Precipitation

Intensity
(mm/5 min)

Total
Measured
Flow (m3)

Measured
Peak Flow

(L/s)

C1_1D 01.12.2019 (23:00) 02.12.2019 (19:00) 20 Autumn 24.4 8.3 0.24 8948 278
C2_1D 15.05.2020 (05:00) 16.05.2020 (03:00) 22 Spring 29.6 7.3 0.34 7409 442
C3_6D 23.04.2019 (04:30) 29.04.2019 (04:30) 144 Spring 39.8 13.6 0.24 6562 308
C4_7D 11.11.2019 (12:30) 18.11.2019 (11:30) 167 Autumn 74.4 25.3 0.25 20,938 555
V1_1D 31.08.2020 (12:00) 01.09.2020 (11:00) 23 Summer 20.8 7.8 0.22 5417 238
V2_2D 21.12.2019 (08:00) 23.12.2019 (02:00) 42 Winter 56.4 14.3 0.33 17.045 429
V3_5D 28.09.2019 (12:00) 03.10.2019 (01:00) 109 Autumn 38.8 8.5 0.38 7.854 283
V4_5D 01.03.2020 (07:00) 06.03.2020 (15:00) 128 Winter 81 26.1 0.26 19,578 301

2.3. Rainfall-Runoff Model

The rainfall-runoff (RR) model is based on the principles and equations used by the
EPA Storm Water Management Model (SWMM) [15]. Variables and constants included
in Equations (1)–(8) are described in Tables 2 and 3. The catchment is represented as a
nonlinear reservoir, governed by surface storage mass balance, i.e., conservation of mass:

∂d
∂t

= i− f− q (1)

Evaporation was not included in the model, due to its limited influence on the water
mass balance within the short rainfall events used for SCM design. The runoff flow rate
per unit of the surface area is based on Manning’s equation [15]:

q =
W S0.5

A n
(d− ds)

5/3 (2)

Afterward, the total runoff flow from the catchment (L/s) is calculated by multiplying
the catchment surface area (m2) and q (m/s).

There are several well-known alternative methods for modeling the infiltration process.
Three alternatives were considered in this study: the Soil Conservation Service Curve
Number (SCS CN) method, the Variable UK runoff equation, and the UK Water Industry
Research runoff equation. Thus, the complete RR model can have different structures,
depending on the infiltration method selected. In addition, different infiltration methods
can be applied in different sub-catchments, resulting in many plausible model structures
for a given catchment.
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Table 2. Description of variables included in the rainfall-runoff model.

Variables

SCS CN, VARUK,
UKWIR Name ProBMoT Name Description Unit

d d surface storage (ponded water) m
i i rate of rainfall m/s
f f infiltration rate m/s
q q runoff flow rate per unit of surface area m/s
F1 * cumulative infiltration at the beginning of a time step ∆t m
F2 * cumulative infiltration at the end of a time step ∆t m
F * cumulative infiltration mm
P p1, p2 cumulative precipitation mm

Smax * maximum storage capacity of soil mm
PR * percentage runoff for the model

* Variable is embedded as equation.

Table 3. Description of constants included in the rainfall-runoff model, with assigned ranges for impervious and pervious
areas (entity Surface).

Constants

SCS CN, VARUK,
UKWIR Name

ProBMoT
Name Description Unit

Range

IMP. PERV.

A A surface area of the sub-catchment m2 180,000 120,000
W W sub-catchment width m 6000–18,000 3000–6000
S S average slope of the sub-catchment m/m 0.002 0.002
ds ds depression storage depth m 0.00005–0.001 0.0005–0.006
n n the surface roughness coefficient 0.01–0.08 0.15–0.80
∆t time step s 300 300

CN CN tabulated coefficient that varies with the land use and
soil type 90–99 30–75

PIMP, PIMPn,
PIMPTOTAL

PIMP percentage of imperviousness 100 0

IF, IFn IF effective impermeability factor for a particular paved
surface type 0.5–1 /

β B power coefficient for a paved surface 0.5–0.8 /

PIpv PIimp precipitation index for paved surfaces with a rapid
decay coefficient 0–1 /

PFpv PFimp soil store depth for a paved surface mm 10–15 /

NAPI, NAPIs NAPI antecedent precipitation index for a particular
pervious surface type mm / 0–40

PIs PIp precipitation index for pervious surface with a decay
coefficient / 0.7–0.9

Cr Cr power coefficient for pervious surface / 0.8–1.0
SPR SPR standard percentage runoff / 0.1–0.7

PF, PFs PFp soil storage depth for a particular pervious surface
type mm / 30–50

2.3.1. SCS CN Method

This method assumes that the total infiltration capacity of a soil is related to the soil’s
tabulated Curve Number (CN). The CN value is determined by the hydrologic soil group,
land use, and hydrologic condition. CN values range from 30 to 98. The latter value is
assigned to paved roadways, roofs, and other impervious surfaces. At higher CN values
(i.e., closer to 98), precipitation is mainly translated into surface runoff. On the other hand,
at lower CN values (i.e., closer to 30), rainfall is mainly infiltrated and is thus not translated
into a runoff [14]. A modified version of the SCS CN equation was used, as described in the
SWMM Reference Manual-Hydrology [15]. In the modified version, the initial abstraction
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(Ia) is not included, as it is already included in the depression storage (ds; see Equation (2).
The following three equations (Equations (3)–(5) are used to calculate the infiltration rate:

f =
(F2 − F1)

∆t
(3)

F = P− P2

P + Smax
(4)

Smax =

(
1000
CN

− 10
)
× 25.4 (5)

2.3.2. Variable UK Runoff Equation

The Variable UK runoff equation (VARUK) has three components: runoff from imper-
vious areas, runoff from pervious areas, and initial losses [40]. It is based on data from 11
UK catchments and 112 rain events. The VARUK equation is as follows [41]:

PR = IF× PIMP + (100− IF× PIMP)× NAPI
PF

(6)

Rainfall can be converted into infiltration by using the following equation:

f = i×
(

1− PR
100

)
(7)

2.3.3. UK Water Industry Research Runoff Equation

The UK Water Industry Research runoff equation (UKWIR) [42] was developed to
overcome some of the limitations of VARUK, which are described in detail in the report
Development of the UKWIR Runoff Model (2014). As VARUK, it has a fixed runoff
component for paved surfaces (IFn × PIMPn). It was upgraded with a variable runoff
component for paved surfaces (1− IFn)× PIMPn. Additionally, a component for pervious
surfaces was added (1− PIMPTOTAL), which enables differentiation between winter and
summer runoff (i.e., negative antecedent precipitation index (NAPI)). The UKWIR equation
is then as follows:

PR =
N

∑
n=1

(IFn × PIMPn + (1− IFn)× PIMPn ×
PIβpv

PFpv
) +

(
(1− PIMPTOTAL)×

(NAPIs + PIs )
Cr · SPR

PFs

)
(8)

2.4. Stormwater Control Measures

In this study, SCMs are based on the principles and equations used by SWMM for
modeling low impact development (LID) controls [15]. These are bio-retention cell (BRC),
rain garden (RG), green roof (GR), and infiltration trench (IF). Based on the principles
and equations typical for these measures, two additional SCMs were defined, namely the
detention pond (DP) and the storage tank (ST). The processes that characterize individual
SCMs are described in equations 9–30. Variables and constants that are included in these
equations are described in Tables 4 and 5.

To make the computation of SCMs hydrologic performance less complex, the following
simplifications are assumed by SWMM [15]: (1) the cross-sectional area of the unit remains
constant throughout its depth; (2) flow through the unit is 1D in the vertical direction; (3)
inflow to the unit is distributed uniformly over the top surface; (4) moisture content is
uniformly distributed throughout the soil layer; (5) matric forces within the storage layer
are negligible so that it acts as a simple reservoir that stores water from the bottom up.
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Table 4. Variables used for stormwater control measures.

Variables

EPA-SWMM
Name

ProBMoT
Name Description Unit

d1 d1 depth of water stored on the surface m
d3 d3 depth of water in the storage layer m

θ2 mc2 soil layer moisture content (volume of water/total volume
of soil) fraction

i i precipitation rate falling directly on the surface layer m/s
q0 q0 inflow to the surface layer from runoff captured from other areas m/s
q1 q1 surface layer runoff or overflow rate m/s
f1 f1 infiltration rate of surface water into the soil layer m/s
f2 f2 percolation rate of water through the soil layer into the storage layer m/s
f3 f3 exfiltration of water from the storage layer into native soil m/s

Table 5. Constants and their ranges used for stormwater control measures (entity SCM).

Constants

EPA-SWMM
Name

ProBMoT
Name Description Unit

Range

Minimum Maximum

A A surface area m2 0 ∞
W W surface width m 5000 10,000
S S surface slope m/m 0.02 0.15
n1 n1 surface roughness coeff. s/m1/3 0.10 0.40
n3 n3 drainage mat roughness coeff. s/m1/3 0.01 0.03
D1 D1 freeboard height for surface ponding m 0.00 5.0
D2 D2 thickness of the soil layer m 0.05 1.22
D3 D3 thickness of the storage layer m 0.01 3.66

φ1 VF1 void fraction of any surface volume (i.e., the fraction of
freeboard above the surface not filled with vegetation) fraction 0.80 1.00

φ2 VF2 porosity of the soil layer (void volume/total volume) fraction 0.45 0.60

φ3 VF3 void fraction of the storage layer (void volume/total
volume) fraction 0.20 0.40

K2S K2S soil’s saturated hydraulic conductivity m/s 3 × 10−6 3.88 × 10−5

K3S K3S native soil’s saturated hydraulic conductivity m/s 1 × 10−5 8.20 × 10−5

ψ2 SH2 suction head at the infiltration wetting front formed in the
soil m 0.05 0.10

HCO HCO percolation decay constant / 30.00 55.00
θ20 IMC2 soil’s initial moisture content or its wilting point fraction 0.05 0.20
θFC FC soil’s field capacity moisture content fraction 0.15 0.50

2.4.1. Bio-Retention Cell

Bio-retention cells (BRCs) are depressions that contain vegetation grown in an engi-
neered soil mixture placed above a gravel storage bed. They provide storage, infiltration,
and evapotranspiration of both direct rainfall and runoff captured from surrounding areas.
As such, they can be used as a generic SCM model, which can be then customized to
describe the behavior of other SCM types. Due to the short length of the design rain events
(i.e., 1 h); evapotranspiration was not included in the model, as it would not have a signifi-
cant influence on the results. A conceptual model of a typical BRC can be represented with
three overlaying horizontal layers (Figure 2). The inflow to the surface layer includes both
direct precipitation (i) and captured runoff from contributing areas (q0). On the other hand,
the outflow can occur through infiltration into the soil layer below (f1) or by the overflow
of ponded surface water (q1). The latter may occur if the level of ponded surface water
exceeds the freeboard height of the surface layer (D1). The soil layer receives infiltration (f1)
from the surface layer and loses water through percolation (f2) into the storage layer below.
The storage layer receives percolation (f2) from the soil layer above and loses water by
exfiltration (f3) into the underlying natural soil. Materials with high porosity (e.g., gravel)
are used to provide water storage capacity.
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Figure 2. A conceptual model of a typical bio-retention cell (adapted from [15]).

Variables and constants included in the SCM equations are described in Tables 4 and 5.
Along with their original (EPA-SWMM) [15] names, the newly defined names used in
ProBMoT are provided. Furthermore, Table 5 provides the minimum and maximum values
of the constants.

The current amount of water within every layer can be calculated by solving mass
balance equations that take into account all the inflows and outflows (Equation (9)–(11)).
The infiltration rate (f1) (Equation (12)) is based on the Green-Ampt equation, whereas
for the percolation rate (f2) (Equation (13)), Darcy’s law is used [15]. The overflow rate
(q1) (Equation (14)) is simply calculated as any ponded water that exceeds the maximum
freeboard (or depression storage) height within each time step.

φ1
∂d1

∂t
= i + q0 − f1 − q1 Surface Layer (9)

D2
∂θ2

∂t
= f1 − f2 Soil Layer (10)

φ3
∂d3

∂t
= f2 − f3 Storage Layer (11)

f1 = K2S

(
1 +

(φ2 − θ20)(d1 + ψ2)

F

)
(12)

f2 =

{
K2S exp(−HCO(φ2 − θ2)), θ2 > θFC

0, θ2 ≤ θFC
(13)

q1 = max
[
(d1 −D1)

∆t
, 0
]

(14)
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Water fluxes between layers are limited by the current conditions in the connected
layers. Two types of conditions need to be fulfilled for infiltration to occur: (1) a sufficient
amount of water is needed in the upper layer (Equations (16) and (18)), (2) a sufficient
amount of empty pore space is needed in the lower layer (Equations (15) and (17)).

f1 = min
[

f1, (φ2 − θ2)
D2

∆t

]
(15)

f2 = min
[

f2, (θ2 − θFC)
D2

∆t

]
(16)

f2 = min
[

f2, (D3 − d3)
φ3
∆t

]
(17)

f3 = min
[

f3,
d3φ3

∆t

]
(18)

2.4.2. Rain Garden

SWMM defines a rain garden (RG) as a bio-retention cell without a storage layer [15].
Its governing equations are, therefore, Equations (9) and (10). The nominal soil percolation
rate f2 (Equation (13)) is limited to the smaller of the following two values: the amount
of drainable water available in the soil layer (Equation (16)) and the saturated hydraulic
conductivity of the native soil (K3S).

2.4.3. Green Roof

SWMM’s green roof (GR) is also similar to a bio-retention cell, except it uses a drainage
mat instead of gravel aggregate in its storage layer and has an impermeable bottom
(K3S = 0). Therefore, the bottom exfiltration (f3) is replaced by the drainage mat flow rate
(q3) (Equation (23)). Furthermore, there is no term for captured runoff from impervious
areas (q0) (Equation (19)). Both the runoff rate from the soil layer surface (Equation (22))
and the drainage mat flow rate (q3) (Equation (23)) are computed by using the Manning
equation for uniform overland flow.

φ1
∂d1

∂t
= i− f1 − q1 Surface Layer (19)

D2
∂θ2

∂t
= f1 − f2 Soil Layer (20)

φ3
∂d3

∂t
= f2 − q3 Storage Layer (21)

q1 =
1

n1

√
S1

(
W1

A1

)
φ1(d1 −D1)

5/3 (22)

q3 =
1

n3

√
S1

(
W1

A1

)
φ3(d3)

5/3 (23)

2.4.4. Infiltration Trench

SWMM’s infiltration trench (IT) is also similar to a bio-retention cell, except that it has
only a surface and a storage layer, where f1 assumes that any ponded surface water (d1)
drains into the storage layer over the time step. Furthermore, the surface void fraction (φ1)
does not appear in the surface layer equations (Equation (24)) as a gravel-filled trench
would have no vegetation growing above it.
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∂d1

∂t
= i + q0 − f1 − q1 Surface Layer (24)

φ3
∂d3

∂t
= f1 − f3 Storage Layer (25)

f1 =
d1

∆t
(26)

Both the infiltration and exfiltration rate are limited by the amount of water currently
in the storage layer (Equations (27) and (28)):

f1 = min
[

f1, (D3 − d3)
φ3
∆t

]
(27)

f3 = min
[

f3,
d3φ3

∆t

]
(28)

2.4.5. Detention Pond and Storage Tank

Based on the principles and equations presented with the previously defined elements,
two additional elements were defined, namely a detention pond (DP) (Equation (29)) and a
storage tank (ST) (Equation (30)). They both include only a surface layer, which is deeper
than with the previously defined elements. The inflow for DP includes direct rainfall
and runoff from contributing areas, whereas ST receives only runoff from contributing
impervious areas. For both elements, the outflow (i.e., overflow) is calculated by using q1
(Equation (14)).

∂d1

∂t
= i + q0 − q1 Surface Layer-DP (29)

∂d1

∂t
= q0 − q1 Surface Layer-ST (30)

2.5. Equation Discovery and Process-Based Modeling

The proposed automated modeling approach is based on the Process-Based Mod-
eling Tool (ProBMoT), developed by Čerepnalkoski et al. [43]. ProBMoT allows for the
integration of domain knowledge, formalized as template components for the construc-
tion of process-based models, into the procedure of equation discovery from measured
data. It automatically identifies both the structure and parameter values of an appropriate
process-based model, given: (a) a knowledge library (i.e., a mathematical formulation of
the selected domain) in the form of model components, or, more specifically, template
entities and processes, (b) a conceptual model of the observed system, and (c) measure-
ments (Figure 3). Candidate model structures are generated from the knowledge library
and a user-specified conceptual model of the observed system. The candidate models
are transformed into equations, calibrated against provided data, and ranked according
to their errors. The latter is calculated as the root-mean-squared-error (RMSE), i.e., the
discrepancy between the model simulation and measured data. To use ProBMoT within
the presented case study of RR modeling and SCM design, the following steps were taken:

(A.1) The RR models and SCM processes were encoded in a modeling library;
(A.2) Conceptual models of the case study and SCM scenarios were elaborated;
(A.3) ProBMoT was used to discover the optimal model structure and parameters among

viable RR models, following the conceptual model of the case study and flow mea-
surements;

(B.1) The RR model with the best performance was used to simulate catchment outflow for
rainfall events with a duration of 1 h and return periods of 5, 10, 25, and 50 years;

(B.2) Three design events (i.e., data sets) that represent target catchment outflows were
defined. The target outflow of precipitation (with a return period of 10, 25, or 50 years)
was set to be the outflow typical for a 5-year return period;
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(C.1) ProBMoT was used to determine the optimal SCM parameters (i.e., SCM design),
following the conceptual model for each SCM scenario and target catchment outflow
(i.e., outflow reduction);

(C.2) To determine the best SCM design, the conceptual models for SCMs were iteratively
changed, based on the preliminary results of SCM design.

Figure 3. A schematic workflow for the rainfall-runoff (RR) model discovery and stormwater control measure (SCM) design
using the automated modeling tool ProBMoT.

2.5.1. Library of Components for Modeling Rainfall-Runoff and Stormwater
Control Measures

The library consists of entity templates, process templates, and compartment templates.
Each template captures general knowledge that can be applied to different cases and can
be reused when dealing with a specific task. The dynamic system to be modeled, i.e., the
catchment, can be structured by using compartments. Compartments are organized in
a nested, tree-like structure. Each compartment contains entities and processes and can
also contain other sub-compartments (e.g., sub-catchments) [29]. In the urban hydrology
domain, processes calculate the change of water fluxes (e.g., surface storage) within a time
step and entities aggregate these changes over the simulated time.

The equations presented in Section 2.3 were encoded in the knowledge library (see
Supplementary Material S1: Knowledge library) as template processes named general
processes, as they are common to all the models. These include D (surface storage),
Q (surface runoff), OF1 and OF3 (outflow), and F (infiltration), which can be modeled
with three alternative methods: F_SCS, F_UKWIR, and F_VARUK. The SCMs equations
presented in Section 2.4 were encoded in the knowledge library as template processes
named after SCMs (e.g., detention pond processes). Names of processes and entities are
derived from variable names and SCM type abbreviations (e.g., D1_DP). Uppercase letters
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are used for variable names related to processes (e.g., D1_DP) and lowercase letters for
variable names related to entities (d1_DP). Outflow processes that sum the discharges
from different sub-compartments (i.e., sub1, sub2, etc.) were introduced. Namely, the OF3
(i.e., the sum of discharges from an impervious and pervious area with no implemented
SCMs (i.e., OF1)), the OF4_SCM (i.e., the sum of the overflow from SCMs (i.e., OF2_SCM)),
and the OF5_SCM (i.e., the sum of OF3 and OF5_SCM). The time step in the presented
equations is 1 s, so ProBMoT is calculating the infiltration rate in m/s and discharge in
L/s. However, the actual time step of the input data (e.g., precipitation, measured flow) is
5 min, which is also the reporting time step.

Furthermore, the parameters that appear in the RR model (Table 3) and SCMs (Table 5)
were listed as constants within the template entities »Surface« and »SCM« in the knowledge
library, respectively, together with their expected ranges and units.

2.5.2. Conceptual Models of the Case Study Area and Stormwater Control Measures

To apply ProBMoT to a specific catchment, a conceptual model of the observed system
must be provided (see Supplementary Material S2: Conceptual model). The conceptual
model consists of entity, process, and compartment instances. Each instance is created
using a template from the urban hydrology modeling library. The specification of a process
instance includes a list of arguments (i.e., names of the entity instances that are involved in
the process) and a list of constants with their exact values (e.g., entity: Surface, constant:
slope = 0.002). For unknown values of the constant parameters or the parameter that will
be calibrated (e.g., SCM design), the parameters are assigned a special value »null«, along
with its expected range of values (e.g., entity: SCM, constant: D1 {value: null; fit_range:
<0, 1.5>}). The values and ranges of the constants that appear within the RR model (i.e.,
entity Surface) were adjusted based on the (im)perviousness of the sub-catchment (Table 3)
following the values proposed in the literature [14,15,40–42]. The values and ranges of the
constants that appear within SCMs (i.e., entity SCM) were defined based on the values
proposed by EPA [15] (Table 5).

The conceptual model of the case study area (Figure 4a) was structured as a single
compartment (i.e., catchment), divided into two sub-compartments (i.e., sub1 and sub2),
where sub1 represents the impervious part of the catchment (60% of the total surface
area) and sub2 the pervious part of the catchment (40% of the total surface area). A new
sub-compartment (i.e., sub3) (Figure 4c) was introduced to account for SCMs, including
SCM area and contributing areas. SCMs can be placed either within a part of an existing
pervious area (DP, IT, RG, BRC) or an impervious area (ST, GR). However, in the case of GR,
the measure itself also acts as a contributing area, by receiving direct rainfall. To ensure
transparency, a separate conceptual model was defined for each SCM.
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Figure 4. Graphical representation of the development of the conceptual model structure that includes stormwater control
measures (SCMs). (a) Initial conceptual model with two sub-compartments; (b) Introduction of SCM together with
contributing area; (c) Final conceptual model including SCM consisting of three sub-compartments.

3. Results
3.1. Rainfall-Runoff Models

Given the conceptual model and the modeling knowledge library, ProBMoT explored
nine alternative structures of RR models (M1–M9) (Appendix A Table A1). Each model
chooses a different combination of modeling templates for infiltration for each of the
two sub-catchments. Each of the nine models was calibrated and validated against the
measured data. All models were calibrated by simultaneously using data (C1–C4) from two
short time periods of measured flow, with a duration of approximately one day (C1 and C2),
and two long periods of measured flow, with a duration of approximately one week (C3
and C4). The calibrated models were validated on four different rainfall periods (V1–V4)
that vary in rainfall duration and intensity. The values of the Nash–Sutcliffe efficiency
(NSE) coefficient [44] for the calibration and validation data sets/events are presented in
Table 6. The rainfall periods are presented in consecutive order, based on the modeling
phase (first calibration—C, then validation—V) and the duration of the modeled rainfall
period (e.g., 1D—one day).

Based on the criteria for assessing the goodness of fit for models, proposed by Moriasi
et al. [45], the models on average had »very good« performance (i.e., 0.75 < NSE ≤ 1.00)
for all calibration periods. In the validation process, all models had »very good« perfor-
mance for all validation periods, confirming the usefulness and efficiency of the proposed
approach for calibration of model parameters. When comparing the performances of the
models, differences can be noticed for individual rainfall periods. Nevertheless, they all
achieved a similar average NSE value for calibration (i.e., average NSE value of 0.794) and
validation periods (i.e., average NSE value of 0.859). Therefore, no general conclusion
can be made about which model is better, since model performance results are greatly
influenced by the characteristics of calibration and validation periods (e.g., rainfall intensity,
number of (sub) rainfall events) [46]. However, the model with the highest average NSE
values for the calibration and validation periods (i.e., M3) was used for further analysis.
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Table 6. Nash–Sutcliffe efficiency coefficient values for all models and modeled rainfall periods.

Model
Infiltration

Method
Sub 1

Infiltration
Method

Sub 2
C1_1D C2_1D C3_6D C4_7D V1_1D V2_2D V3_5D V4_5D

M1 SCS SCS 0.83 0.76 0.81 0.78 0.91 0.93 0.84 0.81
M2 UKWIR SCS 0.83 0.80 0.76 0.78 0.92 0.91 0.85 0.78
M3 VARUK SCS 0.82 0.81 0.78 0.78 0.93 0.93 0.85 0.81
M4 SCS UKWIR 0.84 0.77 0.81 0.77 0.91 0.92 0.84 0.83
M5 UKWIR UKWIR 0.89 0.76 0.71 0.80 0.89 0.88 0.77 0.79
M6 VARUK UKWIR 0.86 0.79 0.74 0.79 0.91 0.90 0.80 0.82
M7 SCS VARUK 0.87 0.75 0.76 0.78 0.90 0.90 0.80 0.81
M8 UKWIR VARUK 0.88 0.77 0.72 0.79 0.90 0.89 0.76 0.79
M9 VARUK VARUK 0.87 0.78 0.73 0.79 0.91 0.89 0.80 0.81

Average: 0.86 0.78 0.76 0.79 0.91 0.90 0.81 0.81

Next, the 1-h rainfall events with return periods of 5, 10, 25, and 50 years were
simulated using the calibrated model M3, resulting in a total outflow of 6429 m3, 7562 m3,
9426 m3, and 10,403 m3, respectively. Based on these results, three target catchment outflow
scenarios and datasets were defined, namely the DE_Q5_P10, DE_Q5_P25, and DE_Q5_P50.
These design events represent a combination of an outflow typical for 5-year precipitation
(i.e., Q5) and precipitation with longer return periods (i.e., P10, P25, P50). In this way,
SCMs are designed to reduce the peak and total volume of the catchment outflow.

3.2. Stormwater Control Measures

SCMs were designed to retain the difference between outflows from the catchment
provided by precipitation with 10, 25, and 50 years return period (i.e., P10, P25, P50) and
5 years return period (Q5, or the target outflow). More precisely, they were designed to
maximize the extent to which each SCM type can achieve the target outflow, using the
proposed parameter ranges. The match between the simulated and the target outflow was
evaluated using the Nash–Sutcliffe efficiency coefficient (NSE), peak flow ratio (PFR), and
total volume ratio (TVR) (Appendix A Tables A2–A7).

In the first round of SCM design, the conceptual model with three sub-compartments
(Figure 4) was used. Furthermore, the surface area of all SCMs was set to 5000 m2, except for
GR where this value was set to 50% of all the impervious area (i.e., 90,000 m2). The results
showed that, in many cases, an SCM with uniform characteristics could not sufficiently
follow the event dynamics. Namely, DPs and STs provide detention for a limited amount
of time after which the outflow from SCM appears (Figure 5a). Therefore, the initial
SCM sub-compartment (i.e., sub3), was further divided into three equally sized sub-
compartments with SCMs (i.e., sub 3–5) (Figure 5b), enabling the design of three elements
of the same SCM type with different characteristics (e.g., dimensions). Moreover, the initial
simulation provided information on which SCMs could take up less space (i.e., shallow
elements) (e.g., ST, DP, IF) or would need more space for its implementation (i.e., thick
elements or significant overflow) (e.g., RG, BRC). Taking into account the above-mentioned
observations, the following results were obtained.
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Figure 5. The results of the DP scenario (a), which includes one type of a detention pond, and the 3DP scenario (b), which
includes three types of a detention pond, for DE_Q5_P10.

3.2.1. Detention Pond and Storage Tank

Due to their similarity, detention ponds (DPs) and storage tanks (STs) provided
comparable results. Namely, a near-perfect match between the target and simulated outflow
was achieved for both measures (i.e., an NSE value of 0.99) (Appendix A Tables A2 and A3).
In the second round of SCM design, the areas of ST and DP were reduced by 80% (i.e., to
total an SCM area of approximately 1000 m2). Thus, these are the two most space-efficient
measures. As expected, larger and deeper elements were designed for less frequent design
events and vice versa. In general, the measures can be divided into those that detain all the
inflow from contributing areas, and those that provide outflow. For the latter, at least one
of the dimensions was set to (or very close to) the minimum value (i.e., area to 250 m2 or
depth to 0.5 m).

3.2.2. Infiltration Trench

Infiltration trenches (ITs) also achieved a good fit between the target and simulated
outflow (i.e., NSE value of 0.99) (Appendix A Table A4). However, when compared to
ST and DP, these elements on average take 2.5 times more space (i.e., between 1997 and
3000 m2). This is caused by a smaller maximum depth (i.e., 3.5 m), smaller maximum voids
fraction (i.e., 40%) and limited infiltration rate of the existing soil (i.e., 2.6× 10−5 m/s). On
the other hand, IT can be implemented as a set of elements with tailor-made shapes, based
on site conditions (e.g., along a plot border). As expected, larger and deeper elements were
designed for less frequent design events and vice versa. For the design event DE_Q5_P25
(Figure 6), two ITs were designed to capture the whole run-off from contributing areas
with the maximum area of 1.000 m2 and storage layer depths of 3.40 m and 2.62 m. The
third IT (i.e., sub4) was designed using the min. dimensions (i.e., area 500 m2, 0 m of
freeboard (i.e., D1) and a storage layer that is 0.9 m deep). Although the freeboard is set to
0 m, surface ponding can still occur. In this case, the maximum ponding depth (i.e., d1) is
0.25 m, highlighting the fact that IT with an even smaller area could be designed. However,
this could increase the ponding height unreasonably.
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Figure 6. The results of the 3IT scenario, which includes three types of an infiltration trench, for
DE_Q5_P25.

3.2.3. Rain Garden and Bio-Retention Cell

RGs and BRCs yielded similar results (Appendix A Tables A5 and A6), as they are both
limited by the soil infiltration rate (f1), which is calculated based on the soil’s saturated
hydraulic conductivity (K2S). Therefore, both measures performed well for DE_Q5_P10
(Figure 7a) but proved insufficient for DE_Q5_P50 (Figure 7b). Namely, although max-
imum parameter values, that would increase detention and infiltration, are selected for
DE_Q5_P50, significant overflow occurs between the 45 and 75 the minute of simulation.
This can be observed also in Figure 8a, where the overflow occurs when d1 exceeds the
maximum freeboard (i.e., D1 is 0.30 m). As mentioned before, the infiltration rate is too low
to transfer all the ponded water into the soil layer fast enough. Looking at Figure 8b, we
can see that the soil layers’ moisture content riches maximum values (i.e., 0.60) only after 2
h. Among the SCMs that are placed within existing pervious areas, these two SCM types
take up the most space, between 3000 and 6000 m2. However, in contrast to other SCMs
that do not include a soil layer, they can offer additional ecosystem services (i.e., water
filtration, biodiversity, etc.). It can be concluded that taking into account the proposed
parameter values, including the SCM area, RGs and BRCs are more suitable measures for
more frequent rain events (i.e., DE_Q5_P10).

Figure 7. The results of the 3RG scenario, which includes three types of a rain garden, for DE_Q5_P10 (a), and
DE_Q5_P50 (b).
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Figure 8. The results of the 3RG scenario, which includes three types of a rain garden, for DE_Q5_P50: (a) depth of water
stored on the surface (d1), and (b) soil layer moisture content (mc2).

3.2.4. Green Roof

In comparison to other SCMs, the green roof (GR) acts as a contributing area and an
SCM area at the same time. Namely, it does not receive surface runoff (q0) from adjacent
areas. GRs are a replacement for conventional roofs that act as impervious areas (i.e., sub1).
Therefore, changes in the GR area have a direct influence on the size of the impervious area
within sub1. Namely, if the GR area is increased, the impervious area has to be decreased
by the same amount. Simulations showed that GRs could sufficiently detain all direct
rainfall. Thus, the optimal GR area depends on the outflow from impervious (i.e., sub1)
and pervious areas (i.e., sub2), which is in direct correlation with their size. Figure 9a
presents results for DE_Q5_P50, where GRs replace 50% of existing impervious areas (i.e.,
90,000 m2), resulting in an outflow from impervious and pervious areas (i.e., of3) that is
lower than the target outflow (i.e., Q5). Consequently, GRs are designed in a way that
they provide additional outflow (i.e., from sub4). As this design is suboptimal, the area of
GRs was further reduced to 40% of existing impervious areas (i.e., 72,000 m2) (Appendix A
Table A7). The results for this scenario show that only a small outflow from GRs occurs
and that of3 almost matches the target outflow (i.e., Q5) (Figure 9b). For both design events
of higher frequencies, the of3 was lower than the target outflow (i.e., Q5). Thus, the GRs
were designed in a way to provide additional outflow.

Figure 9. The results of the 3GR scenario, which includes three types of green roofs, for DE_Q5_P50: (a) 3GR area 90,000 m2,
and (b) 3GR area 72,000 m2.
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3.2.5. Stormwater Control Measures Performance

In general, all of the SCM scenarios performed well, except for the scenarios 3RG
and 3BRC, which exceeded the target peak flow, for the design events DE_Q5_P25 and
DE_Q5_P50 (Table 7). As mentioned before, RGs and BRCs were limited by their design
characteristics (e.g., soil’s saturated hydraulic conductivity) and the proposed area for
implementation (i.e., 5% of the pervious area). If the additional area was available, these
two scenarios could also perform well. Scenarios 3ST, 3DP, and 3IT slightly exceed the
target outflow values for the design event DE_Q5_P50; however, they remain within
tolerable limits. In this way, an optimal SCM design is provided, by setting some of the
characteristics of the elements to the maximum possible value (e.g., depth of the surface
layer, area . . . ). The 3GR scenario, assuming that 40% of the current impervious areas will
be replaced with green roofs, achieved the best performance.

Table 7. The performance of stormwater control measure (SCM) scenarios for the analyzed design events, evaluated with
the total volume ratio (TVR) and peak flow ratio (PFR).

Design
Event

SCM Scenario
3ST 1 3DP 2 3IT 3 3RG 4 3BRC 5 3GR 6

TVR PFR TVR PFR TVR PFR TVR PFR TVR PFR TVR PFR

DE_Q5_P10 0.94 0.96 0.94 0.96 0.92 0.95 0.95 1.01 0.93 0.95 0.99 1.02
DE_Q5_P25 0.95 0.94 0.95 0.94 0.94 0.94 1.03 1.24 1.01 1.17 1.00 1.02
DE_Q5_P50 1.07 1.07 1.07 1.07 1.05 1.06 1.08 1.38 1.10 1.37 1.01 1.01

1 Three types of storage tanks. 2 Three types of detention ponds. 3 Three types of infiltration trenches. 4 Three types of rain gardens. 5

Three types of bio-retention cells. 6 Three types of green roofs.

4. Discussion
4.1. Rainfall-Runoff Models

The development of a validated RR model is a prerequisite for the assessment of
hydrologic effectiveness of different SCM scenarios [25]. In this study, an automated
equation (model) discovery approach that enabled the automatic generation and calibration
of RR models was applied. The derived RR models can be classified as lumped (regarding
spatial resolution) and continuous (regarding temporal resolution) [47]. To build fully
distributed models, hydraulic processes (i.e., pipe flow) should be included. Due to some
limitations of the ProBMoT tool, only hydrological processes were included. Hydraulic
(pipe flow) modeling is crucial when modeling complex and large sewer system. In our
case, the case study area and the adjacent sewer system were relatively small, thus the
hydraulic (pipe flow) modeling would not significantly affect the outflow dynamics.

The developed knowledge library, compliant with the ProBMoT tool, enabled a sys-
tematic comparison of three alternative infiltration methods (i.e., SCS CN, VARUK, and
UKWIR) and their combinations. This is a unique and novel approach, as normally only
one infiltration method is used within one RR model [20].

In general, all RR models were judged to have »very good« performance, with only
minor differences across models. Thus, no general conclusion can be made on which model
is better, since model performance results are greatly influenced by the characteristics
of calibration and validation periods (e.g., rainfall intensity, number of (sub) rainfall
events) [46]. However, two of the models that combine infiltration methods performed
best (i.e., M3, M4), highlighting the true value and contribution of this research, which
is the discovery of new knowledge in the urban runoff-modeling domain by automated
modeling.

In contrast to traditional machine learning methods for knowledge and model dis-
covery that are purely data-driven, ProBMoT allows for integrating expert background
knowledge from the domain of use in the process of equation/model discovery. The
knowledge library, presented in this paper, provides a blueprint for building mechanistic,
transparent models of hydrological events as opposed to black-box models that would be
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obtained by traditional data-driven methods. The blueprint results in a small number of
candidate model structures, which significantly reduces the danger of overfitting the model
to calibration (i.e., training) data. This robustness to overfitting explains why the resulting
models often perform better on validation data and confirms the model generality, i.e., its
ability to properly explain unobserved hydrological events and accurately predict their
outcomes and implications.

We should distinguish between two major types of users of the proposed approach.
The first type of users are domain experts and experienced users, who have a thorough
understanding of the underlying physics. These users are allowed to create and modify
libraries of domain knowledge, which include templates for modeling different processes
that are consistent with the physics of the domain. The second type of users are so-called
end-users. They can use libraries of domain knowledge, conceptual models, and measured
data to solve specific urban catchment modeling and SCM design problems. Assuming
that they lack in-depth knowledge of the underlying physics, they would not be allowed
to modify the libraries of domain knowledge and the template formulas for modeling
different processes.

4.2. Stormwater Control Measures

In this study, SCMs were designed based on the target catchment outflow (i.e., hy-
drograph). This is typical for auto-calibration of SCMs, where an objective function has
to be defined [25]. Otherwise, the performance of SCMs is usually evaluated only with
hydrological parameters (e.g., peak flow reduction, total volume) after their predetermined
design and model simulation [4,16,19]. The hydrograph-based SCM design can be ex-
tremely helpful in situations where not only the peak flow is a limitation, but also the flow
distribution (i.e., downstream convergence of outflows from catchments with different
dynamics). In this way, this approach can be used to design SCMs and investigate to what
extent they can reduce flood hazards. Moreover, in this study, all relevant SCMs parameters
were included in the calibration (i.e., design) process, including material characteristics, as
opposed to a more typical approach, where only a search for the optimal SCMs dimensions
(e.g., surface) is conducted. A comparative analysis with other studies of the obtained SCM
performance results cannot be conducted, due to different ratios between the contributing
and the SCM area, the difference in implementation surface among SCM types, and specific
local conditions.

5. Conclusions

In this study, an automated equation (model) discovery approach was applied to the
field of RR modeling and SCM design. First, a new library of model components, compliant
with the equation discovery tool ProBMoT was developed, formalizing the knowledge
on RR modeling and SCM design. Next, a conceptual model of the experimental urban
sub-catchment within the city of Ljubljana, Slovenia, was defined. The proposed automated
model discovery approach was used to find the optimal structure among the viable RR
models, based on pipe flow measurements.

The best RR model was used to simulate catchment outflow for rainfall events with a
duration of 1 h and return periods of 5, 10, 25, and 50 years. The results were used to define
three design events (i.e., data sets) that represent target catchment outflows. Namely, by
using SCMs, the precipitation with a return period of 10, 25, or 50 years, should generate
outflow typical for a 5-year return period. Next, ProBMoT was used to determine the
optimal SCM parameters (i.e., SCM design), following the conceptual model for each SCM
scenario and target catchment outflow (i.e., outflow reduction).

The main findings of the study are as follows:

1. The proposed automated model discovery approach for finding the optimal RR
models proved to be very efficient. Nine RR models were considered that generally
had »very good« performance. The best performance was achieved by two models
that used a combination of two different infiltration methods;
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2. The proposed automated model discovery approach enabled the design of six SCM
scenarios and the assessment of their ability to achieve the target outflow;

3. Detention ponds (DPs) and storage tanks (STs) provided comparable results. Namely,
a near-perfect match between the target and simulated outflow was achieved for both
measures (i.e., NSE value of 0.99). These are the two most space-efficient measures,
with an average area of approx. 1000 m2);

4. Infiltration trenches (ITs) achieved a good fit between the target and simulated outflow
(i.e., NSE value of 0.99). When compared to ST and DP, these elements on average
take 2.5 times more space, due to smaller maximum depth, smaller maximum voids
fraction and limited infiltration rate of the existing soil;

5. RGs and BRCs provided similar results, as they are both limited by the soil’s saturated
hydraulic conductivity (i.e., parameter K2S). Therefore, both measures performed
well only for the design event with the lowest intensity. Among the SCMs that are
placed within existing pervious areas, these two SCM types take up the most space;

6. The changes in the GR area have a direct influence on the size of the impervious area.
Thus, the optimal GR area depends on the outflow from impervious and pervious
areas. The outflow from impervious and pervious areas for the design event with a
return period of 50 years almost matches the target outflow (i.e., Q5), if GRs replaced
40% of existing impervious areas.

Finally, this approach is transferable to any catchment and enables the discovery
of viable RR models and target-based SCM design. To do so, the user has to specify a
conceptual model of the selected case study area, compliant with the knowledge library.
Furthermore, the user has to provide rainfall and flow measurement data and catchment
characteristics (i.e., land use, topography, soil properties), based on which the values of the
model constants can be determined.

The currently defined knowledge library encompasses knowledge defined in SWMM,
but it is not limited to it. Namely, it can be further developed and upgraded with new SCM
elements, equations, and parameters. Thus, it can serve as an open and flexible vehicle
for testing new functionalities. In future research, a search among scenarios that integrate
multiple SCMs can be conducted. Furthermore, the automated design of SCMs can be
based on additional criteria (i.e., investment costs, biodiversity) that can be included within
new objective functions.
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Appendix A

Table A1. The considered rainfall-runoff model structures with the calibrated values of their parameters.

M1 M2 M3 M4 M5 M6 M7 M8 M9
sub1 sub2 sub1 sub2 sub1 sub2 sub1 sub2 sub1 sub2 sub1 sub2 sub1 sub2 sub1 sub2 sub1 sub2
SCS
CN

SCS
CN UKWIR SCS

CN VARUK SCS
CN

SCS
CN UKWIR UKWIR UKWIR VARUK UKWIR SCS

CN VARUK UKWIR VARUK VARUK VARUK

A 180,000 120,000 180,000 120,000 180,000 120,000 180,000 120,000 180,000 120,000 180,000 120,000 180,000 120,000 180,000 120,000 180,000 120,000
S 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
W 6092 3538 6083 5857 6000 5016 6000 3000 6033 6000 6141 6000 6112 3991 6103 5537 6164 6000
ds 0.0001 0.0060 0.0002 0.0005 0.0002 0.0048 0.0001 0.0060 0.0002 0.0026 0.0002 0.0014 0.0001 0.0005 0.0002 0.0018 0.0001 0.0017
n 0.08 0.67 0.08 0.15 0.08 0.75 0.08 0.25 0.08 0.15 0.08 0.15 0.08 0.26 0.08 0.15 0.08 0.18

CN 99 50 null 56 null 50 99 null null null null null 99 null null null null null
PIMP 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0

IF null null 0.90 null 0.85 null null 0.75 0.83 0.78 0.81 0.90 null 0.75 0.88 0.83 0.83 0.76
B null null 0.72 null null null null 0.77 0.69 0.50 null 0.74 null null 0.50 null null null

PIimp null null 1.00 null null null null 1.00 1.00 0.42 null 1.00 null null 0.64 null null null
PFimp null null 11.16 null null null null 11.70 13.02 10.00 null 12.62 null null 12.20 null null null
NAPI null null 17.36 null 25.00 null null 12.11 14.97 27.55 30.00 26.94 null 12.91 30.00 30.00 12.00 30.00

PIp null null 0.90 null null null null 0.88 0.75 0.74 null 0.77 null null 0.70 null null null
Cr null null 1.00 null null null null 0.80 0.98 0.86 null 0.85 null null 0.82 null null null

SPR null null 0.35 null null null null 0.68 0.10 0.66 null 0.56 null null 0.70 null null null
PFp null null 58.25 null 32.35 null null 30.00 100.00 30.00 60.96 42.27 null 100.00 100.00 100.00 50.74 100.00
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Table A2. The results of the 3ST scenario, which includes three types of a storage tank.

3ST
Results

A D1 NSE TVR PFR

Design
event

DE_Q5_P10
Sub3 250 0.50

0.97 0.94 0.96Sub4 364 4.70
Sub5 250 0.50

DE_Q5_P25
Sub3 431 4.93

0.99 0.95 0.94Sub4 499 3.99
Sub5 250 0.50

DE_Q5_P50
Sub3 408 0.53

0.99 1.07 1.07Sub4 462 5.00
Sub5 500 4.84

Table A3. The results of the 3DP scenario, which includes three types of a detention pond.

3DP
Results

A D1 NSE TVR PFR

Design
event

DE_Q5_P10
Sub3 101 0.50

0.97 0.94 0.96Sub4 100 0.50
Sub5 500 5.00

DE_Q5_P25
Sub3 497 4.89

0.99 0.95 0.94Sub4 100 0.50
Sub5 500 5.00

DE_Q5_P50
Sub3 471 4.90

0.99 1.07 1.07Sub4 391 5.00
Sub5 100 2.16

Table A4. The results of the 3IT scenario, which includes three types of an infiltration trench.

3IT
Results

A D1 D3 VF1 VF3 K3S NSE TVR PFR

Design event

DE_Q5_P10
Sub3 983 0.26 3.50 1.00 0.39 2.6 × 10−5

0.98 0.92 0.95Sub4 100 0.00 0.90 1.00 0.20 2.6 × 10−5

Sub5 100 0.00 0.90 1.00 0.20 2.6 × 10−5

DE_Q5_P25
Sub3 979 0.16 3.15 1.00 0.40 2.6 × 10−5

0.99 0.94 0.94Sub4 100 0.00 0.90 1.00 0.20 2.6 × 10−5

Sub5 977 0.28 2.92 1.00 0.39 2.6 × 10−5

DE_Q5_P50
Sub3 964 0.30 3.42 1.00 0.40 2.6 × 10−5

0.99 1.05 1.06Sub4 951 0.29 3.50 1.00 0.39 2.6 × 10−5

Sub5 1000 0.00 1.01 1.00 0.21 2.6 × 10−5
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Table A5. The results of the 3RG scenario, which includes three types of a rain garden.

3RG
Results

A D1 D2 D3 VF1 VF2 VF3 K2S K3S SH2 HCO IMC2 FC af_max af_k NSE TVR PFR

Design
event

DE_Q5_P10
Sub3 500 0.10 0.77 null 0.80 0.45 null 1.4 × 10−5 2.6 × 10−5 0.05 39.3 0.08 0.15 1.0 0.001

0.98 0.95 1.01Sub4 500 0.10 0.87 null 0.80 0.45 null 1.4 × 10−5 2.6 × 10−5 0.05 39.3 0.08 0.15 1.0 0.001
Sub5 2000 0.30 1.02 null 0.80 0.60 null 3.9 × 10−5 2.6 × 10−5 0.05 39.3 0.08 0.15 1.0 0.001

DE_Q5_P25
Sub3 743 0.10 0.60 null 0.80 0.50 null 3.9 × 10−5 2.6 × 10−5 0.05 39.3 0.08 0.15 1.0 0.001

0.96 1.03 1.24Sub4 2000 0.30 0.68 null 0.80 0.60 null 3.9 × 10−5 2.6 × 10−5 0.05 39.3 0.08 0.15 1.0 0.001
Sub5 2000 0.30 1.20 null 0.80 0.60 null 3.9 × 10−5 2.6 × 10−5 0.05 39.3 0.08 0.15 1.0 0.001

DE_Q5_P50
Sub3 2000 0.30 1.03 null 0.80 0.60 null 3.9 × 10−5 2.6 × 10−5 0.05 39.3 0.08 0.15 1.0 0.001

0.87 1.08 1.38Sub4 2000 0.30 0.82 null 0.80 0.60 null 3.9 × 10−5 2.6 × 10−5 0.05 39.3 0.08 0.15 1.0 0.001
Sub5 2000 0.30 1.01 null 0.80 0.60 null 3.9 × 10−5 2.6 × 10−5 0.05 39.3 0.08 0.15 1.0 0.001

Table A6. The results of the 3BRC scenario, which includes three types of a bio-retention cell.

3BRC
Results

A D1 D2 D3 VF1 VF2 VF3 K2S K3S SH2 HCO IMC2 FC af_max af_k NSE TVR PFR

Design
event

DE_Q5_P10
Sub3 500 0.10 0.60 0.15 0.80 0.45 0.23 1.4 × 10−5 2.6 × 10−5 0.05 39.3 0.08 0.15 1.0 0.001

0.99 0.93 0.95Sub4 500 0.10 0.63 0.90 0.80 0.45 0.20 1.4 × 10−5 2.6 × 10−5 0.05 39.3 0.08 0.15 1.0 0.001
Sub5 2000 0.30 0.69 0.90 1.00 0.60 0.26 3.9 × 10−5 2.6 × 10−5 0.05 39.3 0.08 0.15 1.0 0.001

DE_Q5_P25
Sub3 500 0.10 0.69 0.90 0.80 0.45 0.29 3.9 × 10−5 2.6 × 10−5 0.05 39.3 0.08 0.15 1.0 0.001

0.97 1.01 1.17Sub4 2000 0.30 0.76 0.30 1.00 0.60 0.40 3.9 × 10−5 2.6 × 10−5 0.05 39.3 0.08 0.15 1.0 0.001
Sub5 2000 0.30 1.15 0.90 1.00 0.60 0.23 3.9 × 10−5 2.6 × 10−5 0.05 39.3 0.08 0.15 1.0 0.001

DE_Q5_P50
Sub3 2000 0.12 0.66 0.27 0.80 0.60 0.37 3.9 × 10−5 2.6 × 10−5 0.05 39.3 0.08 0.15 1.0 0.001

0.91 1.10 1.37Sub4 2000 0.30 0.88 0.65 1.00 0.60 0.36 3.9 × 10−5 2.6 × 10−5 0.05 39.3 0.08 0.15 1.0 0.001
Sub5 2000 0.30 0.94 0.46 1.00 0.60 0.40 3.9 × 10−5 2.6 × 10−5 0.05 39.3 0.08 0.15 1.0 0.001
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Table A7. The results of the 3GR scenario, which includes three types of a green roof.

3GR
Results

A width slope n1 n3 D1 D2 D3 VF1 VF2 VF3 K2S K3S SH2 HCO IMC2 FC af_max af_k NSE TVR PFR

Design
event

DE_Q5_P10
Sub3 24,000 2400 0.02 0.180 0.023 0.000 0.050 0.050 0.99 0.45 0.40 3 × 10−6 null 0.05 39.3 0.08 0.15 1.0 0.001

1.00 0.99 1.02Sub4 24,000 2400 0.02 0.174 0.020 0.000 0.050 0.019 0.99 0.45 0.40 3 × 10−6 null 0.05 39.3 0.08 0.15 1.0 0.001
Sub5 24,000 2400 0.02 0.188 0.019 0.000 0.050 0.013 1.00 0.45 0.34 3 × 10−6 null 0.05 39.3 0.08 0.15 1.0 0.001

DE_Q5_P25
Sub3 24,000 2400 0.02 0.206 0.020 0.066 0.142 0.041 0.87 0.60 0.21 3 × 10−6 null 0.05 39.3 0.08 0.15 1.0 0.001

1.00 1.00 1.02Sub4 24,000 2400 0.02 0.400 0.010 0.000 0.050 0.010 1.00 0.45 0.20 3 × 10−6 null 0.05 39.3 0.08 0.15 1.0 0.001
Sub5 24,000 2400 0.02 0.149 0.010 0.068 0.144 0.035 0.80 0.58 0.20 3 × 10−6 null 0.05 39.3 0.08 0.15 1.0 0.001

DE_Q5_P50
Sub3 24,000 2400 0.02 0.242 0.015 0.003 0.141 0.036 1.00 0.54 0.20 3 × 10−6 null 0.05 39.3 0.08 0.15 1.0 0.001

1.00 1.01 1.001Sub4 24,000 2400 0.02 0.304 0.030 0.036 0.139 0.026 0.87 0.60 0.24 3 × 10−6 null 0.05 39.3 0.08 0.15 1.0 0.001
Sub5 24,000 2400 0.02 0.102 0.030 0.073 0.137 0.011 0.88 0.60 0.30 3 × 10−6 null 0.05 39.3 0.08 0.15 1.0 0.001
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23. Koc, K.; Ekmekcioğlu, Ö.; Özger, M. An integrated framework for the comprehensive evaluation of low impact development

strategies. J. Environ. Manag. 2021, 294, 113023. [CrossRef]
24. Shahed Behrouz, M.; Zhu, Z.; Matott, L.S.; Rabideau, A.J. A new tool for automatic calibration of the Storm Water Management

Model (SWMM). J. Hydrol. 2020, 581, 124436. [CrossRef]
25. Zhu, Z.; Chen, Z.; Chen, X.; Yu, G. An assessment of the hydrologic effectiveness of low impact development (LID) practices for

managing runoff with different objectives. J. Environ. Manag. 2019, 231, 504–514. [CrossRef]
26. Doherty, J.; Hunt, R.; Tonkin, M. Approaches to highly parameterized inversion: A guide to using PEST for model-parameter and

predictive-uncertainty analysis. US Geol. Surv. Sci. Investig. Rep. 2011, 2010, 71.
27. Džeroski, S.; Todorovski, L. Equation discovery for systems biology: Finding the structure and dynamics of biological networks

from time course data. Curr. Opin. Biotechnol. 2008, 19, 360–368. [CrossRef] [PubMed]

http://doi.org/10.1080/1573062X.2014.916314
http://doi.org/10.1016/j.landurbplan.2018.02.001
http://doi.org/10.1002/clen.201300225
http://doi.org/10.1016/j.watres.2020.116780
http://doi.org/10.3390/w12123484
http://doi.org/10.1016/j.watres.2012.12.033
http://doi.org/10.1016/j.ecoleng.2015.09.010
http://doi.org/10.3390/w11101992
http://doi.org/10.1016/j.ijsrc.2018.04.005
http://doi.org/10.1016/j.ecohyd.2020.03.002
http://doi.org/10.1016/j.scitotenv.2021.147592
http://doi.org/10.1103/PhysRevE.84.046317
http://doi.org/10.1088/1742-5468/2010/03/P03026
http://doi.org/10.1111/jfr3.12625
http://doi.org/10.1016/j.envsoft.2017.06.021
http://doi.org/10.1016/j.jhydrol.2015.06.050
http://doi.org/10.1016/j.jhydrol.2015.12.011
http://doi.org/10.1061/JSWBAY.0000817
http://doi.org/10.1016/j.watres.2018.09.009
http://doi.org/10.1007/s10661-020-08338-7
http://doi.org/10.1016/j.jenvman.2021.113023
http://doi.org/10.1016/j.jhydrol.2019.124436
http://doi.org/10.1016/j.jenvman.2018.10.046
http://doi.org/10.1016/j.copbio.2008.07.002
http://www.ncbi.nlm.nih.gov/pubmed/18672061


Water 2021, 13, 2268 26 of 26

28. Atanasova, N.; Todorovski, L.; Džeroski, S.; Kompare, B. Constructing a library of domain knowledge for automated modelling
of aquatic ecosystems. Ecol. Modell. 2006, 194, 14–36. [CrossRef]
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