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Abstract: Nowadays, water savings on industrial plants have become a significant concern for
various plants and sections. It is vitally essential to propose applicable and efficient techniques to
retreat produced water from onshore and offshore production units. This paper aimed to implement
the PFF (Photo Fenton Flotation) method to optimize the water treatment procedure, as it is a two-
stage separation technique. The measurements were recorded for the HF (hydraulic fracturing) and
CEOR (chemically enhanced oil recovery) methods separately to compare the results appropriately.
To assure the efficiency of this method, we first recorded the measurements for five sequential days.
As a result, the total volume of 2372.5 MM m3/year of water can be saved in the HF process during
the PFF treatment procedure, and only 20% of this required fresh water should be provided from
other resources. On the other hand, the total volume of 7482.5 MM m3/year of water can be saved
in CEOR processes during the PFF treatment procedure, and only 38% of this required fresh water
should be provided from other resources. Therefore, the total water volume of 9855 MM m3 can be
saved each year, indicating the efficiency of this method in supplying and saving the water volume
during the production operations from oilfield units.

Keywords: water treatment; CEOR; HF; PFF method; water saving

1. Introduction

Regarding the enormous demand of various industrial plants for water supplies and
the dependency of human life on water, it is essential to be more conservative and careful
about its consumption [1–5]. Moreover, it can cause droughts worldwide due to the lack
of water supply to feed forests [6–10]. This is the main issue that researchers have tried
to address in current decades, to increase the efficiency and accuracy of water treatment
methods [11–13]. One of the most practical ways to reduce the water demand for industrial
plants is to treat produced water to eliminate virtually the high water supply expenses from
other resources [14–18]. For example, petroleum industries are one of the largest industrial
plants worldwide that require water for their operations [19,20]. As the produced water
contains hazardous materials and can pose significant environmental problems, it cannot
be reused without retreatment [21–30]. Therefore, the use of treated water to continue the
operations should be strictly promoted by the World Health Organization to [31–40]. These
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hazardous materials consisted of solid and heavy metals, chemical agents in produced
water that might be highly toxic to the environment [41–51].

There are two main processes in petroleum industries that require large quantities of
water to proceed with operations [51–55]. These procedures aim to increase the oil produc-
tion to supply the necessary demand for industrial plants to crude oil [56–58]. Hydraulic
fracturing is an essential process in petroleum industries that requires a large volume of
water to create a fracturing fluid [59–63]. In this process, oil production has been increased
by enlarging the previous and tight pores or creating new pore channels to simplify the
oil mobilization through porous media [64–68]. As the fracturing fluid has been returned
to the surface after the HF process, it should be treated in surface treatment facilities to
remove solid and chemical particles in flow backwater. Therefore, an optimum and effi-
cient method would be essential to provide the maximum water savings in the treatment
performances [69–71]. These water savings can ensure the survival of several inhabitant
and reduce the unnecessary expenses of freshwater supply. Another production operation
that required water to continue its processes is CEOR, as water would be an essential
part of preparing chemical agents such as polymers, foams, and surfactants [72–74]. The
reason for this concerns the aqueous solution that needs to be provided for CEOR methods,
as polymers and surfactants are in the form of powders [75–77]. Therefore, to control
the processes in underground formations, it is crucial to use chemical agents as aqueous
solutions [77]. Due to chemical agents’ inflow backwater, which might be combined with
reservoir chemical components, it is necessary to have adequate separation and treatment
processes to remove most of these components [78]. This can help eliminate the hazardous
impact of these materials when disposed of in the environment. The PFF method is con-
sidered the applicable method for onshore and offshore plants, as they treat water in two
primary and secondary stages in different sections [79–84].

Coonrod et al. (2020) proposed an analytic review on the efficient and applicable
treatment processes for Bakken shale oilfield to define the proper technique in water
treatment performances among various separation and treatment techniques. They found
that the U-PW method is the most applicable and efficient technique for water treatment in
shale oilfields, rather than floatation, desalination, and oxidation methods [85]. Due to the
lack of experimental and field application data for water treatment processes, especially in
onshore plants, we aimed to implement the PFF method to optimize the water treatment
procedure as a two-stage separation technique. The measurements were recorded for the
HF and CEOR methods separately to compare the results appropriately. To assure the
efficiency of this method, we first recorded the measurements for five sequential days.

2. Methods

One of the most efficient and applicable water treatment processes in onshore and
offshore drilling operation plants is the PFF (Photo Fenton Flotation) method. In this
method, ultraviolent hydrogen peroxide radiation was simultaneously implemented to
treat the produced water from production wells. In this method, the degradation of organic
pollutants was done by the generation of hydroxyl radicals during the processes, and it
can help treat the water. Furthermore, the following steps were done sequentially to retreat
the water during the production operations, and the facility services should be near the
production wells to virtually eliminate the unnecessary expenses of water transfer (see
Figure 1).

(1) Produced flow-back water from production wells was transferred to the system.
Specific gauges measured the volume of produced water to measure the final stages of
water retreatment accurately. The produced water was transferred to API (American
Petroleum Institute) separators to separate solid phases, gas, water, and other simple
components from produced water. This stage is called primary treatment.

(2) Then, the water separated at this stage reacted with chemical additives to adsorb
small ions and settle them.
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(3) Next, the treated water is moved to the dissolved gas floatation section, which can
cause the elimination of the gas content by the floatation method in the system. Again,
a chemical additive has been added to the system in this section to settle the ions.

(4) In this stage, the treated water moves toward the metal removal section consisting of
several screen packs with various meshes.

(5) Then, it is transferred to the sand filtrations section to eliminate the micro- and
nanoparticles in the water content. This section is known as the second separation
section, and the treated water has been measured by sensitive gauges that can be used
in the calculation of treated water.

Figure 1. PFF method to retreat produced water.

In the PFF method, we used gauges at the inlet and outlet of the system to measure
produced water. We repeated the measurements several times to check the accuracy of
the implemented system. Therefore, the total volume of treated water is calculated as the
following equation. It should be noted that produced water after each process is calculated
separately to distinguish the efficiency and adequacy of the PFF treatment method.

Total treated water (MM m3) = (Produced water before entering the primary separation) − (Produced water after
the secondary separation)

(1)

Finally, the total treated water is the summation of the treated water in each method to overview
the total produced water and how much of this water volume can be saved to remove the required
freshwater.
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3. Results and Discussion
3.1. Water Treatment from HF Method

Regarding the water supply requirement for the commencement of the HF procedure, it is
vitally essential to estimate the required water not to postpone the operations. Therefore, production
engineers should adequately define the required water, as water is the central part of fracturing
fluid. In this part, we have focused on the water retreatment after the HF procedure to estimate how
much water volume can be saved and how much freshwater volume is required in the system. First,
we divided the wells into oil and gas wells to be more distinguishable for each well. Then, as the
treatment process may take a long time, we recorded our measurement for five sequential days by
entering the specific produced water volume in the PFF system to check the system’s accuracy. This
is shown in more detail in Table A1, in the Appendix A. Next, the average volume after these five
sequential daily measurements is calculated and statistically depicted in Table 1.

Table 1. A summary of water treatment savings for HF procedure.

Well no.

Avg. Pro.
Water in PFF

System
(MM m3/Day)

The Total
Volume of
Required

Water
(MM m3/Day)

Saving Water
(MM m3/Day)

Saving Water
(MM m3/Year)

Saving Water
(%)

Required
Freshwater

(%)

W_Oil#A 3.25 4.5 1.25 456.25 72 28
W_ Oil#B 4 5.25 1.25 456.25 76 24
W_ Oil#C 4.75 6 1.25 456.25 79 21
W_ Oil#D 3 4 1 365 75 25
W_ Oil#E 3 3.5 0.5 182.5 86 14
W_Gas#F 3.5 3.75 0.25 91.25 93 7
W_ Gas#G 2 2.5 0.5 182.5 80 20
W_ Gas#H 2.25 2.75 0.5 182.5 82 18

Total volume 25.75 32.25 6.5 2372.5 - -
Average Percent - - - - 80 20

As shown in Table 1, in this field, the total volume of 2372.5 MM m3 of water can be saved
during the PFF treatment procedure, and only 20% of this required fresh water should be provided
from other resources. It is indicated that this method is efficient in onshore and offshore plants.

3.2. Water Treatment from CEOR Methods
CEOR (Chemical enhanced oil recovery) methods are considered methods to improve the oil

production from underground formations. In this part, we calculate the treated water for each well
(see Table 2). As shown in Table 2, in this field, the total volume of 7482.5 MM m3 of water can be
saved during the PFF treatment procedure, and only 38% of this required fresh water should be
provided from another resource. It is indicated that this method is efficient in onshore and offshore
plants.

The summary of results was shown schematically in Figure 2. As shown in Figure 2, due to the
large volume of chemical agents in CEOR methods mixed with formation chemical components, the
value of saving water is lower than in the HF processes.
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Table 2. A summary of water treatment savings for the CEOR procedure.

Well no.

Avg. Pro.
Water in PFF

System
(MM m3/Day)

The Total
Volume of
Required

Water
(MM m3/Day)

Saving Water
(MM m3/Day)

Saving Water
(MM m3/Year)

Saving Water
(%)

Required
Freshwater

(%)

W_Oil#A 10 15.5 5.5 2007.5 65 35
W_ Oil#B 10 13.75 3.75 1368.75 73 27
W_ Oil#C 5.25 13.25 8 2920 40 60
W_ Oil#D 3.75 5 1.25 456.25 75 25
W_ Oil#E 4.75 6.75 2 730 70 30

Total volume 33.75 54.25 20.5 7482.5 - -
Average Percent - - - - 62 38

Figure 2. Summary of results.

4. Conclusions
The PFF (Photo Fenton Flotation) treatment method is considered efficient and applicable to

improve water retreatment processes, as providing sustainable freshwater management is essential
in onshore and offshore plants. To assure the efficiency of this method, we first recorded the
measurements for five sequential days. As a result, the total volume of 2372.5 MM m3 of water can
be saved in the HF process during the PFF treatment procedure, and only 20% of this required fresh
water should be provided from other resources. On the other hand, the total volume of 7482.5 MM
m3 of water can be saved in CEOR processes during the PFF treatment procedure, and only 38% of
this required fresh water should be provided from other resources.
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Appendix A

Table A1. Daily measurement of produced water in PFF system in HF process in MM m3.

Well no. Day #1 Day #2 Day #3 Day #4 Day #5

W_Oil#A 3.12 3.24 3.04 3.49 3.63
W_ Oil#B 3.89 4.17 4.11 3.94 4.35
W_ Oil#C 4.62 4.52 4.86 4.93 4.58
W_ Oil#D 2.78 3.16 2.89 3.06 3.3
W_ Oil#E 3.01 2.84 2.94 2.93 3.13
W_Gas#F 3.43 3.56 3.24 3.37 3.32
W_ Gas#G 1.86 1.75 1.89 1.94 1.97
W_ Gas#H 2.14 2.35 2.28 2.23 2.08
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