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Abstract: This study investigated the strength and limitations of two widely used multi-model
averaging frameworks—Bayesian model averaging (BMA) and reliability ensemble averaging (REA),
in post-processing runoff projections derived from coupled hydrological models and climate down-
scaling models. The performance and weight distributions of five model ensembles were thoroughly
compared, including simple equal-weight averaging, BMA, and REAs optimizing mean (REA-mean),
maximum (REA-max), and minimum (REA-min) monthly runoff. The results suggest that REA
and BMA both can synthesize individual models’ diverse skills with comparable reliability, despite
of their different averaging strategies and assumptions. While BMA weighs candidate models by
their predictive skills in the baseline period, REA also forces the model ensembles to approximate
a convergent projection towards the long-term future. The type of incorporation of the uncertain
future climate in REA weighting criteria, as well as the differences in parameter estimation (i.e.,
the expectation maximization (EM) algorithm in BMA and the Markov Chain Monte Carlo sam-
pling method in REA), tend to cause larger uncertainty ranges in the weight distributions of REA
ensembles. Moreover, our results show that different averaging objectives could cause much larger
discrepancy than that induced by different weighting criteria or parameter estimation algorithms.
Among the three REA ensembles, REA-max most resembled BMA because the EM algorithm of
BMA converges to the minimum aggregated error, and thus emphasize the simulation of high flows.
REA-min achieved better performance in terms of inter-annual temporal pattern, yet at the cost of
compromising accuracy in capturing mean behaviors. Caution should be taken to strike a balance
among runoff features of interest.

Keywords: runoff projection; probabilistic multi-model ensemble; Bayesian model averaging; relia-
bility ensemble averaging; climate change

1. Introduction

Climate change is significantly altering runoff characteristics and thus affects water
availability for both ecosystem and humans [1–5]. Due to the gap between spatial scales in
global climate models (GCMs) and regional hydrological simulations, climate under future
scenarios are usually reanalyzed with downscaling tools before fed into hydrological mod-
els for runoff projections. Various downscaling techniques and hydrological models have
been developed and applied for understanding and quantifying climate change impacts
on runoff [6,7]. Downscaling methods fall into two categories that focus on atmospheric
physics and empirical statistics respectively, known as dynamical downscaling and sta-
tistical downscaling, between which statistical downscaling methods have been widely
adopted by hydrologists for their accessibility, efficiency, and flexibility [8–10]. Hydro-
logical models range from simple water balance models (Mpelasoka et al., 2008), large
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scale energy-water balance equations [11], and conceptual rainfall-runoff models [12,13]
to more complex landscape distributed models [14]. Previous studies suggest that no
single model is perfect, and it is necessary to compare the strength and weakness of di-
verse downscaling methods and hydrological models before applying them on specific
circumstances [9,15–17].

Multi-model-ensemble approaches have been employed to contain model biases and
evaluate uncertainties. Multi-model-ensemble strategies can exploit the diversity of skillful
predictions and enhance the predictive capabilities from a perspective of either point
forecast [18,19] or density forecast [20,21]. Particularly, probabilistic multi-model-ensemble
(PMME) approaches that synthesize outputs from different GCMs [22–24], regional climate
models (RCMs) [25,26], statistical downscaling models [27,28], or hydrological models [20]
are receiving a surge of attention in the recent decades. The key of PMME is to measure the
weights of each model and to produce proper probability density functions (pdfs) of the
variables of interest, which is usually achieved through Bayesian approaches [29]. The basic
idea is to obtain the posterior distributions of parameters of interest from pre-specified
prior probability distributions and likelihood functions based on the Bayes’ theorem.

It has been well established that PMME methods can improve hydrological modeling
across different climates or terrestrial environments. However, compared to simulations
aiming at reproducing historical hydrological variations, some particular issues are in-
volved in future-oriented runoff projections. For example, the performance of hydrological
models can be largely affected by the adaptability of downscaling techniques in regional
simulations [8]. PMME approaches such as Bayesian Model Averaging (BMA) have been
used to generate predictive distributions from either different climate models [30] or hy-
drological models [20,31]. However, rarely have there been experiments of probabilistically
combining downscaling and hydrological modeling approaches based on different sta-
tistical philosophy. The evaluation of hydrological models can be largely distorted by
uncertainties in climate downscaling, which can be much larger than uncertainties in
retrospective hydrological modeling [32]. Besides, multi-model-ensemble hydrological
modeling usually uses weighting criteria that measures accuracy in capturing magnitudes
and timings of historical runoff [18,21]. However, the capability in reproducing historical
events is not the only expected merit in hydro-climatic simulations. Convergence in the
multi-model projections of future changes are also considered critical for model selection
in PMME method such as the Reliability Ensemble Averaging (REA) [6,33]. It is not clear
how such different weighting strategies would affect the overall performance of PMME
modeling and the relative contributions of individual models.

This study aims to investigate the merits of BMA and REA in post-processing runoff
projections derived from multiple combinations of downscaling models and hydrological
models. An integrated evaluation framework was established for exploring the usefulness
of individual climate downscaling models, hydrological models, and their probabilistic
ensembles in regional runoff projection. We used two statistical downscaling models,
including a regression-based approach (Statistical Down Scaling Model, SDSM) [34] and
a weather generator (Long Ashton Research Station Weather Generator, LARS-WG) [35],
and three hydrological models developed in Sweden (i.e., the Hydrologiska Byråns Vat-
tenbalansavdelning model, HBV-light) [36,37], Australia (i.e., the SIMHYD model) [9,38],
and China (i.e., the Xinanjiang, XAJ model) [39] respectively, for modeling experiments.
Combinations of these downscaling models and hydrological models were synthesized
through the BMA and REA schemes to explore the effectiveness of probabilistic ensembles.

2. Methods
2.1. Data

The upper Huai River basin above Bengbu station in eastern China (121,330 km2)
was selected as a case study for model testing (Figure 1). The Huai River basin (30◦55′–
36◦36′ N, 111◦55′–121◦25′ E) is located between the Yangtze River basin and the Yellow
River basin, with subtropical and temperate monsoon climates in the south and north of
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the Huai River, respectively [40]. The mean annual precipitation reaches 883 mm and most
rainfall (50–80%) occurs between June and September. The mean annual temperature and
evaporation are 11–16 ◦C and 900–1500 mm.

Figure 1. Distribution of meteorological stations, runoff station and Thiessen polygons in the upper
Huai River basin. Figure adapted from Duan et al. [32].

Datasets used in this study include: (1) daily precipitation, temperature, and evapora-
tion at 14 meteorological stations from January 1961 to December 2000 (China Meteoro-
logical Administration, http://data.cma.cn/data, accessed on 19 July 2020); (2) monthly
runoff at the Bengbu station (Anhui Water Bureau, http://slt.ah.gov.cn/, accessed on
19 July 2020) from January 1961 to December 2000; (3) large-scale atmospheric predictors
(i.e., air pressure, velocity, vorticity, wind, humidity) obtained from the NCEP/NCAR
reanalysis data [41] for the time periods of 1961–2000 and 2060–2099; and (4) daily precip-
itation, temperature, and large-scale atmospheric predictors projected by the Met Office
climate prediction model (HadCM3) model in the historical period 1961–2000 and fu-
ture period 2060–2099 under the A2 scenario of Special Report on Emissions Scenarios
(https://www.cics.uvic.ca/scenarios/index.cgi, accessed on 19 July 2020).

2.2. Statistical Downscaling of Regional Climate

SDSM is a hybrid downscaling technique based on multiple linear and exponential
regression equations [34]. A major improvement distinguishing SDSM from traditional
regression methods is that a precipitation occurrence module similar to stochastic weather
generators was nested in the precipitation downscaling process. A linear regression equa-
tion with a uniformly distributed random number was used to represent the probability of
precipitation occurrence, and an exponential regression model was used to simulate the
precipitation magnitude. The downscaling using SDSM was performed with the follow-
ing steps: (1) A total of 26 large-scale atmospheric variables were obtained as predictor
candidates, including air pressure, airflow strength, velocity, vorticity, wind direction, di-
vergence, and humidity at the heights of near surface, 500 hPa, and 850 hPa. (2) Data of 390
(26 × 15) candidates at the 15 grids (3 × 5, 3.75◦ × 2.5◦) overlaying each target meteorolog-
ical station were collected as initial predictors, and then the 30 most correlated candidates
were extracted based on Spearman’s rank correlation coefficient. (3) The 30 candidates
were further screened by a principal component analysis, and the numbers of predictors
were reduced to less than 10 with the cumulative explained variance ratio reaching 90%. (4)
The selected predictors were used to establish their regression relationships with observed
precipitation and temperature at each station.

LARS-WG is “serial” stochastic weather generator that uses semi-empirical distribu-
tions with pre-defined intervals to simulate the temporal distributions of predictands [35].
LARS-WG models for daily precipitation and temperature were specifically established for
each site and each month in this study. We first separated the historical daily series into
wet and dry days and calculated the probability of precipitation occurrence in each month.
In wet days, 23 intervals were used to approximate the distributions of daily precipitation

http://data.cma.cn/data
http://slt.ah.gov.cn/
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magnitudes with particular emphasis on extreme events, including 19 intervals dividing
2–98% evenly, two intervals close to 0 (0–1% and 1–2%), and two intervals close to 1 (98–99%
and 99–100%). The time series of wet and dry days were also used to establish temperature
downscaling models separately. For generations of future climate, the parameters were first
corrected using the delta change method based on changes in mean values projected by
the GCM. More details of data processing and model validation of SDSM and LARS-WG
can be found in our earlier studies [19,42].

2.3. Hydrological Modeling

We divided the study area into 14 Thiessen polygons with one meteorological station
representing each polygon, and the hydrological processes from precipitation, evapotran-
spiration, and infiltration to runoff were simulated for each polygon separately at daily
scale. The runoffs generated from each polygon were summed up as the total runoff to
proximate the streamflow observed at the Bengbu station. All of the three models have
showed good performance in the study area with the Nash-Sutcliff coefficient exceeding
0.8, and thus are suitable for exploring the uncertainties derived from different hydrolog-
ical model structures [32]. Statistically downscaled climate data were used to drive the
calibrated hydrological models to simulate runoff under the future scenario. Six combina-
tions of the statistical downscaling models and hydrological models were established for
model inter-comparison and probabilistic runoff projection, including SDSM and HBV (SD-
HBV), SDSM and SIMHYD (SD-SIMHYD), SDSM and XAJ (SD-XAJ), LARS-WG and HBV
(LW-HBV), LARS-WG and SIMHYD (LW-SIMHYD), and LARS-WG and XAJ (LW-XAJ).

2.4. Probabilistic Multi-Model-Ensemble Runoff Projection

We used two PMME methods with different underlying assumptions, i.e., BMA and
REA, to synthesize the runoff projections from the baseline period 1961–2000 to the future
period 2060–2099 derived from the six model combinations. Main features of the climate
downscaling models, hydrological models, and model ensemble methods are summarized
in Table 1.

Table 1. Comparison of the methods used in this study.

Procedure Model Features

Climate downscaling

SDSM [34]
Data required—Historical precipitation, temperature, and large-scale predictors

Model structure—Precipitation occurrence and magnitude fitted by multiple
regressions

LARS-WG [35]
Data required—Historical precipitation and temperature

Model structure—Precipitation occurrence and magnitude fitted by semi-empirical
distributions; extreme events represented by specifying precipitation intervals

Hydrological
modeling

HBV [36]
Water storage components—Upper and lower groundwater storage

Runoff generation regime—Saturation excess
Runoff components—Peak, intermediate, and baseflow

SIMHYD [38]
Water storage components—Soil moisture storage and groundwater storage

Runoff generation regime—Saturation excess and infiltration excess
Runoff components—Infiltration excess runoff, interflow, and baseflow

XAJ [39]

Water storage components—Upper, lower, and deep tension water storage, free
water storage

Runoff generation regime—Saturation excess
Runoff components—surface runoff, interflow, groundwater flow

Model ensemble

BMA [20,30]
Uncertainty interpretation—Bayesian probability

Weighting criteria—Models’ relative contributions to predictive skill
Parameter estimation—Expectation maximization algorithm

REA [33,43]
Uncertainty interpretation—Bayesian probability

Weighting criteria—Model bias and model convergence
Parameter estimation—Gibbs-Metropolis algorithm
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2.4.1. Bayesian Model Averaging

BMA was proposed as a post-processing ensemble approach to correct the under-
dispersion of spread-error correlation in probabilistic weather forecasting [30]. It was
assumed that more reliable prediction on the point estimate can be acquired by weighing
and combining several ensemble members of interest according to their bias against the
observations. The input training datasets of BMA include prediction from each individual
models and the observed series. The output is the calibrated set of weights reflecting the
relative contributions to predictive skill of each ensemble member and the corresponding
variance, which are used to construct a probability density function (pdf) accompanied by
the weights and produce ensemble predictions. In a situation {M1, M2, . . . , Mk} are the
candidate predictions, the pdf of the BMA prediction can be obtained based on the law of
total probability:

p(y|M1, M2, . . . , Mk) =
K

∑
k=1

p(Mk|D) · pk(y|Mk, D) (1)

where D is the training dataset; p(Mk|D) is the posterior probability of Mk, which equals

the weight wk, and
K
∑

k=1
wk = 1. The posterior mean and variance of the ensemble prediction

are as follows:

E[y|M1, M2, . . . , Mk] =
K

∑
k=1

wk ·Mk (2)

Var[y|M1, M2, . . . , Mk] =
K

∑
k=1

wk ·
(

Mk −
K

∑
i=1

wi ·Mi

)
+

K

∑
k=1

wk · σ2
k (3)

where σ2
k is the variance of a single model. The BMA variance is interpreted as the sum of

variances contributed by between-model uncertainty and within-model uncertainty.
Both simulated and observed runoff data are first transformed to the Gaussian dis-

tribution using the Box-Cox method prior to the BMA procedure, so that the conditional
probability distribution of each member pk(y|Mk, D) can be treated as Gaussian. The
BMA weights and variance are then estimated using the expectation maximization (EM)
algorithm, which is iterative and converges to a local maximum likelihood. The detailed
description of the BMA method and EM algorithm can be found in Raftery et al. [30] and
Duan et al. [20].

2.4.2. Reliability Ensemble Averaging

We used a Bayesian-based REA method proposed by Tebaldi et al. [43,44]. A funda-
mental difference between the Tebaldi method and the original REA method [33] is that
the weights are treated as random quantities to account for uncertainty in the estimation.
The method has been successfully used to evaluate the probability distributions of future
changes in temperature [45] and precipitation [46] projected by different climate models.
The underlying assumptions of this method are that the projections have a symmetric
distribution centering the “true value”, but with an individual variability to be regarded
as a measure of how well each model approximates the climate response to the given set
of natural and anthropogenic forcings [44]. We assume that such hypothesis also applies
to runoff projections, because previous model inter-comparison studies on both climate
models [47] and hydrological models [48] have demonstrated that the mean of multi-model
ensemble can achieve better overall validation properties than individual members.

(1) Likelihoods
The inputs include three datasets: X0, observed runoff in the baseline period; Xi,

runoff simulated by the ith ensemble member in the baseline period, i = 1, 2, 3, . . . , 6; Yi,
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runoff simulated by the ith ensemble member in the future period. Gaussian distributions
are assumed for X0, Xi and Yi, and then the likelihoods are specified as:

X0 ∼ N
(

µ, λ0
−1
)

(4)

Xi ∼ N
(

µ, λi
−1
)

(5)

Yi ∼ N
(

ν + β(Xi − µ), (θλi)
−1
)

(6)

where N
(
µ, λ−1) indicates a Gaussian distribution with mean µ and variance 1/λ. λ0

is the regional natural variability of observed series, using estimates from Giorgi and
Mearns [33,49]; µ and ν represent the true values of runoff characteristics in the baseline
and future periods, and (ν− µ) can be used to represent the expectation of runoff change in
the future. The reciprocal of the variance λi is referred to as the precision of the distribution
of Xi. β is used to introduce the correlation between baseline and future runoff responses.
The random variable θ acts as the inflation-deflation factor in the precision of ensemble
member when comparing simulations of the baseline to the future.

(2) Prior distributions
The parameters µ, ν, β, λi and θ are assigned to uninformative priors. The true

values of µ, ν and β are assumed to have uniform prior densities on the real line. λi and
θ follow two-parameter Gamma distributions λi ∼ Ga(a, b) and θ ∼ Ga(c, d), where
a = b = c = d = 0.001, that translate into distributions with mean 1 and variance 1000.
Such unity mean and large variance over the positive real line is used to create extremely
diffuse distributions that have the required uninformative quality.

(3) Posterior distributions
Through Bayes’ theorem, the joint posterior distribution for the parameters µ, ν, β, λi,

θ resulting from the likelihoods and prior distributions is given by:
6

∏
i=1

λa−1
i e−bλi × λiθ

1/2 exp
{
−λi

2

[
(Xi − µ)2 + θ(Yi − ν)2

]}
× θc−1e−dθ× exp

{
−λ0

2
(X0 − µ)2

}
(7)

Then, the forms of marginal posterior distributions for each individual parameter can
be specified as functions of other parameters. The conditional posterior distribution of λi
is a Gamma function with mean:

λi =
a + 1

b +
{
(Xi − µ)2 + θ[Yi − ν− β(Xi − µ)]2

}
/2

(8)

Similarly derived, the conditional distribution of µ and ν are Gaussian distributions
with mean as:

µ̃ =
ΣλiXi − θβΣλi(Yi − v− βXi) + λ0X0

Σλi + θβ2Σλi + λ0
(9)

ν̃ =
Σλi[Yi − β(Xi − µ)]

Σλi
(10)

and variance as:
σµ =

1
Σλi + θβ2Σλi + λ0

(11)

συ =
1

θΣλi
(12)

(4) Parameter estimation
The joint posterior distribution is too complex to be computed by an analytical solution.

Therefore, the Markov Chain Monte Carlo (MCMC) method is used to estimate the posterior
distributions statistically by generating a large number of random samples. In this study,
50,000 groups of parameters were stochastically generated through the Gibbs-Metropolis
algorithm (http://www.image.ucar.edu/~nychka/REA, accessed on 19 July 2020) [50].

http://www.image.ucar.edu/~nychka/REA
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The first 25,000 samples were discarded as the burn-in period, and the other 25,000 were
refined into 5000 samples by saving every 50th to avoid correlation between the successive
values [46].

2.4.3. Weighting Strategies

The BMA ensemble simulation is the average of individual simulations weighted by
the likelihood that each individual model is correct given the observations. The weight of
each BMA member (wk) is measured by the agreement between the model simulations and
the observations, which is calculated as the summation of bias over time, as:

σ2
k =

1
K

T

∑
t=1

(
K
∑

k=1
(yt − fk,t)

2
)

T
(13)

where T is the total number of data points in the training period, K is the number of
ensemble members, yt and fk,t are the observed and simulated runoff by the kth model. The
weights are optimized through the EM algorithm towards the minimization of total bias.

Model weighting of the REA method is conducted based on two criteria: (1) Model
performance in the baseline period that measures the models’ relative skills in reproducing
historical runoff, and (2) model convergence that measures agreement among ensemble
members. The first criterion is similar to BMA that a lower bias indicates a higher model
reliability, and the bias is defined as the difference between the simulated and observed
values. The second criterion assumes that the convergence of simulations by different mod-
els for a given forcing scenario indicates reliability of robust signals. Higher convergence
implies that the predictions are less sensitive to the differences among models. In other
words, the REA weighting approach penalizes models that do not predict the same runoff
responses to climate change. We used the extracted 5000 samples of the precision parameter
λi (Equation (8)) to evaluate the usefulness of each ensemble member and the ranges of
inherent uncertainty. The precision parameters were converted to relative weights (%) as:

Wi = 100× λi/
6
Σ

i=1
λi (14)

2.5. Evaluation Metrics of Model Performance

The performance of individual models is evaluated from two perspectives, i.e., ac-
curacy in reproducing historical runoff characteristics, and probability distributions of
weights in multi-model ensembles. Traditionally, performance of rainfall-runoff models
is evaluated by indices measuring errors in serial runoff forecast, such as Nash-Sutcliffe
efficiency (NSE) and root mean square error (RMSE). These indices are sensitive to the
time scale of the simulations. However, accurate simulation of precipitation and runoff at
daily scale is still challenging in climate change impact studies. Weather generators such
as LARS-WG put more emphasis on capturing monthly (or seasonal) means, temporal
variations, and extreme events, instead of reproducing daily values with sequence infor-
mation. Therefore, we here suggest four metrics to evaluate model performance at the
monthly scale.

(1) Relative error of mean (REM):

REM =
(

Rsim − Robs
)
/Robs (15)

where Rsim and Robs are the simulated and observed mean monthly values.
(2) Relative error of standard deviation (RES):

RES = [std(Rsim)− std(Robs)]/std(Robs) (16)
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where std(Rsim) and std(Robs) are the standard deviations of monthly runoff derived from
simulated and observed series.

(3) Quantile rank score (QRS):

QRS =

Q
∑

q=1
|Nsim(q)− Nobs(q)|

Q
∑

q=1
Nobs(q)

(17)

where Nsim(q) and Nobs(q) are the number of months with a runoff amount lying in the
range of the qth category [19]. Six categories divided by 10%, 25%, 50%, 75% and 90%
quantiles were used, and the threshold values were obtained from observed runoff. A
larger QRS indicates larger discrepancy in quantile distributions of the time series.

(4) Nash-Sutcliffe efficiency (NSE):

NSE =

N
∑

i=1

(
Robs,i − Robs

)2 −
N
∑

i=1
(Robs,i − Rsim,i)

2

N
∑

i=1

(
Robs,i − Robs

)2
(18)

where Robs,i and Rsim,i are observed and simulated monthly runoff in the ith month.

3. Results
3.1. Model Performance in the Baseline Period
3.1.1. Individual Downscaling Models and Hydrological Models

SDSM and LARS-WG both reached satisfactory accuracy in capturing precipitation
characteristics in the baseline period (Figure 2). SDSM and LARS-WG tended to underesti-
mate and overestimate the total magnitudes of precipitation, respectively. However, relative
errors in the simulations of mean and maximum daily precipitation were smaller than 10%
in most months. The two downscaling models have shown similar intra-annual variation
behaviors, except that LARS-WG predicted larger storm rainfall in July than SDSM.

Figure 2. Mean (a) and maximum (b) daily precipitation in the baseline (1961–2000) and future
periods (2060–2099) projected by the SDSM and LARS-WG downscaling models. The on-site obser-
vations, baseline simulations by SDSM, baseline simulations by LARS-WG, future simulations by
SDSM, and future simulations by LARS-WG are denoted by “Obs”, “SD-B”, “LW-B”, “SD-F”, and
“LW-F”, respectively.

The three hydrological models were calibrated and validated for the Huai River
basin in our previous studies [32]. All three hydrological models achieved good overall
performance in the baseline periods (Figure 3), with REM and RES less than 5%, QRS less
than 0.2, and NSE exceeding 0.8. We grouped the monthly runoff values into 12 months
to evaluate the models’ performance in each specific month. The results suggest different
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model superiority across the months and evaluation metrics, although HBV generally
achieved higher NSE and lower REM and RES in a majority of the months. For example,
XAJ’s performance was comparable or better than the other models in the flooding season
(April–September), yet worse in drier months from November to February.

Figure 3. Performance of hydrological models by month in the baseline period driven by observed
climate data.

3.1.2. Combinations of Downscaling and Hydrological Models

Compared to the hydrological models driven by observed climate, the results of
the six model combinations show much larger discrepancy and intra-annual variability
in capturing historical runoff characteristics (Figure 4). The bias in climate downscaling,
particularly in reproducing the magnitudes and distributions of regional precipitation, were
aggregated to the uncertainties in hydrological modeling (e.g., model structure, parameter
estimation) nonlinearly and led to an amplified uncertainty spread. Overall, LW-HBV
gained superiority in REM, RES and NSE, while LW-SIMHYD outperformed the other
model combinations in QRS. However, this pattern does not hold true when evaluating the
models’ performance for each individual month instead of over the entire training period.
For example, SD-HBV is least biased regarding RES and QRS in half of the twelve months,
showing better skills in modeling the characteristics of temporal distribution.
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Figure 4. Performance of hydrological models in the baseline period driven by climate data derived
from the SDSM and LARS-WG downscaling models.

3.2. Projected Runoff Changes in the Future
3.2.1. Projected Changes by Individual Models

We then examined the runoff changes from 1961–2000 to 2060–2099 derived from
the model combinations and their multi-model ensembles. The two climate downscaling
models project significantly discrepant precipitation due to the differences in the model
structures and underlying assumptions (Figure 2). LARS-WG follows the changing patterns
of precipitation provided by GCMs and predicts widespread decreases in precipitation
through the year. On the other hand, SDSM responds to the changes in the relevant atmo-
spheric predictors and predicts larger intra-annual variations of precipitation, suggesting
increases in precipitation from October to May and decreases from June to September.

Driven by the decreasing precipitation and rising temperature, a decline in mean
monthly runoff (Figure 5) is projected by all the six model combinations. The only increases
are found in May and June in the SDSM derived results. LW-XAJ suggests the most
notable decrease (−17.45 × 108 m3) in annual average runoff, followed by LW-SIMHYD
(−16.24 × 108 m3) and LW-HBV (−12.31× 108 m3). More dramatic changes are expected in
maximum monthly runoff, ranging from −198.67 × 108 m3 (−87%, LW-XAJ in August) to
114.00× 108 m3 (+123%, SD-SIMHYD in May). While SDSM-derived projections suggest an
increase in April–June, particularly in May, LARS-WG suggests decreases in the maximum
monthly runoff in nearly all months. Future change in minimum monthly runoff is expected
to vary from −10.81 × 108 m3 (−83%, SD-SIMHYD in July) to 11.11 × 108 m3 (+149%,
LW-HBV in August). LW-HBV and LW-SIMHYD both suggest significant increases in
minimum runoff in May and August–October.
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Figure 5. Changes in mean monthly runoff (a), maximum monthly runoff (b) and minimum monthly
runoff (c) (unit: 108 m3/month) from the baseline period to the future period projected with different
model combinations.

3.2.2. Posterior Distributions of Runoff Change

Figure 6 displays the expectation and spreads of the 90% confidence intervals of the
BMA ensemble predictions. The intra-annual variations of expected changes in mean, max-
imum, and minimum runoff indicate consistent increases in April–June and decreases in
the remaining months. The 90% confidence interval encompasses the historical observation
very well, except for a dozen outliers. In the future period, the 90% confidence interval
covers much wider spreads than that in the historical period due to the inconsistent results
from different model combinations. The uncertainty spread seems to expand upon time
in the farther future along with the increasing extreme values projected in the 2090s. The
expectation of changes in monthly runoff essentially reflects the optimized averaging of
each model’s results, and thus narrows down the uncertainty ranges of runoff change from
the individual ensemble members.



Water 2021, 13, 2124 12 of 21

Figure 6. Runoff simulations and BMA weights computed over the entire baseline period. (a), Expec-
tation and ensemble spread within the 90% confidence interval in the baseline and future periods;
(b), Projected changes in mean, maximum, and minimum monthly runoff from the baseline to the
future; (c), BMA weights of the six ensemble members.

The REA ensemble optimized through an MCMC approach projects future runoff
changes by randomly generating numerous samples. We here focus on the posterior
distributions of changes in mean, maximum, and minimum runoff (Figure 7). Changes
in mean monthly runoff demonstrate consistent decrease across the entire year. Stronger
decreasing signals are observed in June-November, where both the medians and the inter-
quartile ranges (IQRs) are below −60%. The relatively smaller uncertainty ranges in March,
July, and October indicate higher degree of consensus among the model combinations.
Contrarily, wider uncertainty spread (e.g., in May) can be explained by the contradictory
changes projected by individual models. In terms of changes in maximum runoff, positive
median values are found in April, May, and August. The divergent results in April and
August lead to larger spreads straddling the zero line. May is an exceptional case where
the box of IQR stays on the positive side. Meanwhile, the narrowest IQRs are observed in
January–March and October due to the consistent decreasing signals projected by all the
six ensemble members. On the other hand, the minimum monthly runoff is more likely to



Water 2021, 13, 2124 13 of 21

increase in May, October, and November, yet decrease in the remaining months with the
IQRs varying between −50% and zero.

Figure 7. Posterior distributions of percent change in mean (a), maximum (b), and minimum (c)
monthly runoff (in y-axis, %) from the baseline to the future period. The vertical spread of the
box–whisker plots shows the variations in runoff change randomly generated by the Markov Chain
Monte Carlo method. The boxes cover the ranges from the 25% quartile to the 75% quartile of the
distributions, with the median values marked by red lines within each box and outliers marked by
plus signs.

3.3. Uncertainties in Model Weighting

The rankings of the BMA weights of the six model combinations computed over
the baseline period (Figure 6c) are consistent with their overall performance. LW-HBV
and SD-HBV gained the largest weights of 18.8% and 18.4% respectively, followed by
LW-XAJ (18.0%), LW-SIMHYD (17.8%), and SD-SIMHYD (14.9%). It is worth noticing that
SD-XAJ also contributed 12.2%, although it seemed to be constantly outperformed by other
models with respect to the evaluation metrics. We also calculated the BMA weights for
records in each individual month to better represent different runoff regimes (Figure 8).
The BMA weights varied between 10% and 21% among the months and ensemble members,
indicating that the less effective models can also contribute significantly to the PMME runoff
projection. LW-HBV was identified as the largest contributor in March–April and June–
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August with a weight of 19%–21%. SD-HBV prevailed in May and September–November,
while LW-SIMHYD was most heavily weighted in January–February and December.

Figure 8. BMA weights (%) computed for runoff records in different months.

We calculated three sets of REA weights by optimizing the simulations of mean (REA-
mean), maximum (REA-max), and minimum (REA-min) monthly runoff, respectively
(Figures 9–11). These different optimization objectives forced the REA ensemble to put
more weight on models’ various skills. The three model combinations incorporating
LARS-WG gained significantly larger weights when emphasizing on mean runoff. The
median REA-mean weights of the largest contributor (LW-HBV in February–May, LW-
XAJ in June–July, and LW-SHIMHYD in August–January) range between 18% and 40%.
Meanwhile, models driven by SDSM gained comparable or larger weights in REA-max and
REA-min than those by LARS-WG. Among the three hydrological models, HBV and XAJ
outperformed the other models in maximum and minimum runoff projections, respectively.
SD-HBV and LW-HBV were identified as the largest contributor in five and six out of the
12 months respectively, with the highest weight reaching 40% (LW-HBV in September).
SD-XAJ contributed substantially in to projecting minimum runoff with a weight over 20%
in six months, although it was least weighted in the REA-mean and REA-max ensembles
in most of the months.

Between the schemes of BMA and REA, the different weighting criteria clearly lead
to different evaluations of the overall superiority or inferiority of each ensemble member.
Also, the Gibbs-Metropolis sampling technique used in the REA ensembles caused wider
uncertainty ranges in weight estimation. The distributions of BMA weights seem to be
more similar to the REA weights for maximum runoff. This could be explained by the
fact that the BMA weights are optimized towards minimizing the aggregated error against
the observed records in the training period. Therefore, BMA tends to force the ensemble
average to fit the high flows well, rather than mean or low flows.
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Figure 9. REA weights (%) of the six model-ensemble members in mean monthly runoff projection
derived from the posterior distributions of precision parameter. The model-ensemble members
are denoted by “SH” (SD-HBV), “SS” (SD-SIMHYD), “SX” (SD-XAJ), “LH” (LW-HBV), “LS” (LW-
SIMHYD), and “LX” (LW-XAJ) on the x-axis, respectively. The mean weights of each member are
marked by diamonds.

Figure 10. Cont.
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Figure 10. Same as Figure 7 but for maximum monthly runoff.

Figure 11. Same as Figure 7 but for minimum monthly runoff.

3.4. Performance of Probabilistic Multi-Model Ensembles

We cross-compared the performance of five multi-model ensembles in the baseline
period, including simple equal-weight averaging (EW), BMA, REA-mean, REA-max, and
REA-min (Figure 12). The results confirmed that both BMA and REA schemes have the
potential of generating more skillful and reliable simulations than individual models. In
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terms of NSE, BMA, REA-mean, and REA-max all provided more reliable simulation than
individual models. The only exceptions were March and July, in which all the six members
failed to achieve a positive NSE. Regarding the errors in simulating mean values (REM),
LW-HBV was the only individual model overestimating mean runoff. The ensembles
agreed with the majority of the individual models that underestimated mean runoff and
showed negative REM but showed consistently larger bias than LW-HBV.

Figure 12. Performance of multi-model averaging of the six model combinations in the baseline
period. Simple equal-weight averaging, Bayesian Model Averaging, Reliability Ensemble Averaging
that optimizes the simulations of mean, maximum, and minimum monthly runoff are denoted by
“EW”, “BMA”, “REA-mean”, “REA-max”, and “REA-min”, respectively.

Among the five experiments of multi-model ensembles, different weighting strategies
and optimization objectives have largely affected their performance. REA-mean put more
emphasis on the simulation of mean behaviors and obtained the highest accuracy in REM
in most of the months, followed by the ensembles of REA-max, BMA, EW, and REA-min.
BMA and REA-max can achieve a similar NSE to that of REA-mean. In terms of both REM
and NSE, REA-min was not only less efficient than REA-mean and REA-max, but also
the EW averaging. However, REA-min was superior to other ensembles in terms of QRS,
particularly in October–December. This inconsistent performance of the REA ensembles
suggests that using different optimization objectives could cause comparable or larger
discrepancy than using different averaging methods.

Multiple sets of weights have been employed in PMME schemes to enhance the
performance, such as using different weights for certain aspects of the hydrograph (i.e.,
peak flow, mid-flow, and low flow), or for certain seasons (i.e., flooding season and dry
season). In this case, we used different weights for each specific month to exploit the
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diversity of flow regimes and seasonality. However, these multiple-weight strategies still
cannot guarantee a ‘perfect’ ensemble averaging due to the inevitable tradeoffs among
the optimization objectives, which are particularly notable when hydrological models are
driven by downscaled climate inputs instead of historical observations.

4. Summary and Conclusions

Global and regional climate models often provide different or even conflicting climate
inputs for hydrological models in future-oriented studies [51–53]. Consequently, runoff
projection under climate change is much more challenging than retrospective rainfall-runoff
simulations, as uncertainties from climate models and emission scenarios compound with
those inherited in the structure of downscaling models and hydrological models. In this
study, we addressed the usefulness and limitation of BMA and REA multi-model ensembles
in post-processing runoff projections derived from diverse climate downscaling models
and hydrological models. The conclusions are as follows:

(1) The compatibility of hydrological models and downscaling methods should be
incorporated as an important indicator in the selection of hydrological models for runoff
projection under climate change. Although the three used hydrological models can achieve
similar accuracy in reproducing historical runoff, their merits in runoff projection varied
with the coupled climate downscaling techniques. The uncertainties inherited from statisti-
cal downscaling tend to be accumulated nonlinearly in the hydro-climatic response. The
usefulness of hydrological models in runoff projection needs to be interpreted cautiously
from a broader interdisciplinary perspective.

(2) REA and BMA both can improve performance of runoff projection by synthesizing
individual models’ diverse skills. Our results confirmed the competing model combina-
tions’ various strength and weakness in capturing different runoff characteristics, such
as bias in mean, standard deviation, quantile distribution, and Nash-Sutcliffe efficiency.
Particularly, climate downscaling models based on different assumptions and inputs (as
LARS-WG and SDSM in this study) lead to much larger uncertainty spreads associated
with runoff projections than that with retrospective hydrological simulations. These results
indicate the importance of employing valid PMME approaches for combining models of
multiple processes and quantifying uncertainties from a complex set of sources. The useful
information provided by less effective models can be incorporated in a probabilistic way
to obtain a more reliable projection of future runoff change. Performance of the BMA,
REA-mean, and REA-max ensembles in the baseline period suggest comparable accuracy
in capturing monthly runoff characteristics. Among the three REA ensembles, BMA results
resembled REA-max because BMA’s weighting procedure forces the ensemble average to
fit the high flows well.

(3) Different weighting criteria and parameter estimation methods lead to larger
uncertainty ranges in the weight distributions of REA ensembles, although the reliability
of BMA and REA in runoff projection is comparable. Weight distributions derived from
the REA and BMA schemes both confirm that less effective models (e.g., SD-XAJ in this
case) can also contribute significantly. Individual models’ BMA weights were limited
between 10%–21%, but mean REA weights varied from 2% to 40%. Compared to BMA’s
weighting criteria (i.e., models’ relative contributions to predictive skill in the training
period), REA puts more emphasis on the convergent projection of the future, which brings
in uncertainties in future climate into the weight estimation. Besides, the REA ensembles
used a MCMC sampling approach (the Gibbs-Metropolis algorithm) to inflate the posterior
distributions of parameters, while BMA uses the Expectation maximization algorithm to
reach a minimum aggregated error. These differences resulted in wider uncertainty ranges
in REA weight estimation.

(4) The performance of the model ensembles in uncertain runoff projection is largely
restrained by the tradeoffs among different averaging objectives, even though multi-weight
strategies (distinct sets of weight for each month in this case) are applied to exploit the
diversity of flow regimes and seasonality. Runoff projection is essentially a multi-objective
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task of capturing various runoff features (e.g., means, temporal distributions, and extreme
events) with large uncertainties. Our results highlight the limitation of multi-model aver-
aging approaches. Although multiple-weight strategies can better represent the different
flow regimes, it is still difficult to capture various runoff features simultaneously with
highly uncertain climate inputs. Therefore, the averaging ensemble could not guarantee
an improvement from the best individual models on every aspect. The predictive skills
in capturing different runoff characteristics vary greatly not only among the individual
models, but also among the averaging ensembles. A cross-comparison of the three REA
ensembles using different optimization objectives shows large discrepancy in terms of both
weight distribution and predictive skills, suggesting that different optimization objectives
could cause more significant discrepancy in runoff projection than that induced by different
weighting criteria or parameter estimation algorithms.

Several caveats apply to our study. We did not consider climate simulations from
different GCMs or under different emission scenarios. The focus of this study is to in-
vestigate the effectiveness of multi-model averaging approaches in synthesizing multiple
downscaling models and hydrological models, rather than predicting potential changes
in regional runoff. Therefore, the modeling experiments were limited to the procedures
of downscaling and hydrological simulation. The incorporation of data derived from
additional GCMs and scenarios would introduce larger uncertainty spreads to the results
but is not likely to invalidate our major conclusions. Besides, we examined the consistency
and inconsistency in the averaging results derived from different weighting criteria and
optimization goals in the context of BMA and REA. The roles of more aspects of the PMME
methods, such as using different procedures of sampling and uncertainty reduction, need
to be addressed in further research.
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