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Abstract: Identifying the spatiotemporal variations and influencing climate factors of evapotran-
spiration (ET) and its components (vegetation transpiration (Ec), soil evaporation (Es), and canopy
interception evaporation (Ei)) can greatly improve our understanding of water cycle, carbon cycle,
and biogeochemical processes in a warming climate. As the world′s largest hydropower project, the
construction of the Three Gorges Project (TGP) coupled with the significant land use/land cover
change affected the regional water and energy exchange in the Three Gorges Reservoir Area (TGRA).
This study aimed to reveal the spatiotemporal variations and influencing climate factors in ET and
its components using PML-V2 products in TGRA during 2000–2020. Results showed that the mean
annual ET, Ec, Es, and Ei in TGRA were 585.12, 328.49, 173.07, and 83.56 mm, respectively. The
temporal variation of ET was dominated by Ec, with no significant change in the time trend. Es
decreased (2.92 mm/y) and Ei increased (1.66 mm/y) significantly mainly in the cultivated land.
ET, Ec, and Ei showed a similar seasonal variation pattern with a single peak, while Es presented a
bimodal pattern. From the pre-impoundment to the first impoundment period, ET and Ec mainly
increased in the head of TGRA, meanwhile, Es in urban area increased significantly by 27.8%. In the
subsequent impoundment periods, ET and Ec changed slightly while Es sharply decreased. The Ei
increased persistently during different impoundment period. The dominant climate factors affecting
changes in Ec and Es were air temperature, vapor pressure deficit, and sunshine hours, while the
variation of Ei was mainly affected by air temperature, vapor pressure deficit, and precipitation.

Keywords: evapotranspiration; components; climate change; PML-V2; Three Gorges Reservoir

1. Introduction

Evapotranspiration (ET) is one of the critical processes of the land–atmosphere sys-
tem that connects water, energy, and carbon cycles [1], and plays a key role in linking
ecosystem functioning, carbon and climate feedbacks, water resources, and agricultural
management [2]. Terrestrial ET mainly emphasizes the combined evaporation of land
surface and transpiration through the stomata of plants, including vegetation transpiration
(Ec), soil evaporation (Es) and canopy interception evaporation (Ei) [3]. The three ET
components (Ec, Es, and Ei) undergo different processes [4] and have different functions
within ecosystems [5]. Understanding the spatiotemporal pattern of ET and its components
is critical for modelling the land-atmosphere interaction, as well as better understanding
the water cycle and energy balance within land-atmosphere system.
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The lysimeter, eddy covariance systems and Bowen ration energy balance systems
were widely used to measure ET at point scale, while the micro-lysimeters, isotopes,
and sap flux made reliable verification of individual ET components possible [6]; thus,
many studies were conducted to partition ET using the measured data at farmland [7],
orchard [8], grassland [9], and dry land [10]. While at regional scales, ET and its components
were estimated by evapotranspiration models with meteorological data coupled with
remote sensing data [5,11], these model including Penman–Monteith–Leuning (PML)
model [12,13], Shuttleworth–Wallace (S–W) model [14,15], FAO dual-Kc model [15,16], and
the two-source energy balance (TSEB) model [17].

Due to the difference in atmospheric conditions, climatic features, hydrological
regimes, vegetation and soil, the ET and its components, the proportion of components
and the influencing factors varied greatly from site to site [18–20]. Ec was dependent on
vegetation coverage and water demand, which varied with plant types, plant phenology,
hydrologic controls, and water-use efficiency [13]. Es was mostly driven by the atmo-
spheric demand for vapor, soil moisture, and the amount of vegetation above the soil [21].
Ei was mainly affected by the occurrence of low intensity and frequent rainfall and the
characteristics of the vegetation stand [13,22]. Generally, Ec accounted for the major part
of ET globally [13,18], especially in vegetated systems with low precipitation, Ec was the
most important part among the three components [18]. While for areas with low vegetation
coverage, yet high precipitation and air temperature, Es became the largest component [23].
Compared to Ec and Es, Ei accounted for a little proportion of ET, while it was an indis-
pensable component of surface-water balance, particularly for the vegetated areas with
higher vegetation coverage and leaf area index, combined with low intensity and frequent
rainfall [13,22]. The dominant factors affecting the variation of ET components varied
significantly, and their responses to climate and environmental change were different.

As the world′s largest hydropower project, the Three Gorges Project (TGP) provided
protection for flood control, water supply, shipping, and power safety for the contemporary
era [24]. TGP was officially launched in 1994 and initially impounded in June 2003. It
started storing water step-by-step from 135 m in late 2003, to 156 m and 172 m above
sea level in late 2006 and late 2008, respectively. After one year of experimental water
impoundment since the end of 2008, TGP was officially operated at full 175 m capacity and
then lowered to 145 m during flood season [25]. The impacts of TGP have been discussed
by governments and scientists since the 1950s, with ecological impact being one of the
most controversial academic issues [26–29].

The land use/land cover (LUCC) [30] and regional climate [31] changed significantly
in the Three Gorges Reservoir Area (TGRA) since the construction of TGP. ET and its
components, linking the energy change and water cycle in the soil-vegetation-atmosphere
system, were greatly impacted by LUCC and climate changes. Thus, ET in TGRA were ex-
tensively investigated during the past five years [32–37]. Most studies focused on reference
evapotranspiration [34] or potential evapotranspiration [32]. A few works conducted the
estimation of ET [36,37] and its response to LUCC and climate changes [35,36]. However,
the spatiotemporal variations of ET components and how they contribute to ET changes
during different impoundment periods have not been systematically investigated and are
not fully understood.

Therefore, this study was carried out to fill the knowledge gap; the main objectives
were: (1) to characterize the spatial and temporal variations of ET and its components
in TGRA from 2000 to 2020; (2) to quantify the contributions of climate change to the
variations of ET and its components. The work can help researchers study the impact of
TGP on regional energy change and water cycles; it can also improve our understanding of
the regional ecological and climatic impact of TGP.
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2. Materials and Methods
2.1. Study Area

This study used PML-V2 products from 2000–2020 in TGRA to reveal the spatiotem-
poral variations of ET and its components; the random forest regression model was used
to explain the influence of meteorological factors on ET, Ec, Es, and Ei (Figure 1). The
TGRA (28◦56′ N~31◦44′ N, 106◦16′ E~111◦28′ E) was located in the upper reaches of the
Yangtze River (Figure 1), with the area of 5.79× 104 km2. It was located in the transfer zone
between the northern temperate zone and the subtropical zone, the climate was subtropical
monsoon climate, with high temperature and rain in summer and a cool winter. The aver-
age annual temperature was 17–19 ◦C, and the average annual rainfall was 900–1200 mm
(Table 1). The region was dominated by cultivated and forest land, which accounted for
48.08% and 46.73%, respectively, while grassland, urban land, and water bodies accounted
for less than 5% of the total area. The cultivated land mainly distributed in the western
part and northern central area, and the forest land mainly distributed in the eastern parts
and southern central area (Figure 1).
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Figure 1. The overall framework, study area, and location of meteorological stations.

2.2. Data Collection

PML-V2 ET data product, MOD16A2 ET data product, meteorological data, ESA CCI
land use, and water level data were used in this study (Table 1). PML-V2 first used a water
carbon coupled canopy conductance model to estimate ET and GPP [38]. Zhang et al. [39]
Further improved the PML-V2 by incorporating the vapor pressure deficit constraint to
GPP that was then used to constrain canopy conductance and ET. PML-V2 ET products
used MODIS data and GLDAS meteorological data as the model input. MODIS data
included leaf area index (MCD15A3H), albedo (MCD43A3), surface specific emissivity
(MOD11A2), and land use (MCD12Q1) data, and GLDAS meteorological forcing data
included precipitation, short-wave radiation, long-wave radiation, water vapor pressure,
air temperature, and wind speed. The PML-V2 ET product was well calibrated against
8-day measurements at 95 widely-distributed flux towers globally, with the root mean
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square error (RMSE) and Bias of 0.69 mm/day and−1.8%, respectively [39]. It was also
verified across China [39–41]. In this study, 500 m and 8-day resolution of a PML-V2 ET
product from 2000–2020 covering TGRA were downloaded from the Google Earth Engine.

The MOD16A2 ET product (MOD16 ET) with the same spatial and temporal resolution
to the PML-V2 ET product was used to validate PML-V2. This dataset was developed
by Mu et al. [42], based on an improved Penman–Monteith algorithm. It included evapo-
transpiration (ET), latent heat flux (LE), potential evapotranspiration (PET), and potential
latent heat flux (PLE).

The land use data in 2015 (Figure 1) was derived from the European Space Agency
Climate Change Initiative (ESA CCI) epoch maps based on MERIS (300 m resolution) [43].
Qualitative evaluation showed that ESA CCI maps were in agreement with other satellite
land cover products [44].

Meteorological data, including precipitation (PT), air temperature (Ta), wind speed
(WS), relative humidity (RH), and sunshine hours (SSD) were collected from the China
Meteorological Administration at eight meteorological stations in TGRA during the period
2000–2020. The distribution of meteorological stations are shown in Figure 1 and detailed
information of these stations are listed in Table 2. Water vapor pressure difference (VPD)
was calculated from the daily mean air temperature and relative humidity.

The water level data of the upstream of the Three Gorges Dam (TGD) were provided
by the Three Gorges Corporation.

Table 1. Detailed information of datasets used in this study.

Dataset Including Data Time Resolution Time Period Data Source

PML V2 ET, Ec, Es, Ei 8-day 2000–2020
https://code.earthengine.google.com/7af6ab1

97596a75b8858f5ab34ed2bca (accessed on 30
July 2021)

MOD16 ET 8-day 2000–2020 https://earthdata.nasa.gov/ (accessed on 30
July 2021)

Land use data land use yearly 2015 http://www.esa-landcover-cci.org/ (accessed
on 30 July 2021)

Meteorological data PT, Ta, WS, RH, SSD daily 2000–2020 the China Meteorological Administration
Water level data water level daily 2003–2020 the Three Gorges Corporation

Table 2. Detailed information of the studied meteorological stations.

Name Longitude
(◦E)

Latitude
(◦N)

Elevation
(m a.s.l)

PT
(mm)

Ta
(◦C)

WS
(m/s)

SSD
(h) VPD

Badong (BD) 110.22 31.02 3340 1085.44 17.53 1.77 1602.23 0.64
Changshou (CS) 107.04 29.50 3776 1103.62 18.15 1.31 1126.22 0.54

Fengdu (FD) 107.41 29.52 2180 1035.60 18.85 1.29 1265.67 0.64
Fengjie (FJ) 109.30 31.03 6073 1038.52 18.39 1.73 1372.31 0.69
Jiangjin (JJ) 106.15 29.17 2614 1009.62 18.89 1.41 1087.69 0.41

Shapingba (SPB) 106.28 29.35 2591 1134.39 18.96 1.40 989.72 0.63
Wanzhou (WZ) 108.24 30.46 1867 1177.85 18.87 0.93 1203.34 0.41
Xingshan (XS) 110.46 31.14 2755 962.15 17.23 1.11 1560.64 0.46

2.3. Division of Impoundment Periods

According to the construction phase and changes of the water level of the TGD,
five impoundment stages were determined (Figure 2): (1) stage 1: pre-impoundment period
(October 2000–September 2003), with the highest water level below 70 m; (2) stage 2: the
first impoundment period (October 2003–September 2006), with the highest water level
peaked at 135 m; (3) stage 3: the second impoundment period (October 2006–September
2008), with the highest water level reached at 156 m; (4) stage 4: the third impoundment
period (October 2008–September 2011), with the highest water level from 156 m to 175 m;
(5) stage 5: officially operated period (October 2011–September 2020), with water level to
175 m in the dry season and 145 m in the flood season.

https://code.earthengine.google.com/7af6ab197596a75b8858f5ab34ed2bca
https://code.earthengine.google.com/7af6ab197596a75b8858f5ab34ed2bca
https://earthdata.nasa.gov/
http://www.esa-landcover-cci.org/
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Figure 2. The water level in the TGD (unit: m) and division of impoundment periods.

2.4. Sensitivity Analysis Method

Random forest algorithm was used to analyze the sensitivity ET, Ec, Es, and Ei
to climate change. This method was widely used to investigate the response of ET to
climate factors [45,46]. The random forest model was a classification tree-based machine
learning algorithm proposed by Breiman in 2001 [47]. The model used the bootstrapping
resampling method to extract multiple samples from the original sample, and built decision
tree models for each bootstrapping sample. Then the predictions of multiple decision trees
were combined, and the final prediction result was obtained through voting [47]. The
random forest model can be used for clustering, discriminant, and regression, and it can
also be used to evaluate the importance of variables. The sensitivity was assessed by the
inherent variable importance of the random forest models. It was measured as a relative
increase in mean squared error (%IncMSE) [47], which describes the increase in predicting
performance loss of the random forest model if the factor is excluded from the model. In
this study, the random forest model was implemented in the R package [48].

3. Results
3.1. Model Validation

The comparison between the 8-day ET from MOD16 and that from PML-V2 is pre-
sented in Figure 3. Good agreement was found between the two datasets, with the R2 of
0.86 (p < 0.01). While most of the scattered points fell above the 1:1 line, indicating that
PML-V2 ET underestimated ET compared to MOD16, but the distribution of the scatter
points was relatively uniform, indicating that the PML-V2 model could better described the
seasonal variation characteristics of ET in TGRA [36]. The verification result suggested that
at the 95 global flux sites globally (R2 = 0.72) [39], and it was also slightly better than the
performance of PML-V2 ET in northern China [40]. Overall, the validation result confirmed
the reliability of using the PML-V2 data product to reveal the spatial and temporal variation
of ET in TGRA.
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Figure 3. Scatter plots of MOD16 ET against PML-V2 ET.

3.2. Interannual Variation of ET and Its Components

The interannual variation of ET and its components are shown in Figure 4. The annual
ET ranged from 549 to 644 mm across the whole study period, and the mean annual Ec,
Es, and Ei were 328.49, 173.07, and 83.56 mm, respectively, which accounted for 56.06%,
29.64%, and 14.3% of ET, respectively. Es showed a significantly decreasing trend from 2001
to 2020 with the rate of −2.92 mm/y (R2 = 0.56), while Ei showed a significantly increasing
trend with the rate of 1.66 mm/y (R2 = 0.59). The interannual changes of ET and Ec were
not significant.
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The spatial distribution of annual ET and its components during different impound-
ment periods are shown in Figure 5. ET and Ec changed significantly from stage 1 to
stage 2, they increased by 7.7% and 12.2% in the whole TGRA, 15.0% and 17.8% in the
head of TGRA, and 6.9% and 12.5% in the tail of TGRA, respectively. While in the central
part of TGRA, ET and Ec increased slightly, from 548.4 to 579.7 mm and 287.8 to 313.5 mm,
respectively. They changed little from stage 2 to stage 5. Es in the urban area increased
significantly by 27.8% from stage 1 to stage 2; however, it sharply decreased from 385.9 to
349.9 mm from stage 2 to stage 3, with forest land and cultivated land decreasing by 10.8%
and 21.9%, respectively. From stage 3 to stage 5, Es decreased slightly by 6.2% which also
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mainly occurred in cultivated land. The Ei of the forest land was 102.1 mm, which was
higher than 63.7 mm of the cultivated land. Overall, the Ei in TGRA increased significantly
by 27.4% from stage 1 to stage 5, and the most obvious change was observed in cultivated
land, which increased by 38.7%.
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3.3. Seasonal Patterns of ET and Its Components

ET, Ec, and Ei presented a similar pattern of seasonal variation with a single peak
(Figure 6); they increased progressively from the beginning of year and reached the max-
imum on the 209th day, and then decreased progressively to the end of the year. Daily
ET and Ec increased at the rate of 0.14 and 0.1 mm/day before the 209th day and de-
creased at the rate of 0.18 and 0.13 mm/day after the 209th day, respectively. Ei increased
exponentially from the 1st to the 169th day, then changed slightly to the 249th day, and de-
creased exponentially to the end of the year. The peak of Ei was observed at the 193rd day
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of the year. Es presented a bimodal pattern with two peaks at the 105th day and the
257th day, respectively.
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Figure 6. Temporal trends of seasonal variation in Ec, Es, and Ei during 2000–2020.

The seasonal variations of daily ET and its components during different impoundment
periods are shown in Figure 7. Ec from January to May before impoundment (stage 1) was
lower than that after impoundment, but there was no significant difference in Ec among
different impoundment stages from June to December. The peak of Ec appeared at the
193rd day before impoundment (stage 1), while it delayed to the 201st day, 209th day, and
217 day for stage 2 to stage 4, respectively, and finally returned to the 209th day at stage
5. Es from February to June was in order: stage 2 > stage 1 > stage 3 > stage 4 > stage 5,
and there was little difference in Es among different impoundment stages from June to
July. The Es at stage 1 was higher than other stages from July to October, while Es at
stage 5 was lower than other stages across the year. After impoundment, Ei increased form
0.20 mm/day at stage 1 to 0.25 mm/day at stage 5, and the increase of Ei was greatest from
days 169 to 217, with a 14.0% increase.
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Figure 7. Temporal trends of daily ET(a), Ec(b), Es(c), and Ei(d) during different impoundment periods.
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3.4. Response of ET and Its Components Variation to Climate Change

The employed five climate factors explained 86.57%, 85.63%, 39.80%, and 62.54% vari-
ance of ET, Ec, Es, and Ei, respectively. Based on the relationship between climate factors
and ET, Ec, Es, and Ei, it can be found that the influence of climate factors on ET, Ec, Es, and
Ei varied from site-to-site (Table 3). As far as ET, Ec, and Es were concerned, the relative im-
portance of meteorological factors was in order: Ta > VPD > SSD > PT > WS. While for Ei,
the relative importance of meteorological factors was in order: Ta > VPD > PT > SSD > WS.
Overall, the variation of ET, Ec, Es, and Ei in TGRA was dominated by Ta, as can been seen
from Table 2, Ta showed the highest relative importance at each station. The % incMSE of
Ta were much higher than the corresponding values of VPD, SSD, PT, and WS, generally
indicating that the influence of temperature on the variation of ET and its components was
more pronounced than other meteorological factors. The % incMSE of Ta was 0.8096 and
0.4818 for ET and EC, respectively, which was much higher than 0.0557 and 0.0555 for Es
and Ei, respectively, suggesting that influence of temperature on the variation of ET and Ec
was more significant than that on Es and Ei. Similar results were also observed for VPD.

Table 3. Random forest results (the value of % incMSE) at different sites during 2000–2020.

Station Var Explained (%) PT Ta WS VPD SSD

ET

BD 89.84 0.0922 0.6573 0.0204 0.3740 0.1206
CS 86.21 0.1097 1.0272 0.0138 0.4316 0.1264
FD 88.23 0.0930 0.7969 0.0557 0.4015 0.1345
FJ 89.60 0.0967 0.7408 0.0173 0.3404 0.1123
JJ 86.04 0.1121 0.7987 0.0171 0.3271 0.1782

SPB 73.73 0.1085 0.8812 0.0299 0.4329 0.1254
WZ 89.08 0.0862 0.8290 0.0402 0.5208 0.1885
XS 89.79 0.1004 0.7454 0.0120 0.3614 0.0831

Mean 86.57 0.0999 0.8096 0.0258 0.3987 0.1336

Ec

BD 90.02 0.0288 0.3951 0.0129 0.1837 0.0780
CS 84.73 0.0271 0.5732 0.0141 0.2514 0.0851
FD 87.76 0.0273 0.4418 0.0326 0.2150 0.0940
FJ 91.16 0.0393 0.5359 0.0161 0.1919 0.0839
JJ 83.54 0.0374 0.4638 0.0089 0.1410 0.0851

SPB 70.36 0.0550 0.5373 0.0257 0.2202 0.0723
WZ 87.54 0.0229 0.3838 0.0148 0.1544 0.0876
XS 89.89 0.0381 0.5237 0.0091 0.2211 0.0678

Mean 85.63 0.0345 0.4818 0.0168 0.1973 0.0817

Es

BD 35.42 0.0083 0.0315 0.0025 0.0255 0.0093
CS 29.66 0.0076 0.0453 0.0007 0.0264 0.0195
FD 26.86 0.0040 0.0321 0.0040 0.0185 0.0086
FJ 33.67 0.0060 0.0225 0.0019 0.0169 0.0076
JJ 53.60 0.0232 0.0815 0.0071 0.0571 0.0280

SPB 39.51 0.0140 0.0756 0.0062 0.0547 0.0120
WZ 67.26 0.0207 0.1137 0.0133 0.0978 0.0332
XS 32.43 0.0113 0.0431 0.0025 0.0231 0.0064

Mean 39.80 0.0119 0.0557 0.0048 0.0400 0.0156

Ei

BD 65.44 0.0188 0.1020 0.0034 0.0233 0.0069
CS 62.63 0.0220 0.1270 0.0051 0.0314 0.0120
FD 65.74 0.0163 0.0957 0.0048 0.0227 0.0097
FJ 70.16 0.0085 0.0331 0.0003 0.0075 0.0046
JJ 60.74 0.0027 0.0116 0.0004 0.0040 0.0022

SPB 43.67 0.0021 0.0156 0.0002 0.0055 0.0038
WZ 58.74 0.0027 0.0118 0.0004 0.0046 0.0026
XS 73.21 0.0178 0.0473 0.0008 0.0109 0.0028

Mean 62.54 0.0114 0.0555 0.0019 0.0138 0.0056
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4. Discussion

This study used PML-V2 ET and its component products generated at 500 m and 8-day
resolution. The validation result showed that it had good performance in modeling ET
compared with MOD16 ET (R2 = 0.86) in TGRA. However, the accuracy of the MOD16 ET
product also needs to be evaluated as it underestimated the ET for semiarid area [49] and
overestimated for forested areas [50,51]. Moreover, the FAO-56 Penman–Monteith model
used in MOD16 was limited due to the lack of required weather data in many regions [52],
and the heterogeneity of land use [53], uncertainty in measuring soil water status [54], and
complex dynamic changes in vegetation [36] also affecting the evaluation of ET, which
were ignored in ET models. Moreover, due to the absence of the lysimeters, isotopes, and
sap flux in TGRA, the ET components were not verified in this study. Therefore, the sites
that measured ET and its components in TGRA are likely to be built and a more accurate
validation method is needed to carry out future research.

The average annual ET in TGRA was 585.12 mm, which was higher than the average
ET of 406 mm across China [55], and much higher than the ET in arid and semiarid regions
in western China, such as the Loess Plateau [56] and Tibetan Plateau [6], while it was much
lower than ET in humid regions in eastern China [55].

Ec accounted for 56.06% of ET and it was the most important ET component in TGRA.
The contribution of Ec to ET was reasonable compared with the results of 0.20–0.65 for
global terrestrial ecosystems [57], 0.52–0.59 for Chinese terrestrial ecosystem [19], while
it was much lower than that for the Yangtze River Basin, where the Ec accounted for 65%
of ET [58], and was higher than that for the Yellow River Basin, where the proportion of
Ec to ET was 48% [59]. Es accounted for 29.64% of ET in TGRA, which was lower than
0.55 across China [60], and much lower than the proportion for the Tibetan Plateau [6] and
the Yellow River Basin [59] in semiarid regions in western China, while the proportion
was slightly higher than that globally [13]. Ei accounted for the lowest proportion of ET in
TGRA (14.3%), which was higher than 9.98% on a global scale [13].

Due to the difference in climatic features, hydrological regimes, vegetation, and soil
coupled with the methodology and data, the proportion of ET components varied from
region-to-region [18,19]. Generally, Ec accounted for the major part of ET globally and in
most regions [13,18], especially in vegetated systems with low precipitation, Ec was the
most important part among the three components [18]. While for areas in deserts and the
Plateau with low vegetation coverage, yet high precipitation and temperature, Es was the
predominate part [6,13]. Ei depended on the precipitation and canopy status. Compared
to Ec and Es, it accounted for a little proportion of ET, while it was an indispensable
component of surface water balance, particularly for the vegetated areas with higher
vegetation coverage and leaf area index [22].

The mean annual ET did not show a significant change in TGRA from 2000 to 2020;
this was consistent with the results from previous studies for TGRA [33,36,37]. For instance,
Wang et al. [36] found that the annual ET displayed an insignificant increasing trend from
1993 to 2013. Hao et al. [33] reported an insignificant increasing trend of ET during 2000–
2015. Zheng et al. [37] investigated the variation of ET using MOD16 from 2003 to 2016,
and the results showed no obvious change trend.

The dominant climate factors affecting the changes in ET, Ec, and Es were Ta and
VPD. The result was consistent with that of Pascolini-Campbell et al. [61], who investigated
the global ET from 2003 to 2019 and found that land temperature was the main driver of
the ET trend. Increases in VPD and temperature combined with the decrease in relative
humidity [62] increased the atmospheric demand for evapotranspiration [63].

Since the construction of TGP, the land use/land cover changed significantly in
TGRA [30]. The forest and vegetation coverage, the leaf area index increased signifi-
cantly during the past two decades [64], which significantly increased Ei from 2000 to 2020.
Moreover, Ei was directly related to PT, and PT presented a similar changing trend to that
of Ei (Figures 4 and 8). Generally, the land use change from cultivated land and grassland
to shrubs and forest [33], as well as the increase of Ta and VPD, leading to the increase in



Water 2021, 13, 2111 11 of 15

the degree of stomatal opening, can enhance the process of vegetation transpiration and
increase the Ec [65,66]. However, the Ec did not show significant increasing trend; this may
be due to the exponential increase of Ec with increasing Ta (Figure 9). Although Ta showed
a weak significant increase and the interannual variation trend of Ta was very similar to
that of Ec (Figures 4 and 8), the increase and decrease effect of Ta would be magnified
to the change of Ec, so the Ec change was more drastic and its linear change trend was
not significant.

Previous studies suggested that Es correlated significantly with soil temperature, VPD,
and PT [61]. The Ta, VPD, and PT showed increasing trends during the study period
(Figure 8). The increase of Ta and VPD will increase Es to meet the need of atmospheric
demand [67]. However, Es decreased significantly with the rate of −2.92 mm/y, this may
be due to the increased vegetation coverage and the leaf area index. With the increase of
Ta, vegetation growth accelerated, vegetation coverage and the leaf area index increased,
so that Es showed an increasing at first and then a decreasing trend, with the increase
of Ta (Figure 9). Moreover, the land use change and ecological restoration could also
increase vegetation coverage, which offset the effect of increasing Ta, VPD, and PT [33,36].
Therefore, increase of vegetation coverage was the main factor responsible for the decrease
of Es in most areas of TGRA.
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Figure 8. Interannual variation of the four dominant factors (Ta, VPD, SSD, and PT).
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Figure 9. Trends of Ec, Es, and Ei as Ta increase (8-day mean scatter plot).

5. Conclusions

The spatiotemporal variations of ET and its components and their response to climate
change were investigated using PML-V2 products from 2000–2020 in TGRA. The annual ET
ranged from 549 to 644 mm, and the mean annual Ec, Es, and Ei were 328.49, 173.07, and
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83.56 mm, respectively, accounting for 56.06%, 29.64%, and 14.3% of ET in the studying area.
ET, Ec, and Ei showed a similar pattern of seasonal variation with a single peak appeared
on the 209th day for ET and Ec, and on the 193rd day for Ei, while Es presented a bimodal
pattern with two peaks on the 105th day and the 257th day, respectively. The temporal
variation of ET was dominated by Ec, with no significant change in the time trend. Es
decreased (2.92 mm/y) and Ei increased (1.66 mm/y) significantly, mainly in the cultivated
land. ET and Ec increased by 7.7% and 12.2% from stage 1 to stage 2, mainly in the head
of TGRA, while they changed little from stage 2 to stage 5. Es in the urban area increased
significantly by 27.8% from stage 1 to stage 2, but it decreased sharply from stage 2 to
stage 5. The Ei in TGRA increased persistently from stage 1 to stage 5. Es decreased and Ei
increased most obviously in cultivated areas, and the increase of vegetation coverage was
the main factor responsible for the change of Es and Ei in TGRA. Among the employed
climate factors, Ta, VPD, and SSD were the dominant factors affecting the variation of
ET, Ec, and Es, while for Ei, the dominant factors were Ta, VPD, and PT. Moreover, the
influence of Ta and VPD, on the variation of ET and Ec, was more pronounced than that on
Es and Ei.
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