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Abstract: Establishing a model predicting river flow can effectively reduce huge losses caused by
floods. This paper proposes a multi-step time series forecasting model based on multiple input and
multiple output strategies, and this model is applied to the flood forecasting process of a river basin
in Shanxi, which effectively improves the engineering application value of the flood forecasting
model based on deep learning. The experimental results show that after considering the seasonal
characteristics of the river channel and screening the influencing factors, a simple neural network
model can accurately predict the peak value, the peak time and flood trends. On this basis, we
proposed the MSBP (Multi-step Back Propagation) model, which can accurately predict the flow
trend of the river basin 20 h in advance, and the NSE (Nash Efficiency) is 0.89. The MSBP model can
improve the reliability of flood forecasting and increase the internal interpretability of the model,
which is of great significance for effectively improving the effect of flood forecasting.

Keywords: MSBP model; flood forecasting; multi-step forecast

1. Introduction

Effective flood prevention is an important part of water resources planning [1]. At the
same time, floods are also the most common natural disasters in the world, especially in
areas dominated by monsoon climates, where floods occur more frequently and are mostly
concentrated in the rainy season [2,3]. Flood forecasting is one of the most important non-
structural measures for flood control [4]. The establishment of an early warning system
can effectively reduce flood damage [5–7]. At present, flood forecasting is mainly divided
into two categories. One is the method based on hydrological knowledge: a large amount
of professional knowledge is required as a basis; the other is a data-driven method [8]:
based on the existing data in the basin, machine learning algorithms are used to mine
data relationships for prediction. In traditional hydrological knowledge-based forecasting
methods, data acquisition is mostly manual collection, and the storage is messy, resulting
in a lack of hydrological data, and even difficult to obtain data in some remote areas.
The data-driven artificial neural network only needs to input historical hydrological data in
the basin [9,10], and it can complete flood forecasting through a self-learning function [11],
avoiding the complicated modeling process, cumbersome parameter selection and long
forecasting time in traditional hydrological methods. Therefore, it is favored by more
and more researchers. Through the application of the genetic algorithm, particle swarm
algorithm and other methods, it is found that machine learning can accurately capture
important information such as flood peak flow value and peak present time [12], which
can effectively improve the forecasting effect [13–16].

The artificial neural network can predict the flow of a certain location based on the
flow of the upstream position of the river basin [17], which has a wider application range
and stronger generalization ability than traditional methods [18]. Especially in areas with
sufficient and more accurate data, the use of the BP (Back Propagation) neural network
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model can significantly improve the accuracy of flood forecasting [19]. BP neural network
can overcome the shortcomings of traditional hydrological knowledge-based models where
the convergence speed is slow and the extreme value is easily reached [20], so it is widely
used. Researchers continue to make improvements to the BP neural network [21–23],
combining the characteristics of the current watershed with the BP neural network, im-
proving the input data of the BP neural network, optimizing the hidden layer activation
function, and improving the flood forecasting effect. Because GA (Genetic Algorithm)
has good simulation accuracy and can obtain the optimal solution in the global scope,
the researchers combined GA and BP models [24,25] to effectively improve the prediction
effect in the basin.

On the other hand, the use of time series analysis technology can make rapid and
effective forecasts based on past data and improve the accuracy of flood forecasting [26,27],
even if there is only a weak-to-medium relationship between the predicted value and
the observed value. At present, in different watersheds, researchers have explored many
different multi-step forecasting methods and have achieved great results. In the Three
Gorges Reservoir basin, Yanlai Zhou et al. used UKF (Unscented Kalman Filter) combined
with artificial neural network [28], genetic algorithm and least-squares methods [19] to
capture the relationship between rainfall and runoff and reduce the uncertainty of flood
forecasting. Fi-John Chang et al. [29] used a static neural network and two dynamic neural
networks to screen and predict in the Taiwan watershed. Among them, the dynamic
network effectively finds the dependence between factors by realizing multi-step long-
term prediction. At the same time, the latest observations and output values are used
to repeatedly adjust the model parameters, which improves the accuracy of multi-scale
analysis and effectively alleviates the problem of time lag [30]. In the case of considering
the weight of time and space [31], linking rainfall and runoff series can increase the
internal interpretability of the model [32]. Although the LSTM (Long-Short Term Memory)
model can simulate the flood process well, it is difficult to achieve the effect of real-time
forecasting [33], and the forecasting time is long. Unlike single-step forecasting, multi-step
forecasting usually faces uncertainties from various sources. For example, the accumulation
of errors and lack of information make multi-step prediction more difficult [28].

In summary, although past research has clarified the predictive ability of BP neural
network, few people have achieved its multi-step advanced time series prediction. This
paper proposes a multi-step time series forecasting model based on multiple input and
multiple output strategies, the MSBP model (Multi-Step BP), and verifies the feasibility
of the model in the actual watershed. This paper first selects BP neural network and
random forest models to verify the feasibility of data, machine learning methods, and data
processing in the current watershed in the Fenhe Reservoir, Zhaishang area of Shanxi
Province, China. The above method can accurately capture the peak discharge value and
peak present time, and it obtains the Nash coefficient of 0.9–0.99. Then, by applying the
MSBP model in the basin, it can achieve a multi-step sequence forecast N hours in advance
and accurately predict the future flow trend.

2. Application
2.1. Background of the Study Area

As shown in Figure 1, the study area is located in the upper reaches of the Fenhe
Reservoir in Shanxi Province, China, in the northwest corner of Taiyuan City. The main
river length above the section is 34.2 km, and the interval control area is 1551 km2. This
section is joined by tributaries such as Lion River, Tianchi River, Tunlan River, Yuanping
River and Dachuan River. The geological environment in the basin is complex, including
358.66 km2 of metamorphic rock shrubland, accounting for 23.13% of the catchment area,
limestone shrubland of 224.15 km2, accounting for 14.45% of the catchment area, and sand
shale shrubland of 350.13 km2, accounting for Jiji. The water area is 22.57%; the sandy shale
forest mountain area is 69.16 km2, accounting for 4.46% of the catchment area; the sandy
shale rocky mountain area is 548.90 km2, accounting for 35.39% of the catchment area.
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Figure 1. Map of major rainfall sites. After characteristic analysis, the above 10 rainfall stations are
the main influencing factors in the flood forecast of Zhaishang. The green dot is the rainfall station,
and the red dot is the forecast point of Zhaishang flow.

The Fenhe Reservoir, Zhaishang section is mainly controlled by the mainstream of
the Fenhe River. The average longitudinal slope of the river is 3.39%, the roughness of
the river bed is about 0.02, and the average width of the basin is 40.6 km. The multi-year
average annual precipitation of the interval basin was 437.5 mm, the maximum annual
precipitation was 642.8 mm, which occurred in 1988; and the minimum annual precipitation
was 172.1mm, which occurred in 1972; the multi-year average flow was 11.2 m3/s, and the
maximum instantaneous flow was 2130 m3/s, on 22 August 1967. In the Fen River Basin,
due to the seasonality of the river, the rainy season is concentrated in June to August each
year. Most of the floods occur from the end of July to mid-August each year.

There are 4 water level stations (Gaosheng, Malan, Xingjiashe, Jialequan), 1 hydrolog-
ical station (Zhaishang), and 58 rainfall stations (basic stations, small and medium river
stations, flash flood stations) in Fenhe Reservoir, Zhaishang section.

2.2. Data Collection

At present, there are 58 rainfall stations in the Fenhe Zhaishang Basin. However, some
of the rainfall stations were constructed later, resulting in incomplete data in the basin.
Direct input to the model will reduce the accuracy of the model. As shown in Figure 2, this
paper analyzes the correlation between rainfall stations and Zhaishang flow stations, and
10 rainfall stations with much higher correlation (correlation greater than 0.1) than other
stations were selected as the basic data of the model, reducing the input sequence model
and reducing the data complexity. The site distribution of the final input model is shown
in Figure 1.

In addition, the cumulative i-h catchment average rainfall of the flood (i = 1, 2, 3)
and the flow of j hours ahead (j = 1, 2, 3) are used as the primary predictors (independent
variables), and the period-by-period flood flow is taken as the forecast object (dependent
variable), the forecast factor is screened through statistical analysis. The predictors screened
by the correlation coefficient as the objective function are:

(1) accumulate 2 h basin area average rainfall;
(2) accumulate 3 h basin area average rainfall.
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The processed data have a stronger correlation with the flow of the Zhaishang station,
which is conducive to better training data for the model, quickly obtaining the optimal bias
term, and performing flood forecasting.

Figure 2. Correlation coefficient matrix of predictors. The figure shows that the correlation of the
predictors used in this model is strongly related to the flow of Zhaishang. 41022180 is the code of
Luyukou rainfall station, 41022100 is the code of Geshang rainfall station, 41022200 is the code of
Tianchidian rainfall station, 41022250 is the code of Baijiatan rainfall station, 41022300 is the code of
Chakou rainfall station, 41022350 is Tuncun The code of the rainfall station, 41022400 is the code of
Chang’an rainfall station, 41022450 is the code of Caozhuangtou rainfall station, 41022550 is the code
of Xingjiashe rainfall station, 41000800 is the code of Zhaishang rainfall station. Flownow is the river
flow at the Zhaishang site.

In the Fenhe Reservoir, Zhaishang Interval Basin, complete and prominent flood peak
data have been integrated into 11 flood data points from 1994 to 2006 and 2016 to 2018,
which is No. 19940806, No. 19960803, No. 19990827, No. 20010810, No. 20060903, No.
20080814, No. 20160719, No. 20160824, No. 20170723, No20170727 and No. 20180713 that
are named as the time of occurrence. After data preprocessing and integration, the data
time step is 1h, including the data before the flood peak, when the flood peak appears,
and after the flood peak. Among them, 8 single peaks and 1 compound flood were selected
for model calibration, and 1 single peak and 1 compound flood were used for model
verification. We used the BP neural network model and random forest to verify the 11
floods to ensure the practicability of the data in this paper. The results are shown in Tables 2
and 3 . The first column of the table is the flood number named by the time of occurrence.
At the same time, the MSBP model was used to predict 11 floods in multi-step time series,
and the results of representative single-peak flood No. 19940806 and compound flood peak
flood No. 20170727 were displayed.

The data selected strictly abide by the requirements of the Hydrological Information
Forecast Specification (GB/T 22482-2008). The historical flood data, especially the flood data
since the 1990s, are selected when establishing forecasting plans (calibration or verification).
All hydrological stations and rainfall stations used in this project are the national basic
station network. The data have been reviewed by the Taiyuan Hydrological Branch,
accepted by the provincial bureau, and compiled by the river basin. The authenticity of
data is very reliable.
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3. Materials and Methods
3.1. BP Neural Network

BP neural network is a “universal model and error correction function”, each time
the error analysis is carried out according to the training results and the expected results,
and then the weights and thresholds are modified, step by step, the output is consistent
with the expected results.

BP (Back-propagation) neural network is one of the most effective multi-layer neural
network learning methods. It is characterized by forward transmission of signals and
backward propagation of errors. By continuously adjusting the weight value of the network
matrix, the final output of the network is as good as the expected output. It may be close to
achieve the purpose of training and prediction.

BP neural network usually contains three layers of structure, namely input layer, hid-
den layer and output layer. There are two stages in the construction of a BP neural network:
the first stage is the forward propagation of the signal. In this stage, our data are received
by an input layer and processed by a hidden layer. Then, the output layer will receive the
processed data from the hidden layer, giving us the final prediction results. Finally accord-
ing to the prediction result and the true value , we can form the cost function. The second
stage is the back propagation of errors. Using the gradient descent method [28], the weights
of the output layer, hidden layer and the input layer can be adjusted in turn. In the process
of back-propagation, the value of each parameter is continuously adjusted and optimized
according to the error; the process is repeated continuously until convergence.

Refer to Algorithm 1 for the specific update process.

Algorithm 1: BP neural network algorithm.

Input: training set D = (xk, yk)
m
k−1 ;Learning rate η

Output:
1:function BP(D,η)
2: Randomly initialize all connection weights and

thresholds in the network within the range of (0,1)
3: repeat
4: for all (xk, yk) ∈ D do
5: Calculate the current sample output

ŷk = f
(

β j − θj
)

6: Calculate the gradient of the output neuron

gj = − ∂Ek
∂ŷk ·

∂ŷk

∂β j

= −
(

ŷk
j − yk

j

)
f ′
(

β j − θj
)

= ŷk
j

(
1− ŷk

j

)(
ŷk

j − yk
j

)
7: Calculate the neuron gradient term of the hidden

layer eh = − ∂Ek
∂bh
· ∂bh

αh

= −∑l
j=1

∂Ek
∂β j
· ∂β j

bh
f ′(αh − γh)

= ∑l
j=1 whjgj f ′(αh − γh)

= bh(1− bh)∑l
j=1 whjgj

8: Update weight4whk = ηgjbh,4vhk = ηejxi
9: Update threshold
10: end for
11: until Stop condition reached
12:end function

Given the training set D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, xi ∈ Rd, yi ∈ Rl , the input
is described by d attributes, and the output is an l-dimensional value vector. For the
convenience of discussion, a multilayer feedforward network structure with d neurons, l
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output neurons and q hidden layer neurons is given. The threshold of the j neuron in the
output layer is represented by θj, and the threshold of the h neuron in the hidden layer is
represented by γh. The connection weight between the i neuron in the input layer and the
h neuron in the hidden layer is vih, and the connection weight between the h neuron in the
hidden layer and the j neuron in the output layer is wih. Remember the input received by
the h neuron in the hidden layer as αh = ∑d

i=1 vihxi. The input and output received by the j
neuron in the output layer is β j = ∑

q
h=1 whjbh, where bh is the output of the h neuron in

the hidden layer. For the training set D = (xk, yk), it is supposed the output of the neural
network is ŷk =

(
ŷk

1, ŷk
2, . . . , ŷk

l

)
, which is ŷk = f

(
β j − θj

)
. The mean square error of the

network on (xk, yk) is Ek = 1
2 ∑l

j=1

(
ŷk

j − yk
j

)2
. The gradient of the neurons in the output

layer is denoted as gi, the neuron gradient of the hidden layer is denoted as eh. The BP
neural network learning rate is η.

3.2. Random Forest

Random forest [34] is an important ensemble learning method based on Bagging (Boot-
strap aggregating), which can be used for classification, regression and other problems. It
uses the bootstrap re-sampling method to extract multiple samples from the original sam-
ple, models each bootstrap sample, and then combines the predictions of multiple decision
trees to obtain the final prediction result through voting. A large number of theoretical and
empirical studies [35–37] have proved that random forest has a high prediction accuracy,
a good tolerance for outliers and noise and is not easy to overfit. In the training phase,
the random forest uses bootstrap sampling to collect multiple different sub-training data
sets from the input training data set to train multiple different decision trees in turn. The
model architecture diagram of random forest is shown in Figure 3.

Figure 3. The structure of the random forest model. To return a new object from an input vector, put
the input vector down each of the trees in the forest. Each tree gives a classification or a regression.
The forest chooses the classification having the most votes (over all the trees in the forest), or it
averages the prediction results of multiple internal decision trees.

3.3. MSBP Model

In this paper, the BP neural network model is modified and adjusted, and the MSBP
model (Multi-step Back Propagation) is proposed. The model architecture process is shown
in the Figure 4. The model is divided into four parts: site data, data processing, model,
and result.



Water 2021, 13, 2095 7 of 17

The station data are the acquired watershed data, including the rainfall data of each
rainfall station in the entire watershed and the flow data of the river channel. Due to the
influence of the monsoon climate in this basin, the rainfall is concentrated in June to August,
which causes floods in the basin to occur more frequently in June to August. Therefore,
the site data need to be processed reasonably to remove invalid data.

The data are processed to perform feature screening on the station rainfall data. There
are many rainfall monitoring stations in the basin, and not all stations will have an impact
on the river flow at the monitoring points. Therefore, the correlation analysis of rainfall
stations can be carried out, and the rainfall stations with strong correlation can be selected
as the model input data.

The core part of this model lies in the establishment of BP neural networks for si-
multaneous prediction to achieve multi-step prediction. Unlike the traditional BP model,
which uses one model to output the results N hours in advance, this model builds N BP
models, outputs the results 1, 2. . . N h in advance, and splices them. In parallel processing,
the MSBP model inherits the automatic tuning process of the BP neural network. For the
data input to the model, the hidden layer is processed, and the results are back-propagated
to minimize the error loss and output the optimal results. The established many BP models
can simultaneously process rainfall data in the river basin at different time scales, so that
the model will output the watershed flow value for several hours in the future, and the
average value can be calculated after multiple runs to obtain the final trend of future river
basin changes.

The result of this model is not a single data point in the traditional BP model, but a
time series. In Figure 4, T represents forecast T hours ahead, and M and N both represent
the number of time windows, that is, the number of models. M can be any number from
1 to N. In addition, the T-N-M model represents any model from 1 to N models. In other
words, the flood sequence we forecast does not necessarily start from 1 h and end in the
next N hours, such as 1–10 h and 1–15 h. The time series may be a time series of M to N
hours, for example, a time series of 6–10 h and 5–10 h.

Figure 4. In the figure, T means forecast T hours in advance, and M and N both represent the size
of time windows. When the time window is N, the number of BP neural network models is N.
Among them, 0 < M < N, T-N-M > 0.
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3.4. Evaluation Index

According to the Hydrological Information Forecast Specification (GBT 22482-2008),
this model uses three evaluation indicators, namely the relative error of flood peak, the error
of peak present time and the certainty coefficient to verify and analyze the forecast accuracy.

(1) Relative error of flood peak. Rainfall and runoff forecasts take 20% of the measured
peak flow as the allowable error; the river flow (water level) forecast takes 20% of the
measured change within the forecast period as the allowable error. When the flow allowable
error is less than 5% of the actual measured value, take 5% of the actual measured value
of the flow. When the allowable error of the water level is less than 5% of the measured
flood peak flow, the corresponding water level amplitude value or less than 0.10 m, then
this value is taken as the allowable error.

Relative error calculation formula:

δ =
Qc −Qo

Qo
× 100% (1)

Among them, Qcrepresents the flow forecast value, and Qorepresents the the true
value of the flow.

(2) Peak present time error. The peak present time takes 30% of the time interval
between the forecast based time and the actual measured flood peak as the allowable
error. When the allowable error is less than 1 h or the calculation period is long, 1h or the
calculation period is the allowable error.

(3) The formula for calculating the coefficient of certainty is:

DC = 1− ∑n
i−1(Qc −Qo)

2

∑n
i−1(Qc − Q̄o)

2 (2)

Among them, Qc represents the flow forecast value, Qo represents the true value of
the flow, Q̄o represents the average value of the true value of the flow, and n represents the
length of the forecast time series.

(4) When the error of a forecast is less than the allowable error, it is a qualified forecast.
The percentage of the ratio of the number of qualified forecasts to the total number of
forecasts is the qualified rate, which represents the overall accuracy level of multiple
forecasts.The formula for calculating the qualified rate is:

QR =
n
m
× 100% (3)

Among them, n is the number of qualified forecasts; m is the total number of forecasts.
(5) The evaluation criteria for the accuracy grade of flood forecasting results are shown

in Table 1.

Table 1. Accuracy grades of forecast results.

Project Coefficient of Certainty Pass Rate/%

acc class
A DC >= 0.90 QR > 85.0
B 0.90 > DC >= 0.70 85.0 > QR >= 70.0
C 0.70 > DC >= 0.50 70.0 > QR >= 60.0

(6) Nash efficiency coefficient (NSE) is generally used to verify the quality of the
hydrological model simulation results. The value of NSE is negative infinity to 1, and NSE
is close to 1, indicating that the model is of good quality and the model has high reliability;
NSE close to 0, indicating that the simulation result is close to the average level of the
observations, that is, the overall result is credible, but the process simulation error is large;
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NSE is far less than 0, the model is not credible. The calculation formula of NSE is as
follows:

NSE = 1−
∑n

i=1

(
Qi

p −Qi
m

)2

∑n
i=1

(
Qi

p − Q̄p

)2 (4)

Among them, Qp is the number of qualified forecasts; Qm is the total number of
forecasts; Q̄p represents the average value of the true value of the flow.

4. Results
4.1. Evaluation of Model Performance

The MSBP model is improved on the traditional BP neural network, and the simple
single-step forecast is improved into a multi-step time series forecast. In contrast, MSBP
has a better recursive structure, which can simultaneously predict traffic at different time
points in the future, and the error reverse adjustment is more effective and can reach the
optimum in a shorter time. Compared with BP neural network, random forest model and
LSTM model, MSBP can shorten the model running speed to 5–10 s. BP neural network
and random forest are single-step prediction models, and the running time is one minute.
The LSTM model can realize multi-step prediction. When there is a large amount of
data, the prediction time is up to 4 h. This article puts more attention on the accuracy,
stability and reliability of the model. Therefore, different methods are used to perform
multiple training verifications on the training set and the verification set. Each method has
a different performance in the prediction results of the best peak present time.

The MSBP model can accurately predict the trend of single-peak floods or retest flood
peaks. For the floods that have occurred, we numbered them according to the time of
occurrence, and we used this to test the data set. For example, No. 19940805 represents the
flood that occurred on 5 August 1994. This article selects No. 19940805 and No. 20170727
for training. After multiple training and averaging, the prediction results are stable, and the
best results can be predicted 20 h in advance.

As shown in Figure 5, when training on No. 19940806, the effect is optimal when the
prediction time is 20 h. Not only can it predict the changes in the flow in the basin, but it
can also be accurate for the peak occurrence time and flood peak value. After the peak of
Hong has been trained for many times, the error value is between 10 and 50 m3/s, which
can also be prevented in advance. The NSE reaches 0.87, and the accuracy rate is 0.9669.

 prediction

Figure 5. No. 19940806 MSBP model prediction. Pink is the true value, and blue is the predicted value.
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Figure 6 shows the comparison of the 3 and 6 h prediction results of the MSBP model.
Although it is possible to predict the change trend of the river flow, the relative error of the
flood peak and the peak present time are quite different. Compared with the 20 h forecast,
there is still a big gap.

1994/8/3 1994/8/5

0

50

100

150

200
flo

w
(m

3s
-1
)

 measured flow
 3h forecast
 6h forecast

Figure 6. The forecasting process of the No. 19940805 flood. The blue line is the actual measured
flow of the Zhaishang site; the green line is the forecast three hours in advance; the brown line is the
forecast six hours in advance.

There were two peaks on the No. 20170727, and the time interval was less than 24 h.
MSBP can also accurately predict this situation Figure 7. Although the prediction results of
the MSBP model for the largest flood peak have a large error, the MSBP model has made
more accurate predictions for the flow data of other time periods, and the peak present
time prediction is more accurate. The NSE is 0.89, and the accuracy rate is 0.9564.

2017/7/26 2017/7/27 2017/7/27
0

50

100

150

200

250

300

flo
w
(m

3s
-1
)

 truth
 prediction

Figure 7. No. 20170727 MSBP model prediction. Pink is the true value, and blue is the predicted value.

Figure 8 shows the 3 h and 6 h forecasts made by the MSBP model on No. 20170727.
The forecast results are poor, and the peak present time and the flood peak error are quite
different. Compared with the best 20 h forecast time result, there are obvious shortcomings.
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Figure 8. The forecasting process of the No. 20170727 flood. The blue line is the actual measured
flow of the Zhaishang site; the green line is the forecast three hours in advance; the brown line is the
forecast six hours in advance.

Regardless of single-peak flood or compound peak flood, the MSBP model has good
prediction results. In this way, no matter how the flow in the river basin changes in the fu-
ture, the MSBP model can accurately predict the flow based on the rainfall monitoring data
at the stations. This also reflects the advantages of data-driven forecasting models. As long
as you ensure that you have massive and accurate real data, after special preprocessing,
you can get effective and accurate forecast results.

For time series forecasting, deep learning can well capture the changing trends of
things over time, so as to achieve accurate time forecasts. After analyzing and comparing
the data in the previous period, we found that the river has seasonal characteristics, and the
flood is up to 24 h from the appearance to the end. Comparing the prediction results of the
MSBP model at different times on No. 19940806 and No. 20170727, it can be seen that the
MSBP model has a good effect 20 h in advance. In our opinion, forecasting 20 h in advance
can take into account the entire event process from the appearance of the flood to the end,
including some floods that occurred in a short period of time. However, the prediction
effect of 3 h and 6 h in advance is poor because it is difficult to fully consider the flood cycle,
and it only considers the changes in the part of the time when the flood occurs. Therefore,
if the complete time trend can be input into the model, the MSBP model can provide more
accurate prediction results.

4.2. Model Reliability Evaluation

In this paper, while using the MSBP model for multi-step sequence prediction, the BP
neural network and random forest are used to predict the flow of a station in the basin
one hour in advance. Research has shown that the quality of the data currently obtained
in the basin is good, and the work carried out on the data set is effective, which confirms
the reliability and practicability of the model. However, compared with the MSBP model,
the single-step forecasting model, that is, the BP neural network and the random forest
model, cannot perform multi-step time series forecasting, resulting in a lack of use space in
practical applications.

As shown in Figure 9a, it is the BP neural network prediction result of a single peak,
the No. 19940805. According to the rainfall information measured by the rainfall station,
floods will occur at the Zhaishang site when large rainfall occurs in the current basin.
The BP neural network model can accurately predict the occurrence of flood peaks based
on rainfall information. According to “Hydrological Information Forecast Specification”
(GBT 22482-2008), the relative error of No. 19940805 is 0.16, the error of peak present time
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is 1 h, and the certainty coefficient is 0.9353. From this, it can be seen that the prediction
level of No. 19940805 reached Class A.

As shown in Figure 9b, it is the random forest prediction result of No. 19940805.
According to the “Specifications for Hydrological Information Forecasting” (GBT 22482-
2008), the relative error of the No. 19940805 flood peak is 0.28, the peak present time error
is 1 h, and the certainty coefficient is 0.9325. From this, it can be seen that the prediction
level of No. 19940805 reached Class A. Compared with random forest, BP neural network
has improved in peak value and certainty coefficient.
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Figure 9. The forecasting process of the No. 19940805 flood. (a) Flood forecast results of No. 19940805
flood under the BP neural network model. (b) Flood forecast results of No. 19940805 flood under
the random forest model. Among them, the blue line is the measured flow at the Zhaishang station,
the red line is the predicted flow at the Zhaishang station, and the blue histogram is the rainfall value
in the basin.

As shown in Figure 10a, it is the BP neural network prediction result of a compound
flood peak, namely the No. 20170727 flood. According to the “Specifications for Hydrologi-
cal Information Forecasting” (GBT 22482-2008), the relative error of the No. 20170727 flood
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peak is 0.18, the error of the peak present time is 1 h, and the certainty coefficient is 0.9812.
From this, it can be seen that the prediction level of No. 20170727 reached Grade A.
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Figure 10. The forecasting process of flood No. 20170727. (a) Flood forecast results of the No.
20170727 flood under the BP neural network model. (b) Flood forecast results of the No. 20170727
flood under the random forest model. Among them, the blue line is the measured flow at the
Zhaishang station, the red line is the predicted flow at the Zhaishang station, and the blue histogram
is the rainfall value in the basin.

As shown in Figure 10b, it is the random forest prediction result of the No. 20170727.
According to “Specifications for Hydrological Information Forecasting” (GBT 22482-2008),
the relative error of No. 20170727 flood peak is 0.26, the error of peak present time is 1 h,
and the certainty coefficient is 0.9639. From this, it can be seen that the prediction level of
No. 20170727 reached Grade A. Compared with random forest, BP neural network has
improved peak value and certainty coefficient.

In Figure 11, the model scatter plots of the BP neural network and random forest used
in the training and testing phases are shown, respectively. The prediction results show that
the two models are generally consistent with the real measurement data of the two stages.
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In general, the BP neural network model has better performance than the random forest
model (higher DC and NSE values, narrower discrete points). It can be concluded that the
BP neural network can make more accurate predictions in the Zhaishang watershed than
the random forest, and it is more suitable for the Fenhe River Basin.

(a) BP training data (b) Random forest training data

(c) BP testing data (d) Random forest testing data

Figure 11. Scatter pictures of BP neural network and random forest for forecasting.

Based on the current rainfall data to predict the flow of the Zhaishang site in the next
hour, that is, predict one hour in advance, the prediction results can reach Grade A. At the
same time, the BP neural network is used to forecast floods in other time periods, and the
prediction results are shown in Table 2. The relative error qualification rate of flood peak
reached 81.82%, and the error of peak present time reached 100%. Taking the qualification
rate and the certainty coefficient as the reference factors of the evaluation grade at the same
time, the BP neural network model has reached the second-level flood prediction effect for
the Fenhe Reservoir, Zhaishang Interval.

Table 3 shows the prediction results of 11 floods using random forest. Compared
with the BP neural network, although the prediction level has reached the second level,
the random forest forecast has reduced the relative error of the peak and the time error of
the peak, and the overall certainty coefficient is not as high as the BP neural network model.

On the 11 flood data sets, BP neural network and random forest have good perfor-
mance. Different single-step prediction models have complete predictions for river flow.
Although part of the time is shifted back when predicting the peak present time, it can
accurately predict the changing trend of the river basin. The forecast results can be used as
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a reference for the staff of the Bureau of Hydrology and take preventive measures to avoid
a large number of economic and personnel losses. At the same time, good research results
show that the data set used in this article is of high quality, ensuring the effectiveness of
this research. In addition, using the same data measurement, compilation and processing
styles, other stations in the basin can get a good forecast effect in advance by using the
method in this paper.

Table 2. Analysis of BP neural network prediction results.

Number Measured Flood Peak
/m3s−1

Forecast
Flood/m3s−1

Relative Error of
Flood Peak

Peak Present
Time Error/h

Coefficient of
Certainty

19940806 202 168.691383 0.165312 1 0.9353
19960803 101 101.367055 0.003634 0 0.9958
19990827 92.6 86.357557 0.064794 0 0.9945
20010810 103 107.018234 0.038834 0 0.9928
20060903 116 106.329911 0.086206 1 0.9838
20080814 177 169.988022 0.045192 0 0.9924
20160719 127 127.105844 0.000834 0 0.9946
20160824 116 118.548042 0.017244 0 0.9972
20170723 123 123.748795 0.006052 0 0.9971
20170727 256 208.145518 0.185937 0 0.9812
20180713 49 52.834592 0.061235 1 0.9468
pass rate 81.82% 100%

Table 3. Analysis of random forest prediction results.

Number Measured Flood Peak
/m3s−1

Forecast
Flood/m3s−1

Relative Error of
Flood Peak

Peak Present
Time Error/h

Coefficient of
Certainty

19940806 202 144.743865 0.282178 1 0.9325
19960803 101 80.102079 0.192334 1 0.7176
19990827 92.6 91.138090 0.015798 1 0.6377
20010810 103 99.780720 0.031255 1 0.6756
20060903 116 101.211631 0.129301 1 0.9518
20080814 177 117.492388 0.338922 0 0.8848
20160719 127 120.296111 0.055118 0 0.9705
20160824 116 101.780022 0.129313 1 0.9093
20170723 123 110.284302 0.103379 2 0.8309
20170727 256 188.668318 0.265635 0 0.9639
20180713 49 54.021158 0.102472 0 0.9351
pass rate 72.73% 90.91%

5. Conclusions

Since the current basin has a monsoon climate, the time of flood occurrence is relatively
concentrated, and the current available data in the basin are lacking, so the 11 floods from
1994 to 2018 were selected for training and research. Research shows that the MSBP model
proposed in this paper can not only improve the accuracy of flood forecasting but also
provide new ideas for multi-step time series forecasting in the basin.

The MSBP model uses the advantage of the BP neural network that does not consider
the specific connection between the input sequences. It modifies the single-step prediction
to multi-step sequence prediction, and it performs feature screening, which can accurately
output the optimal sequence and reduce the complexity of the traditional forecasting model.
In addition, the MSBP neural network model has the advantages of convenience, quick
operation, simple operation and high efficiency, which can provide a useful reference for
flood forecasting in other regions with seasonal characteristics.
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