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Abstract: Due to eutrophication, many lakes require periodic management and restoration, which
becomes unpredictable due to internal nutrient loading. To provide better lake management and
restoration strategies, a deterministic, one-dimensional water quality model MINLAKE2020 was
modified from daily MINLAKE2012 by incorporating chlorophyll-a, nutrients, and biochemical
oxygen demand models into the regional year-around temperature and dissolved oxygen (DO)
model. MINLAKE2020 was applied to six lakes (varying depth and trophic status) in Minnesota
focusing on studying the internal nutrient dynamics. The average root-mean-square errors (RMSEs)
of simulated water temperature and DO in six lakes are 1.51 ◦C and 2.33 mg/L, respectively, when
compared with profile data over 2–4 years. The average RMSE of DO simulation decreased by
24.2% when compared to the MINLAKE2012 model. The internal nutrient dynamics was studied
by analyzing time series of phosphorus, chlorophyll-a, and DO over several years and by perform-
ing a sensitivity analysis of model parameters. A long-term simulation (20 years) of Lake Elmo
shows that the simulated phosphorus release from sediment under the anoxic condition results in
surface phosphorus increase, which matches with the observed trends. An average internal phos-
phorus loading increase of 92.3 kg/year increased the average daily phosphorus concentration by
0.0087 mg/L.

Keywords: water quality; chlorophyll-a; phosphorus; phosphorus release; dissolved oxygen

1. Introduction

Eutrophication has been a threat to waterbodies since the beginning of the twentieth
century in industrialized countries [1–4]. A large proportion of the anthropogenic increase
in nitrogen and phosphorus flux due to industrialization is delivered to ground or surface
waters through direct runoff, human and animal wastes, and atmospheric deposition. Over
time, excess nutrients are transported to waterbodies [5,6]. When a waterbody under-
goes any human-influenced ecosystem changes such as nutrient loading, extreme weather
events, or invasive organisms; algal species (cyanobacteria) can form dense overgrowths
known as algal blooms. Since these blooms can produce toxins that are harmful to people
and wildlife they are often referred to as harmful algal blooms (HAB). HABs cause undesir-
able changes in aquatic resources such as reduced water clarity, hypoxia, fish kills, loss of
biodiversity, and an increase in nuisance species [7,8]. Oxygen is consumed by both living
and dead algae which results in low oxygen concentration in lakes typically known as
hypoxia (below 2–4 mg/L of dissolved oxygen (DO)). Eutrophication also has a detrimental
effect on human health through increased exposure to cyanobacteria toxins [9,10], nitrites,
and nitrates [7,8] in drinking water. Since most cities use surface water as the drinking
water source, HABs can cause serious problems of off-flavor odor and taste (sometimes
described as earthy or musty). In some cases, drinking water no longer remains safe to
drink and complete remediation is needed. For example, the state of Ohio committed to
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spending USD 172 million to clean up Lake Erie as HABs were causing severe drinking
water problems [11]. Furthermore, the economic costs of eutrophication, for restoring
the ecosystem services (e.g., housing amenity value, recreation opportunities, freshwater
provisioning, and food and fiber production) are high [12–14]. Eutrophication can have
serious effects on the social health of a community causing decreases in the activity that
are dependent on aquatic or seafood harvests or tourism, resulting in disruption of social,
and cultural practices.

In North America, more than 41% of lakes are eutrophic; the proportions for the Asia
Pacific, Europe, Africa, and South America are 53%, 28%, 48%, and 41%, respectively [15].
Management and restoration solutions to control eutrophication require predicting the
lake’s nutrient concentration, understanding interactions between nutrients and water
quality variables, and quantifying algal growth and decay. Since the 1970s, numerical
modeling has shown to be an effective tool to quantify nutrient concentrations [16,17].
Several promising lake models (MINLAKE, PCLake, LAKE2K, CE-QUAL-W2, EFDC, and
ELCOM-CAEDYM) have been developed over the past decades. The key state variables of
these models are nutrients, principally phosphorus (P), nitrogen (N), and sometimes silica
(Si) [18,19] since these nutrients link to primary production.

The Minnesota Lake Water Quality Management Model (MINLAKE) is a one-dimensional
(along depth direction), deterministic water quality model with a time step of one day.
MINLAKE was developed in 1988 to support lake eutrophication studies and was capable
of simulating water temperature, chlorophyll a (Chla), phosphorus, nitrogen, biochemical
oxygen demand (BOD), dissolved oxygen (DO) for lakes during the open water season [20].
MINLAKE1988 was further developed to include ice-cover period simulation [21], sim-
plified regional DO model [22], modified year-round nutrient model [23], and hourly
water temperature and DO model [24]. MINLAKE nutrient model (MINLAKE98) was
applied to three lakes but did not perform well for multiple-year simulation [23]; hence, the
model was not used further. The most recent version of MINLAKE with daily simulation,
MINLAKE2012 was capable of simulating water temperature and DO in different types of
lakes with good agreement with observations [25] but lacks a nutrient model. LAKE2K
is also a one-dimensional lake water quality model which simulates carbon, nitrogen,
oxygen, phosphorus, silica concentrations, and phytoplankton and zooplankton biomass
using water balance, heat balance, and mass balance for the epilimnion, metalimnion, and
hypolimnion (three layers) of a lake [26]. A two-dimensional hydrodynamic and water
quality model, CE-QUAL-W2 (originally developed in 1990s) can be used in rivers, lakes,
reservoirs, estuaries, and even a combination of river segments and multiple reservoirs
but is more suitable for relatively long and narrow water bodies [27]. PCLake (1990) is
a process-based model to simulate water quality in shallow, non-stratifying lakes in tem-
perate climate zones with a uniform daily time-step for processes. The recent version
of PCLake, PCLake+ simulates basic stratification in temperature using mixing depth
and two layers: the epilimnion and hypolimnion only [28]. EFDC is a state-of-the-art,
versatile model that can simulate one-, two- or three-dimensional flow, transport, and bio-
geochemical processes in surface water systems such as rivers, lakes, estuaries, and reser-
voirs. ELCOM is a three-dimensional hydrodynamic model which is often integrated with
a water quality model CAEDYM [29] and this coupled model has been used to simulate
water quality and algal bloom scenarios [30,31]. Though EFDC and ELCOM-CAEDYM are
very flexible and support a variety of conditions, the complexity of these models makes
them difficult to apply when data are scarce. Each of these models has some limitations
such as modeling for a certain type of waterbody (PCLake), only modeling certain water
quality constituents (MINLAKE2012), neglecting some physical processes (CE-QUAL-W2
and Lake2K), or problems due to model complexity (EFDC and ELCOM-CAEDYM). Apart
from these models, during the last two decades, new manifestations of eutrophication have
emerged [1,32,33]. In order to improve operational control of algal blooms and manage-
ment applications, models are often integrated into warning systems to predict short-term
phytoplankton blooms [34]. For example, the EcoTaihu model has been integrated into
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a Windows software platform to predict algal blooms in Lake Taihu [35]. Elliott [36] used
PROTECH model to study the effect of an increase in water temperature and phosphorus
loading on phytoplankton in Lake Windermere.

High phosphorus release from lake sediments is frequently reported as an impor-
tant mechanism delaying lake recovery after external loading of phosphorus has been
reduced [37–39]. A study of 78 stormwater ponds revealed that more than one-third of the
sampled ponds may experience internal loading of phosphorus although these ponds are
shallow and had short periods of anoxic condition [40]. A long-term survey of 35 lakes
in Europe and North America concluded that internal release of phosphorus typically
continues for 10–15 years after the external loading reduction [41] but in some lakes, the
internal release may last longer than 20 years [38]. In shallow lakes, it is common to observe
the negligible change in phosphorus concentrations in lake water even after external load
diversion [42]. For example, Lake Trummen in Sweden remained hypereutrophic even
after 11 years of sewage (primary source of external loading) diversion. Eventually, inter-
nal phosphorus loading was reduced dramatically by removing 1 m of high phosphorus
sediment [42].

Since internal loading adds uncertainty to lake restoration processes, a reliable lake
water quality tool which (a) focuses on the internal nutrient dynamics, (b) considers all
physical processes (ice cover, sediment heat transfer, etc.), (c) can be applied to different
types of lakes, and (d) is capable of multiple year simulation, is necessary and very useful.
A simple, one-dimensional lake water quality model, which can predict chlorophyll-a,
phosphorus, DO in various types of lakes (shallow to deep, small to large surface area, and
oligotrophic to eutrophic) for short-term and long-term simulations, is needed for lake
management and restoration purpose. Since MINLAKE2012 was capable of simulating
water temperature and DO in all lake types with good performance [25], it was selected for
further enhancement. The more general daily lake water quality model MINLAKE2020 was
developed by including phytoplankton, zooplankton, nutrients, and BOD sub-models into
the existing temperature and DO model of MINLAKE2012. To verify the performance of
the model, it was applied to six Minnesota lakes having varying depths and trophic status
and having 15–70 days of profile data for model calibration/validation over different time
spans (2–20 years). The objective of this study was to use MINLAKE2020 to understand
the internal nutrient dynamics and explore the interaction/connection among nutrients,
phytoplankton dynamics, and stratification/mixing dynamics in lakes. Thus, the inflow
sub model developed for MINLAKE2020 was disabled to provide a better understanding
of the nutrient dynamics within the lakes.

2. Materials and Methods

Sections 2.1–2.6 provide descriptions and governing equations for MINLAKE2020
to simulate unsteady phytoplankton (quantified using chlorophyll-a concentration), zoo-
plankton, and nutrients for both the open water season and the ice cover periods. Since
this study focuses on the nutrients/phytoplankton internal dynamics/cycles, Figures 1–7
for water quality variables modelled by MINLAKE2020 do not include inflow and outflow
as a part of mass balance processes.
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Figure 1. Schematic diagram of phytoplankton (Chlorophyll-a) cycle modeled by MINLAKE2020. 

Phytoplankton growth depends on the maximum growth rate of the algae (Gmax), 
half-saturation coefficients for nutrients, water temperature, solar irradiance, external nu-
trient concentrations, and the current Chla concentration. The maximum growth rate of 
algae varies for different classes of algae. The algal growth limitation by nutrients is mod-
eled using a Michaelis-Menten equation [50]: 𝑓(𝑆) = 𝑆𝐾 + 𝑆 (4)

where f(S) is dimensionless, S is the concentration of the nutrient (P, N, or Si) in water 
(mg/L), and KS is the half-saturation constant for the nutrient (mg/L). Algal growth de-
pendence on water temperature is modeled by equations given by Lehman et al. [51]: 𝑓(𝑇) = 𝑒𝑥𝑝 −2.3        for T < Topt (5)

𝑓(𝑇) = 𝑒𝑥𝑝 −2.3        for T ≥ Topt (6)

T is the water temperature (°C). The maximum growth occurs at an optimal temper-
ature, Topt (°C), and the growth rate decreases both above and below Topt. Tmin (°C) is a low 

Figure 1. Schematic diagram of phytoplankton (Chlorophyll-a) cycle modeled by MINLAKE2020.
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to sunset, Chla(k, I) is the chlorophyll-a concentration of phytoplankton group k in layer I, 
and IZ is the day-depth layer, where DO ≥ 0.5 mg/L. Zooplankton grazing of phytoplank-
ton (Chla) occurs during nocturnal migration at the day depth. The nocturnal grazing rate 
is calculated for each layer (I = 1, …, IZ) between the day depth and the surface using the 
volume day depth/layer ratio Vr = V(IZ)/V(I) [43]. 

2.3. Zooplankton Simulation 
MINLAKE2020 includes a zooplankton model to simulate (1) Chla lost by zooplank-

ton grazing and (2) DO consumed by zooplankton respiration. A single class of zooplank-
ton is simulated in the lake environment each day. During the day, zooplankton retreats 
to deeper water seeking refuge from visual predators. They begin to rise to the surface at 
dusk while grazing and return to deeper layers at dawn (Figure 2). Zooplankton activity 
of these two periods is treated separately in the model. 

 
Figure 2. Schematic diagram of zooplankton cycle modeled by MINLAKE2020. 

Zooplankton is assumed to have a constant reproduction rate and a time-varying 
predation rate for determining the zooplankton population ZP(t) as a function of time (t, 
day). The day depth, light level at the day depth, and predation on zooplankton are cal-
culated as the first step in zooplankton simulation. The day depth of zooplankton is iden-
tified as the deepest layer in which the DO concentration is greater than 0.5 mg/L and 
therefore changes with time depending on DO vertical depth distribution. Below the day 
depth, the grazing is zero. In MINLAKE2020, dual effects of seasonal predation and light 
limitation are included to simulate biomanipulation techniques related to methods of in-
creasing the zooplankton population [54]. The dominant zooplankton predators are as-
sumed to be visual predators and zooplankton predation only occurs in the daytime. The 
light limitation assumes a linear variation of predation between two light levels [55]. 

Figure 2. Schematic diagram of zooplankton cycle modeled by MINLAKE2020.
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where KBOD and θr are decay rate (d−1) and corresponding temperature adjustment coeffi-
cient, respectively; SP is the rate of phosphorus released at the water-sediment interface (g 
P/m2/d) at anoxic condition and it is calibrated against available phosphorus/Chla/DO 

detrital decay respiration sediment release 

diffusion 

growth of phytoplankton 

Figure 3. Schematic diagram of phosphorus cycle modeled by MINLAKE2020.
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In MINLAKE2020 phytoplankton growth is simulated by external nutrient limitation 
and the model does not allow for nitrogen fixation (storage of excess nitrogen for later 
use) as MINLAKE88 did [49]. MINLAKE2020 simulates the release of ammonia from dead 
algae indirectly through detrital decay. In the normal range of ammonia concentration, 
when KNH(n) is small, the Michaelis-Menten ratio for ammonia in Equation (16) will be close 
to 1.0, and in Equation (17) one minus the Michaelis-Menten ratio will be small; therefore, 
it has preferential uptake of ammonia over nitrate. 

 
Figure 4. Schematic diagram of ammonia cycle modeled by MINLAKE2020. 

 
Figure 5. Schematic diagram of nitrate-nitrite cycle modeled by MINLAKE2020. 

2.6. BOD Simulation 
BOD is an important parameter in the DO, phosphorus, and nitrogen cycles. The mi-

crobial decay or decomposition of organic matter, which is detritus from the mortality of 
phytoplankton in MINLAKE2020, consumes oxygen, and therefore, the amount of organic 
matter is represented as BOD, an oxygen equivalent. However, DO directly affects biolog-
ical decay processes and phosphorus release under anoxic conditions. In the regional DO 
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Figure 6. Schematic diagram of BOD cycle modeled by MINLAKE2020.
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2.1. MINLAKE Overview

MINLAKE models use the basic one-dimensional advection-diffusion equation to
simulate the dynamic variations of state variables in horizontal layers of a lake.

A
∂C
∂t

+ v
∂(A × C)

∂z
=

∂

∂z

(
Kz A

∂C
∂z

)
± sources/sinks (1)

where C is the concentration of a state variable, v is the vertical settling velocity of the
particulate form of some of the state variables (v = 0 for dissolved); z is the vertical
coordinate measured positively downward; Kz is the vertical turbulent diffusion coefficient;
and A horizontal area of the control volume. The one-dimensional vertical advection-
diffusion equation is solved using a series of layers characterized by depth from the water
surface, thickness, layer volume, and horizontal areas. The MINLAKE model developed
by Riley and Stefan [43] (called MINLAKE88 in this paper) was capable of simulating
water temperature and DO profiles with three levels of complexity for phytoplankton.
The first and simplest form is a single algal group model with productivity distributed in
the mixed layer [43]. The second level of complexity has the algal growth term unique
to each layer using Michaelis-Menten equation for a single algal group. The level three
considers up to three groups of algae, phosphorus, nitrogen, BOD for lakes during the
open water season. MINLAKE88 is not widely used because of its inability to perform
multiple-year simulations. Due to a lack of available data, the nutrient model could not
be developed further. Gu and Stefan [21] included an ice-cover period simulation in
MINLAKE88 to model snow thickness, ice cover thickness, and water temperature but
no other state variables. In 1991, Hondzo and Stefan introduced a more general water
temperature simulation model for MINLAKE which can be applied to a wide variety
of lakes and regions [44]. An important modification of MINLAKE was accomplished
in 1994 when Fang [45] developed the regional dissolved oxygen model and combined
it with MINLAKE to study the impact of global climate warming on lake water quality
and fish habitat in Minnesota lakes. The regional lake model was developed to model
different types (categorizing by stratification strength and eutrophication) of lakes by
maximum depths (shallow, medium-depth, and deep), surface area (small, medium area,
and large), and trophic status (eutrophic, mesotrophic, and oligotrophic). The regional
DO model is a simplified version of the DO model that did not simulate daily nutrients
and Chla concentrations but used the annual mean Chlorophyll-a concentration with
seasonal variation patterns [22] to specify daily Chla for DO simulation. Separate sub-
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models for winter conditions were developed and integrated with MINLAKE96 to simulate
water temperature and DO year-round over many years as long as daily weather data
are available [46]. The MINLAKE96 model was further modified and refined as it was
used in a study in 2010, to simulate water quality conditions in cisco lakes, which are
typically deep mesotrophic or oligotrophic lakes [47]. The MINLAKE96 model was further
modified by West-Mack to simulate phosphorus, nitrogen, and chlorophyll-a simulation
in 1998 [23,48] and the updated model is called MINLAKE98 here. The mass balance
equations for chlorophyll-a, phosphorus, nitrogen, and DO were modified from those
of MINLAKE88. The model was tested on three lakes and produced satisfactory results
but due to lack of observed data and inability of the model to run for multiple years, the
nutrient model was not further developed. The source code of MINLAKE98 was also lost
and no longer available for further improvement.

MINLAKE96 was further modified in 2018 to calculate the hourly water temperature
and DO using hourly weather conditions [24,49]. MINLAKE2012 is the most recent version
of the daily MINLAKE model and can simulate year-round water temperature and DO in
various lakes of different regions, using an Excel spreadsheet as the user interface. For all
MINLAKE model variants, water temperature is simulated first by solving the following
heat transport equation.

∂Tw

∂t
=

1
A

∂

∂z

(
Kz A

∂Tw

∂z

)
+

Hw

ρCP
(2)

where Tw (z, t) is the water temperature in ◦C, which is a function of depth (z in m) and
time (t in d); A(z) (m2) is the horizontal area for each layer of water as a function of the
depth; Kz (m2/day) is the vertical turbulent heat diffusion coefficient which is a function
of depth and time; ρCp (J/m3-◦C) represents the heat capacity of water per unit volume;
Hw (J/m3-day) is the heat source and/or sink term per unit volume of water. Determination
of the turbulent diffusion coefficient is discussed in detail by Fang [45]. In the regional daily
MINLAKE model, the vertical heat diffusion coefficient Kz for epilimnion and hypolimnion
is calculated using the following equation:

Kz = 8.17 × 10−4 × AS
0.56

(N2)0.43 (3)

where Kz is the vertical diffusion coefficient in cm2/s (1 cm2/s = 8.64 m2/day = 0.36 m2/h),
As is the surface area of the lake (km2) and N2 is the Brunt-Vaisala stability frequency of
the stratification (s−2). In the epilimnion, N2 was set at a minimum value of 0.000075 [42].
Equations (1) and (2) are solved numerically using an implicit finite difference scheme and
a Gaussian elimination method with time steps of one day.

2.2. Phytoplankton Simulation

In MINLAKE2020, the chlorophyll-a model was modified to overcome many of the
limitations of previous MINLAKE models. The model can simulate up to three algal
groups (diatoms, green algae, and blue-green algae) and the shift from diatoms early
in the season to green and then blue-green algae during the summer. The algal groups
are distinguished by different rates of photosynthesis, respiration, settling, zooplankton
grazing, and different nutrient requirements. A schematic diagram of the phytoplankton
cycle applicable to all algal groups is presented in Figure 1.

Phytoplankton growth depends on the maximum growth rate of the algae (Gmax),
half-saturation coefficients for nutrients, water temperature, solar irradiance, external
nutrient concentrations, and the current Chla concentration. The maximum growth rate
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of algae varies for different classes of algae. The algal growth limitation by nutrients is
modeled using a Michaelis-Menten equation [50]:

f (S) =
S

KS + S
(4)

where f (S) is dimensionless, S is the concentration of the nutrient (P, N, or Si) in water
(mg/L), and KS is the half-saturation constant for the nutrient (mg/L). Algal growth
dependence on water temperature is modeled by equations given by Lehman et al. [51]:

f (T) = exp

(
−2.3

(
T − Topt

Topt − Tmin

)2
)

for T < Topt (5)

f (T) = exp

(
−2.3

(
T − Topt

Tmax − Topt

)2
)

for T ≥ Topt (6)

T is the water temperature (◦C). The maximum growth occurs at an optimal temper-
ature, Topt (◦C), and the growth rate decreases both above and below Topt. Tmin (◦C) is
a low temperature at which phytoplankton growth is reduced to 90% from the optimum.
Tmax (◦C) is the high temperature at which growth is reduced by 90%. Phytoplankton
growth is usually limited by available light, which is a function of the depth and the light
attenuation coefficients due to water (Kw) and algae (Kc). The Haldane equation [52] is
used in MINLAKE2020 to calculate the light limitation for algal growth, which was also
used in MINLAKE88, MINLAKE98, and the regional DO model:

f (L) =
I(z)

(
1 + 2

√
K1
K2

)
I(z) + K1 +

I(z)2

K2

(7)

I(z) =
27.25
TD

RAD × exp[−(Kw + KcChla)z] (8)

where f (L) is the light limitation coefficient (dimensionless), I(z) is the photosynthetically
active radiation (PAR) as a function of depth, TD is the photoperiod (h) as a function
of Julian day, RAD is daily solar radiation, and K1 and K2 are the light limitation and
inhibition coefficients [53], respectively. The units for I(z), K1, and K2 are in µE/m2/s. In
MINLAKE88 and MINLAKE98, light limitation and inhibition coefficients were specified
by the user. In MINLAKE2020, light limitation and inhibition coefficients are calculated
using the same equations as in the regional DO model [23].

Phytoplankton populations are removed from a water column by four processes:
respiration, mortality, settling, and zooplankton grazing (Figure 1). Each phytoplankton
population is assigned a fixed or calibrated respiration rate, mortality rate, and settling
rate. Respiration affects the available phosphorus and DO immediately whereas mortality
contributes with a time lag through detrital decay. In MINLAKE2020, a single class
of zooplankton is simulated. To simulate the Chla lost by grazing of zooplankton, the
zooplankton population (ZP(t), #/m3) is simulated in a separate subroutine on daily basis.
Grazing is assumed to take place in the evening when zooplankton rises to the upper
layers and is dependent on the temperature and Chla concentration. The Michaelis-Menten
equation is used to simulate the effect of Chla concentration on grazing. It is assumed that
no grazing occurs below a threshold Chla concentration (Chlamin in Equation (9)):
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where Chla is the chlorophyll-a concentration (mg/L), vc is the phytoplankton settling
velocity (m/d), Km, Kr, θm, and θr are mortality and respiration rates (d−1) and cor-
responding temperature adjustment coefficients (dimensionless), respectively. Gmax is
the maximum growth rate of phytoplankton (d−1), GRmax is maximum grazing rate
(mg Chla/individual zooplankton per d), Chlamin is minimum chlorophyll concentration
for grazing to occur (mg/L), Kgchla is half-saturation constant for grazing (mg/L), KP and
KN are the half-saturation constants for phosphorus and nitrogen (mg/L), respectively; P
and N are the available concentration of phosphorus and nitrogen (mg/L), respectively; ZP
is the zooplankton density (#/m3), ∆Tg (<1 d) is time that zooplankton spends in a layer
during the night to graze (d), V(IZ)/V(I) is the day depth (layer IZ) and the layer I volume
ratio, and CF is the unit conversion from L to m3 (=0.001).

Zooplankton grazing is only simulated to represent the dynamics of algae. Zooplank-
ton grazing rates vary with different classes of algae. For example, zooplankton is more
likely to feed on green algae than blue-green algae [23].

GRAZE(k, I) ∝ ∆Tg(I) = (1 − TD
24

)(
∑3

k=1 Chla(k, I)

∑IZ
I=1 ∑3

k=1 Chla(k, I)
) (10)

where ∆Tg(I) is the time of grazing for layer I (d), TD is the photoperiod (h) from sunrise to
sunset, Chla(k, I) is the chlorophyll-a concentration of phytoplankton group k in layer I, and
IZ is the day-depth layer, where DO ≥ 0.5 mg/L. Zooplankton grazing of phytoplankton
(Chla) occurs during nocturnal migration at the day depth. The nocturnal grazing rate is
calculated for each layer (I = 1, . . . , IZ) between the day depth and the surface using the
volume day depth/layer ratio Vr = V(IZ)/V(I) [43].

2.3. Zooplankton Simulation

MINLAKE2020 includes a zooplankton model to simulate (1) Chla lost by zooplankton
grazing and (2) DO consumed by zooplankton respiration. A single class of zooplankton
is simulated in the lake environment each day. During the day, zooplankton retreats to
deeper water seeking refuge from visual predators. They begin to rise to the surface at
dusk while grazing and return to deeper layers at dawn (Figure 2). Zooplankton activity of
these two periods is treated separately in the model.

Zooplankton is assumed to have a constant reproduction rate and a time-varying
predation rate for determining the zooplankton population ZP(t) as a function of time
(t, day). The day depth, light level at the day depth, and predation on zooplankton are



Water 2021, 13, 2088 10 of 34

calculated as the first step in zooplankton simulation. The day depth of zooplankton is
identified as the deepest layer in which the DO concentration is greater than 0.5 mg/L
and therefore changes with time depending on DO vertical depth distribution. Below the
day depth, the grazing is zero. In MINLAKE2020, dual effects of seasonal predation and
light limitation are included to simulate biomanipulation techniques related to methods
of increasing the zooplankton population [54]. The dominant zooplankton predators are
assumed to be visual predators and zooplankton predation only occurs in the daytime.
The light limitation assumes a linear variation of predation between two light levels [55].

PDd = Pd
XI − XImin

XImax − XImin
where 0 ≤ XI − XImin

XImax − XImin
≤ 1 (11)

where PDd is the daytime predation rate (d−1) and Pd is the daily predation rate (d−1)
calculated using Equation (12). XI is the light intensity at the day depth (µE/m2/s), XImin
is the light intensity at which no predation occurs (µE/m2/s) and XImax is light intensity
above which predation is not light inhibited (µE/m2/s). When the light intensity XI is less
than XImin or larger than XImax, the ratio in Equation (11) is reset to zero or one, respectively.

Both daytime and nocturnal predation are calculated in MINLAKE2020. Daytime
predation combines light limitation with a time-varying maximum predation rate. A linear
function is used to calculate the time-varying daytime predation rate Pd given in Equation
(12) when Julian day DY is between DYmin and DYmax.

Pd = Pmin + (Pmax − Pmin)

(
DY − DYmin

DYmax − DYmin

)
where 0 ≤ DY − DYmin

DYmax − DYmin
≤ 1 (12)

where Pmin and Pmax are minimum and maximum predation rates (d−1), respectively. DYmin
is Julian day of the last day of minimum predation rate and DYmax is Julian day of the
beginning of maximum predation rate: Pd = Pmin when DY < DYmin and Pd = Pmax when
DY > DYmax. For example, for Elmo Lake, West and Stefan [23] set Pmin, Pmax, DYmin, and
DYmax as 0.05 d−1, 0.7 d−1, 110 (20 April), and 140 (20 May); it means Pmin occur on and
before 20 April and Pmax occur on and after 20 May.

Zooplankton density in the daytime is determined using Equation (13) including
first-order reproduction and daytime predation:

ZP(t) = ZP(t − 1) + ZP(t − 1)× Repro − PDd(ZP(t − 1)− ZPmin)
TD
24

(13)

where Repro is the reproduction rate (dimensionless) and ZP(t − 1) is the zooplankton
density in the previous day.

Nocturnal predation occurs during nocturnal migration at the day depth. The noctur-
nal predation rate is calculated for each layer between the day depth and the surface.

PD(t, I) = PDn

(
ZP(t)

V(IZ)
V(I)

− ZPmin

)
∆Tg(I) (14)

where PD(t, I) is the nocturnal predation rate in layer I during migration (#/m3) and
PDn is the nocturnal predation rate (d−1) as a constant input parameter. ZP(t) is the
zooplankton population in the day depth layer calculated using Equation (13), and ZPmin
is the minimum concentration of zooplankton for predation to occur (#/m3). V(IZ) and
V(I) are the volumes of the day depth layer and layer I (m3), respectively. ∆Tg(I) is the time
that zooplankton spent in layer I during the night (d). The daytime ZP(t) minus PD(t, I)
gives the zooplankton population for the next day.

The second part of zooplankton simulation is the simulation of phytoplankton grazing
by zooplankton which begins with a vertical rise in the evening. Temperature and Chla
concentration affect grazing in the water layer (see Equation (9)). A Michaelis-Menten ratio
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is used to express the effect of Chla concentration on grazing with a refugium effect for no
grazing below a threshold Chla concentration (Chlamin in Equation (9)).

2.4. Phosphorus Simulation

In most cases, phosphorus is known to be the primary nutrient controlling the trophic
state of lakes in the Upper Midwest USA and Canada [56]. Phytoplankton can only
use the soluble reactive phosphorus (SRP) which is composed of orthophosphate and
polyphosphate ions. The model only simulates the readily accessible phosphorus and
indirectly models organic phosphorus as detritus. Phytoplankton growth removes SRP
from the water. Respiration releases phosphorus into the water column. Mortality does
not directly release phosphorus to the water column but contributes to the detrital mass
(BOD); phosphorus is released from the detrital mass through decay. Though diffusion
of phosphorus occurs between layers, phosphorus is also transported indirectly between
layers by phytoplankton and detritus settling. Figure 3 graphically represents/summarizes
the SRP fate and transport modeled by MINLAKE2020.

Phosphorus, accumulated from the detrital biomass, sediment release (zero-order
kinetics), and respiration, are used by the phytoplankton, in the presence of sunlight, for
growth. Algae need both nitrogen and phosphorus for growth. However, phosphorus is
particularly important for algal growth as it is usually in short supply compared to other
nutrients. If it is assumed that nitrogen is in abundant supply, phosphorus becomes the
only limiting nutrient for algal growth (green and blue-green algae), which is modeled in
the application of MINLAKE2020. Uptake depends on the maximum growth rate, light
limitation, nutrient limitation, Chla concentration at that time, and the yield ratio of P to
Chla as shown in Equation (15).

The differential equation representing SRP fate and transport in a layer is given as
Equation (15):
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where KBOD and θr are decay rate (d−1) and corresponding temperature adjustment coeffi-
cient, respectively; SP is the rate of phosphorus released at the water-sediment interface
(g P/m2/d) at anoxic condition and it is calibrated against available phosphorus/Chla/DO
profiles, YPChla is mass yield ratio of phosphorus to chlorophyll, and YPBOD is mass yield
ratio of phosphorus to BOD.

A phosphorus/chlorophyll yield coefficient (YPChla) is used to determine the amount
of phosphorus consumed during photosynthesis as well as the amount of phosphorus
released during algal respiration. In MINLAKE98, the value of YPChla was derived from
the mass yield coefficient of phosphorus to BOD divided by the mass yield coefficient of
chlorophyll to BOD [23]. This value is 1.1 mg P/mg Chla for YPChla, which was assumed to
be constant in MINLAKE98, and is close to that presented by Thomann and Mueller [57] of
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1.0 µg P/µg Chla. In MINLAKE2020, YPchla is set to 1.1 mg P/mg Chla for all simulated
lakes. However, the phytoplankton biomass does not depend on phosphorus solely, it also
depends on the nitrogen concentration.

There are three source terms for phosphorus: detrital decay (death of phytoplankton),
sediment release, and phytoplankton respiration. For many lakes which have a history
of progressive eutrophication, the lake sediments have now become the primary source
of phosphorus to the water. If the sediment-water interface is anoxic, phosphate ions go
to the water at an increased rate, depending upon the concentration difference between
porewaters and the overlying water [58]. MINLAKE2020 simulates SRP release back to
water when the DO concentration becomes zero.

The daily zero-order internal phosphorus release (same as Equation (15)) was included
in MINLAKE88 [20] and MINLAKE98 [46] before. CE-QUAL-W2 [59] includes the zero-
order and first-order phosphorus release from sediment. EFDC model [60] has a governing
equation for total phosphate including a sediment-water exchange flux of phosphate
(g P/m2/d) for the control volume at the bottom. ELCOM-CAEDYM [29] simulates
phosphorus release from sediment as a function of temperature, DO and pH. There are
some empirical models that quantified long-term internal phosphorus release for the whole
lake (not for mass balance equation for a water layer or control volume), for example,
Nurnberg [61] determined the internal phosphorus release per year after analyzing the
data from various lakes. Stigebrandt et al. [62] and Stigebrandt and Andersson [63]
developed a two-layer DIP (dissolved inorganic phosphorus) model including two mass
balance equations for the Baltic proper and having a time step of one year. Stigebrandt and
Andersson [63] used 47 years (1968–2014) of observational data to derive the phosphorus
flux from anoxic bottoms, which is about 1.22 tons P/km2/year (or 1.22 g P/m2/year)
for the Baltic proper. Stigebrandt et al. [62] used a load-response model to explain the
evolution of TP in the surface (0–60m) and bottom layers (60 m to bottom) from 1980 to
2005 and suggested that the average specific DIP flux from anoxic bottoms in the Baltic
proper is about 2.3 g P/m2/year. If the average anoxic period of the Baltic proper is
100–150 days per year, then the phosphorus flux would be 0.01–0.02 g P/m2/d.

2.5. Nitrogen Simulation

When phosphorus is in excess (e.g., P >> Kp), nitrogen can become the limiting nutrient
for algae growth, which is not a usual scenario in many lakes. Nitrogen is available in
two forms (ammonium NH4, and nitrite plus nitrate, represented as NO2-3 in this paper).
MINLAKE2020 models both ammonia and NO2-3 separately. Schematic diagrams of the
NH4 and NO2-3 sub models are given in Figures 4 and 5, respectively. Nitrogen N in
Equations (9), (15), and (19) is the sum of NH4 and NO2-3 concentrations (in mg N/L).

Diffusion of ammonia and NO2-3 occurs between layers. Nitrification is the biological
oxidation process (assuming DO) of ammonia to nitrite followed by the faster oxidation
of the nitrite to nitrate so that nitrite and nitrate are often modeled as one variable. The
uptake of ammonia and nitrate due to phytoplankton growth is calculated as a zero-order
sink term with a preference in the uptake of ammonium over the uptake of nitrate. It
directly links to the growth of phytoplankton. Respiration of phytoplankton releases
ammonia (Equation (16)) but not nitrate. Mortality of phytoplankton does not directly
release ammonia or nitrate to the water but contributes to the detrital mass (BOD), and
then ammonia is released through the decay of the detrital mass, as shown in Equation
(16). Therefore, ammonia is also transported indirectly between layers by phytoplankton
(Equation (9)) and detritus settling (Equation (18)). Ammonia and nitrite releases from the
sediment are also modeled when DO is low (depending on the DO concentration of the
overlying water). The model does not consider the atmospheric deposition of ammonia or
NO2-3 and denitrification (the reduction of nitrate to nitrogen gas, N2).
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Equations (16) and (17) provide the governing equations to model NH4 and NO2-3 in
each water layer. KNI and θNI are the first-order nitrification rate (d−1) and the temperature
adjustment coefficient, respectively; KNH(n) and KTN(n) are the half-saturation constants
for preferential uptake of ammonia over nitrate and nitrogen uptake for each algae class,
respectively; SNH, SNO, θNH, and θNO are ammonia and nitrite release rates from sediment
(g N/m2/d) and corresponding temperature adjustment coefficients, respectively; YNHBOD,
YNHChla, and YNOChla are the mass yield ratios of ammonia to BOD, ammonia to chlorophyll,
and nitrate to chlorophyll, respectively; and KBOD and θBOD are the first-order BOD or
detritus decay rate (d−1) and the temperature adjustment coefficient, respectively.

In MINLAKE2020 phytoplankton growth is simulated by external nutrient limitation
and the model does not allow for nitrogen fixation (storage of excess nitrogen for later use)
as MINLAKE88 did [49]. MINLAKE2020 simulates the release of ammonia from dead algae
indirectly through detrital decay. In the normal range of ammonia concentration, when
KNH(n) is small, the Michaelis-Menten ratio for ammonia in Equation (16) will be close to
1.0, and in Equation (17) one minus the Michaelis-Menten ratio will be small; therefore, it
has preferential uptake of ammonia over nitrate.
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2.6. BOD Simulation

BOD is an important parameter in the DO, phosphorus, and nitrogen cycles. The
microbial decay or decomposition of organic matter, which is detritus from the mortality
of phytoplankton in MINLAKE2020, consumes oxygen, and therefore, the amount of
organic matter is represented as BOD, an oxygen equivalent. However, DO directly affects
biological decay processes and phosphorus release under anoxic conditions. In the regional
DO model [22], a constant rate for BOD was used for each simulation lake depending
on the lake’s trophic state. For the year-round lake water quality model [46], different
constant rates of BOD for the open water seasons and winter ice cover periods were used
over multiple years. However, BOD is an important parameter for nutrient cycles and DO
cycle and is affected by mortality, organic decay, diffusion, and advection (Figure 6) and
simulated separately in MINLAKE2020.

The differential equation representing BOD in a layer is given as Equation (18):
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where vB and YCHBOD represent detritus settling velocity (m/d) and the mass yield ra-
tio of Chla to BOD, respectively. In the model, BOD is increased from two sources
(Figure 6). First, detritus travels to adjacent layers via diffusion. Secondly, the mor-
tality of the phytoplankton adds to the detritus concentration. BOD has two sink terms
(Figure 6): advection (settling in the vertical direction) and organic decay. Detritus falls
from the concerning layers and goes to another layer or the sediment. The microbial
decay of organic matter is a function of the detrital mass expressed in oxygen equivalents
(BOD). The mortality of cells and a fraction of the grazed phytoplankton are converted
from Chla concentrations to oxygen equivalents using the constant carbon/Chla ratio and
stoichiometric relationships. The result is a one-to-one correspondence between detrital
decay and the utilization of oxygen. This cycle is very important for nutrient calculation as
it directly adds to the nutrient load through detrital decay.

2.7. DO Simulation

DO is one of the vital parameters of lake water quality simulation. Aquatic organisms
and fish depend on the availability of DO in the waterbody [64]. A schematic diagram
of the processes contributing to the DO concentration is given in Figure 7. It shows that
DO is added to a water layer through diffusion and photosynthesis; and is removed by
respiration of algae and zooplankton, detrital decay (BOD), sediment oxygen demand
(SOD), and nitrification. The surface reaeration can add or remove DO depending on
whether surface DO is less or greater than saturated DO (a function of surface temperature
and lake elevation). Phytoplankton (modeled as Chla) growth can add DO to the water
layer through photosynthesis to the point where water could be supersaturated with DO in
some cases. These dynamic processes can happen over time scales of less than one day (the
time step of the MINLAKE2020 simulation). Therefore, the model outputs DO profiles as
an integration of different physical (e.g., mixing), chemical, and biological processes over
the day. DO removal from the water layer through phytoplankton respiration is simulated
to occur at a constant rate throughout the day while photosynthesis occurs only during the
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hours with solar radiation. In MINLAKE2020, the adjustments for low DO levels on SOD,
BOD, and algal respiration follow Edwards and Owens’s [65] formula. SOD is calculated
for each layer, and it is treated as a sink term in the one-dimensional (vertical) transport
equation [22,57]. Oxygen uptake of the sediment depends on the area and composition of
bottom materials in contact with the water [22,66].

The differential equation representing DO dynamics in a layer is given as Equation (19):
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where Kzr and θzr are the zooplankton respiration rate (d−1) and the temperature ad-
justment coefficient, respectively; KNH(n) and KTN(n) are the half-saturation constant for
preferential uptake of ammonia over nitrate and for nitrogen uptake for each algae class,
respectively; Sb and θSOD are sediment oxygen demand of sediment (g O/m2/d) and
corresponding temperature adjustment coefficient, respectively; ke is the surface oxygen
transfer coefficient (m/d), A(1) and V(1) are horizontal area (m2) and lake volume (m3) for
the first or surface layer; YNHO2 and YCHO2 are the mass yield ratios of ammonia to oxygen
and chlorophyll to oxygen, respectively. Calibration of the sediment oxygen demand is
very important for simulating DO in the hypolimnion.

2.8. Interaction and Connection among Modeling Variables

This study is focused on the internal nutrient dynamics and its interaction/connection
to the phytoplankton, BOD and DO dynamics in the lakes; therefore, the inflow and
outflow sub-model was disabled. The MINLAKE2020 DO model is different from that
of MINLAKE2012, where daily Chla and BOD were specified as model input based on
lake trophic status. For MINLAKE2020, several modifications were made to simulate
phosphorus, nitrogen, Chla, and BOD concentrations and zooplankton activity in the DO
simulation. The photosynthetic oxygen production calculation was modified, and the
nitrification and zooplankton respiration were added to the DO model while the rest of
the terms were the same as in MINLAKE2012. In MINLAKE 2020, photosynthetic oxygen
production is dependent on the simulated daily Chla concentration rather than the data
driven Chla pattern and annual mean concentration used in MINLAKE2012.

The diffusion of DO occurs between the water layers in the metalimnion and hy-
polimnion. The spring and fall overturn periods for temperate lakes completely mix water
columns and make all modeling variables distributed uniformly along with the depth.
Since zooplankton usually spend the largest amount of their time in the day depth layer,
zooplankton respiration is simulated at the day depth only. BOD removes oxygen from
the water layer through the decay of detritus which is accumulated from phytoplankton
mortality and removed by settling (Figure 6). Nitrification removes oxygen from the water
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layer through the conversion of ammonia to nitrite then to nitrate. Nitrification is applied
to the DO model only if nitrogen is simulated.

From Figures 1–7 and from Equations (9)–(19), one can see the complex interactions
and connections among modeling variables. For example, when the settling velocity of
the phytoplankton group is increased, it reduces Chla concentration and in turn, affects
detritus (BOD) and phosphorus, but phosphorus goes back to affect phytoplankton growth.
Additionally, DO concentrations in different water layers connect/integrate changes in
water temperature, nutrients, and phytoplankton dynamics (Figure 1). The sediment
oxygen demand is an important factor for DO mass balance and results in the anoxic
condition in the hypolimnion that leads to phosphorus release from sediment. Therefore,
exploring/understanding the internal cycles/dynamics of nutrients/phytoplankton and
their interactions in different lakes helps us to gain insights of lake ecosystem and then
develop appropriate restoration strategies.

2.9. Model Coefficients and Parameters

MINLAKE2020 model was designed to simulate small lakes (As < 25 km2) provided
that the user specifies the input data and calibration parameters accordingly. Variation
in lake characteristics is reflected in model input data/parameters. Lake bathymetry
and weather data (depending on lake geographic location) need to be supplied to the
model. For many lakes in Minnesota, depth or elevation contour lines can be downloaded
from the Minnesota Department of Natural Resources (MN DNR) LakeFinder website
(https://www.dnr.state.mn.us/lakefind/index.html, accessed on 5 June 2019), from which
horizontal areas at different elevations/depths can be determined. The weather data in-
clude daily air temperature (◦F), dew point temperature (◦F), wind speed (mph), solar
radiation (Langley), sunshine percentage, and precipitation including rainfall (cm) and
snowfall (mm). To facilitate the comparison of DO simulation results, in MINLAKE2020,
the user can run the DO simulation in two ways: (1) using MINLAKE 2012 regional DO
model, i.e., nutrients and Chla are not simulated (called the RegDO model); (2) using MIN-
LAKE2020 (called the NCDO model). This model first simulates nutrients and Chla and
then DO [67]. Table 1 lists nutrient, Chla, and DO calibration parameters in MINLAKE2020
and includes descriptions and effects on specific model results.

Table 1. Nutrient, Chla, and DO calibration parameters for MINLAKE2020.

Parameters Unit Effect on Model Results Description of the Parameter

KBOD d−1 P, BOD, and DO profiles Detrital decay rate
Sb g/m2/d DO profiles SOD coefficient at 20 ◦C

EMCOE (2) DO profiles Multiplier for SOD below the euphotic zone
Kr

1 d−1 Chla, P, BOD, DO profiles Respiration rate of algae
Gmax

1 d−1 Chla, P, DO profiles Maximum growth rate of algae
Km

1 d−1 Chla and BOD profiles Non-predatory mortality rate of algae
KP

1 m/d Chla, P and DO profiles Half saturation coefficient for phosphorus
SP g/m2/d P and DO profiles Sediment phosphorus release rate
vc

1 m/d Chla and DO profiles Settling velocity of algae
vB m/d Chla and DO profiles Settling velocity of detritus

Topt
1 ◦C Chla, P and DO profiles Optimum temperature for growth of algae

Tmax
1 ◦C Chla, P and DO profiles Maximum temperature for growth of algae

Tmin
1 ◦C Chla, P and DO profiles Minimum temperature for growth of algae

ZP m−3 Chla and DO profiles Zooplankton population
ZPmin m−3 Chla and DO profiles Minimum zooplankton population for predation

Chlamin
1 mg Chla Chla and P profiles Minimum chlorophyll-a for grazing

Note: 1—these parameters are calibrated for each algal class in MINLAKE2020.

The number of algal classes and the light attenuation coefficient are important input pa-
rameters for the simulation. Moreover, the snow and ice model require various coefficients
(e.g., snow and ice density, specific heat, thermal conductivity, etc.) as input parameters,

https://www.dnr.state.mn.us/lakefind/index.html
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which has been well tested in the previous studies [68]. The temperature adjustment
coefficients for BOD, photosynthesis, respiration, and sediment oxygen demand were set to
1.047 [69], 1.066 [57], 1.047 [20], 1.065 [70], respectively. Mass ratios of Chla to oxygen, phos-
phorus to oxygen, and phosphorus to chlorophyll-a are 0.0083, 0.0091, and 1.1, respectively.
The inclusion of phytoplankton and zooplankton simulation in MINLAKE2020 calls for
many additional input parameters or model coefficients. Most of the zooplankton-related
coefficients were taken from West and Stefan’s study [23]. Zooplankton respiration rate
was set to 0.002 d−1 and the reproduction rate was 0.02 d−1. Minimum light intensity for
zooplankton predation, light intensity for maximum zooplankton predation, Julian day for
the end of low predation period, and Julian day for the beginning of maximum predation
were set to 0 µE (m2s)−1, 0.1 µE (m2s)−1, 110 (20 April), and 140 (20 May), respectively.
Minimum seasonal day time predation rate, maximum seasonal day time predation rate,
and overnight predation rate were set to 0.05 d−1, 0.7 d−1, and 0.03 d−1, respectively. For
any lake, these parameters were kept constant whereas some of the model parameters were
updated/calibrated based on the comparison of simulation results with observed data.
The first four parameters were used in the regional DO model, but the respiration rate Kr
was not calibrated (constant).

3. Lakes Simulated

In this study, six lakes (Table 2) were selected for the model calibration, the sensitivity
analysis of model parameters/coefficients, and understanding the interaction/connection
among seasonal variations of nutrients and chlorophyll-a: two shallow lakes (Pearl and
Carrie), two medium-depth lakes (Riley and Thrush), and two deep lakes (Carlos and
Elmo). The maximum depths range from 5.6 to 50.0 m. All six lakes are located in north-
eastern Minnesota since they have the necessary data for the study. The nearest weather
station to the lake was selected for providing weather data: St. Cloud Regional Airport
for Pearl, Carrie, and Carlos lakes; Duluth International Airport for Thrush and Riley
lakes; and Minneapolis/St. Paul International Airport for Elmo Lake. The geometry
ratio (GR = As

0.25/Hmax, As in m2, and Hmax in m being the surface area and the max-
imum depth of the lake) is a very important characteristic parameter of a lake that is
related to stratification, lake habitat, etc. [71]. The lake geometry ratio is between 0.75 and
7.53. The lower the geometry ratio, the stronger the lake stratification. Two medium-depth
(6 m < Hmax ≤ 20 m, [72]) and two deep lakes (Hmax > 20 m, [72]) selected for the study
are strongly stratified (geometry ratio less than 3), one medium-depth and one shallow
lake are weakly stratified (geometry ratio between 3 and 10). Based on observed Chla
concentration, Pearl, Carrie, and Riley lakes are eutrophic (mean Chla > 10 µg/L [73]),
Elmo and Carlos are mesotrophic lakes (mean Chla between 4 and 10 µg/L [73]), and
Thrush is an oligotrophic lake. The nutrient model was calibrated and validated based on
available measured water temperature, chlorophyll-a, phosphorus and DO profile data on
particular days, downloaded from the LakeFinder website.

Table 2. Characteristics of six study lakes in Minnesota.

Lake Surface Area,
As, (km2)

Max. Depth
Hmax, (m)

Geometry
Ratio (m)0.5

Mean Chla
(µg/L)

Trophic
Status

Simulation
Years

Number of
Profile Days
(Data Points)

Pearl 3.05 5.55 7.53 16.91 Eutrophic 2010–2012 15 (134)
Carrie 0.37 7.90 3.12 6.71 Mesotrophic 2007–2010 36 (342)
Riley 1.19 14.9 2.22 24.00 Eutrophic 1985–1987 16 (148)
Thrush 0.048 14.63 1.01 1.71 Oligotrophic 2008–2015 18 (100)
Elmo 1.039 42.63 0.75 4.45 Mesotrophic 1989–2009 70 (864)
Carlos 10.54 50.00 1.15 3.84 Oligotrophic 2008–2015 54 (308)
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4. Result and Discussion
4.1. Model Calibration

For MINLAKE 2020 model application to the six study lakes, the temperature model
was calibrated first and then the nutrient model was calibrated. Temperature model calibra-
tion ensured that thermal and mixing dynamics were modeled accurately because water
temperature and mixing dynamics directly affect nutrients, Chla, and zooplankton pro-
cesses (Equations (9)–(19)). The wind sheltering coefficient and the multiplier for diffusion
coefficient in metalimnion are the main calibration parameters for temperature modeling.
Although MINLAKE2020 has an integrated nitrogen model, for this study, only phosphorus
was simulated since phosphorus is the limiting nutrient in these six lakes. Green algae
and blue-green algae were simulated separately and then combined to represent the total
chlorophyll-a concentration. The MINLAKE2020 development also included the inflow
and outflow subroutines from MINLAKE88, which were tested/verified to ensure they
function properly; however, the inflow/outflow function was not activated for the simula-
tion of the six study lakes (Table 2). Certain inflow and outflow were reported for Carrie,
Pearl, and Carlos Lake [74–76] whereas inflows in the other three lakes were minor, and
the inflow quality (nutrients and phytoplankton) data were scarce. These approximations
are appropriate since the study objective is to examine/understand the internal dynamics
and cycles of nutrients over multiple years in six lakes with different stratification and
trophic characteristics.

Figure 8 shows an example of the calibration results of water temperature and DO
time series at two depths (1 and 7 m) at Lake Carrie including measured data. During
2008–2010, Lake Carrie had measured water temperature and DO profile data for 36 days
or 342 data points in total. MINLAKE2020 simulated water temperature and DO with
a root mean square error of 1.75 ◦C and 1.95 mg/L, respectively. Corresponding regression
coefficients of measured versus simulated (R2) are 0.99 and 0.93, respectively. The statistical
results summarized in Table 3 show that for the six lakes, MINLAKE2020 model performed
better than MINLAKE2012, especially for DO simulations, when simulated profiles were
compared with observed profiles. The main reason for this improvement is the simulation
of Chla concentration on daily time step rather than using the specified pattern of observed
data. Table 3 shows the model performance improved significantly with the NCDO model
in Carlos and Thrush lakes. The average root-mean-square error (RMSE) of DO simulations
in six lakes from MINLAKE2020 decreased by 24.2%, and average Nash-Sutcliffe efficiency
(NSE) [77] also increased with respect to MINLAKE2012. Chlorophyll concentration affects
the solar radiation attenuation in the water column (Equation (8)) and then affects water
temperature simulation as shown in Table 3 even though the average RMSE, NSE, and R2

for temperature (regression coefficient of measured versus simulated) from the two models
are almost the same.

For Chla simulation of six lakes, RMSE ranges from 0.0006 to 0.0276 mg/L. Figure 9
shows an example comparison between simulated Chla of MINLAKE2020 (NCDO model)
and specified Chla from MINLAKE2012 (RegDO model) for Lake Elmo. From 1980
to 2018, there were 74 days in 10 years with measured temperature and DO profiles
(1506 data points) for model calibration but no profile data in 2007 and 2009. The average
chlorophyll concentration was 0.0075 mg/L in 74 days but 0.0036 mg/L over 10 days in
2008. Even though there were no profile data in 2009, we identified some Chla data in
2009 as shown in Figure 9. MINLAKE2012 uses the annual mean Chla concentration and
seasonal variation patterns [22] (depending on trophic status) to specify daily Chla for DO
simulation. Therefore, the RegDO model had higher Chla in 2007 and 2009 due to the lack
of available profile data in these two years whereas the NCDO model predicts the Chla
reasonably well in 2008 and 2009 when comparing with data.
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Table 3. Statistical parameters for six lakes when simulated profiles were compared with observed.

Lake Name

NCDO Model (MINLAKE2020)

Water Temperature Dissolved Oxygen

RMSE a (◦C) NSE b R2 c RMSE (mg/L) NSE R2

Elmo Lake 0.98 0.98 0.99 2.02 0.70 0.92
Carlos Lake 1.66 0.83 0.97 2.39 0.61 0.90
Riley Lake 1.50 0.50 0.98 1.79 0.80 0.93

Thrush Lake 1.88 0.70 0.95 2.43 0.40 0.92
Carrie Lake 1.75 0.68 0.99 1.95 0.70 0.93
Pearl Lake 1.30 0.87 0.97 3.42 −0.12 0.87

Average ± STD d 1.51 ± 0.33 0.76 ± 0.17 0.97 ± 0.01 2.33 ± 0.59 0.52 ± 0.34 0.91 ± 0.02

Lake Name RegDO Model (MINLAKE2012)

Elmo Lake 1.03 0.98 0.99 1.89 0.70 0.92
Carlos Lake 1.52 0.85 0.98 4.15 −0.19 0.85
Riley Lake 1.55 0.5 0.98 2.61 0.55 0.91

Thrush Lake 2.01 0.69 0.95 2.91 0.1 0.92
Carrie Lake 1.76 0.64 0.99 1.98 0.69 0.94
Pearl Lake 1.04 0.97 0.98 3.30 0.01 0.89

Average ± STD 1.49 ± 0.39 0.77 ± 0.19 0.98 ± 0.02 3.08 ± 1.11 0.11 ± 0.69 0.90 ± 0.03

Note: a—RMSE stands for Root Mean Square Error between simulated and observed, b—NSE for Nash-Sutcliffe Efficiency [77], c—R2

stands for regression coefficient of measured versus simulated, d—STD for Standard Deviation.

Some lakes, such as Lake Elmo and Carrie Lake (Table 3), do not exhibit a noticeable
change in simulated DO concentrations based on the model used for simulation. Some
lakes, e.g., Pearl Lake, exhibit a noticeable change in simulated DO concentration depend-
ing on the model (RegDO or NCDO model). Figure 10a,b show the time series of DO
concentrations simulated by the NCDO model and RegDO model including observed DO
at the surface (1 m) and near the bottom (5 m) of Pearl Lake in 2010–2012, respectively. The
RegDO model somewhat overpredicts surface DO concentration but the NCDO model
underpredicts DO. For the bottom DO, the NCDO model does a better job while the RegDO
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model overpredicts DO. When BOD is simulated, the winter DO decreases, predicted by
MINLAKE2020, are smaller than those predicted by MINLAKE2012 when BOD is specified
as a part of the model inputs. There are very limited data for P comparison between
simulated and observed, and RMSE ranges from 0.005 to 0.036 mg/L. DO simulation is an
overall model performance indication (Table 3).
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4.2. Chla and Phosphorus Profiles

Lake Elmo was extensively monitored in 1988 by the Metropolitan Council [65] and
had measured phosphorus concentration data at five depths (0, 8, 16, 24, and 32 m) and
DO data at 31 depths for open water season. The comparison between simulated and
observed concentrations for Chla, phosphorus, and DO on three days in 1988 is presented in
Figure 11. Since Elmo is a deep lake and solar radiation cannot penetrate below the euphotic
zone, the Chla concentration becomes zero in the deep layers. On 11 April 1988, the lake is
more or less well mixed and phosphorus concentration did not vary much throughout the
depth but DO concentration gradually declined along with depth due to the contribution
of more sink terms (Equation (18)) but for the profile plot, the slope was not steep. The Chla
concentration is highest at the surface and did not vary much throughout the depth. On
18 May 1988, the stratification increases and the simulated DO at the bottom is near zero.
The Chla concentration is not maximum at the surface, but at 8 m depth from the surface.
The phosphorus concentration is higher at the deeper layers because of detrital decay and
phytoplankton respiration. On 19 October 1988, the phosphorus near the surface layer is
being used by the phytoplankton for growth, the lake became strongly stratified and the
bottom layers of the lake become anoxic so that the phosphorus release from sediment
contributed to the higher phosphorus concentration at the deeper depths, which increased
along with depth from metalimnion and hypolimnion.
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Thrush Lake has measured Chla data at both the epilimnion and hypolimnion. The
comparison between simulated and observed concentrations for Chla and DO on three
days in 1986 is plotted in Figure 12. Thrush is an oligotrophic lake with lower oxygen
demands (low BOD and SOD); therefore, the simulated and observed bottom DO is
greater than zero, and there is no phosphorus release from sediment in all three days
(Figure 12). Since no phosphorus data were available, only simulated phosphorus was
plotted and has no increase in the hypolimnion. Due to lower light attenuation coefficients,
solar radiation can penetrate through the deepest layers of the lake. The calculated euphotic
depth (at 1% surface solar radiation) is equal to or greater than the maximum depth
(14.6 m) for all of the three selected dates; therefore, the simulated Chla is not zero near the
bottom but increases below the mixed layer, especially on 17 June 1986. On 13 May 1986,
the Chla and phosphorus concentration did not vary much throughout the depth. The DO
concentration gradually decreased below the mixed layer on 13 May and 17 June 1996, due
to the contribution of more sink terms. On 14 October 1986, the lake became well mixed
due to the fall overturn and had uniform distribution for simulated Chla, phosphorus, and
DO. The model underpredicts the mixed layer depth on 13 May and then overpredicts DO
at the hypolimnion.
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4.3. Chlorophyll-a and Phosphorus Interaction

Figures 13 and 14 show examples of simulated time series of P, Chla, and DO
with observed data for a deep lake (Elmo) and a shallow lake (Carrie), respectively.
Figure 13 shows simulated and observed Chla and phosphorus (P) at three depths (at 1 m,
20 m, 40 m from the surface) of Elmo Lake from 16 April 2007 to 31 December 2009. This is
a continuous year-round simulation including two open-water seasons and two ice cover
periods, which was not done before using MINLAKE models for Chla and P simulation.
The first year of simulation is considered as model warm-up period and the results may
have more uncertainties due to the assumed initial conditions, for example, phosphorus
concentration from the water surface to 20 m was low during the open water season
(Figure 13a,b). The simulated ice cover was from 5 December 2007 to 16 April 2008,
7 December 2008 to 10 April 2009 for Elmo Lake, which is marked by blue shaded regions.
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Near the water surface (1 m), DO concentrations are near saturation as a function
of temperature (lowest DO in the middle of summer) and range from 6.69–11.13 mg/L.
From late October to late November, before the ice starts to form at the surface of the
lake, phosphorus at the surface and other surface layers start to increase due to more
mixing and fall overturns. This increase is more evident in 2007 when phosphorus was
low in the summer. During the ice cover period, the phosphorus concentration becomes
stable at 1 m and 20 m as the organic processes (photosynthesis) become slow due to
the near-zero water temperature and/or low light (attenuated by snow cover). After the
ice melts out in late spring, the simulated phosphorus concentrations at 1 m increase for
a brief period due to spring overturn and then, start to decrease as a result of the phosphorus
uptake by phytoplankton. During the early summer (May) of 2008 and 2009, simulated
Chla concentration increases gradually from 0.0016 mg/L to a maximum of 0.0033 mg/L
(observed on 15 June).
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Figure 14. Simulated and observed chlorophyll-a, phosphorus, and dissolved oxygen concentration at (a) 1 m and (b) 7 m
depth from the surface at Carrie Lake in 2007–2009 (blue shaded area represents the ice cover period).

At the deep layers (e.g., 20 and 40 m), DO becomes anoxic during the summer at deep
hypolimnion since Elmo Lake is strongly stratified. Anoxic periods at 20 m and 40 m were
on average 12 days and 210 days per year from 2007 to 2009, respectively. In the deeper
layers, in addition to detrital decay and phytoplankton respiration, sediment release could
add up to the available phosphorus. Since there is a long period of anoxic condition at
40 m during the summer, early fall, and some part of the ice cover period, phosphorus
release from sediment contributes to a major portion of phosphorus increase. Phosphorus
peaks in deepest layers were simulated to occur just after the anoxic condition ends and
before the fall or spring mixing/overturns. These overturns sharply reduce phosphorus in
very deep layers (e.g., 40 m) and increases phosphorus in other shallower layers. The calcu-
lated euphotic depth is 9 m for the simulation period; therefore, there is no photosynthesis
below this depth and simulated Chla is zero at 20 m and 40 m. Chla is typically measured
near the surface; therefore, there is no measured Chla at the deep depths to compare with
simulated values.

Figure 14 shows simulated and observed P, Chla, and DO at two depths (at 1 m, 7 m
from the surface) of Carrie Lake from 16 April 2007 to 31 December 2009. The calculated
euphotic depth ranges from 3.75 m to 4.23 m from the surface; therefore, the Chla is zero at
the bottom layers (e.g., 7 m). Phosphorus release from sediments due to anoxic conditions
under the ice cover periods for both 2008 and 2009 winter was not only at 7 m but also
at 1 m (does not happen in deep lakes such as Elmo Lake) and triggered algal bloom at
1 m in early summer of 2008 and 2009 (after ice melting). During the summer of 2008 and
2009, the concentration of DO gradually increases at the surface, and sediment phosphorus
release decreases which results in a gradual decrease in phosphorus concentration. The
DO concentration decreases with depth because of no photosynthesis in the deeper layers
(below the euphotic zone) plus sedimentary oxygen demands. Simulated DO at 7 m has
some fluctuations in the summer of 2008 and 2009 due to short period strong mixing
and results in anoxic conditions only in a few days. The simulated high phosphorus
concentrations directly correspond to the simulated anoxic DO conditions in the 2008 and
2009 winters (Figure 14b).
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4.4. Sensitivity Analysis

MINLAKE2020 model is sensitive to several calibration parameters. The model was
first calibrated with a regression coefficient (R2 for measured versus modeled profile data)
of 0.8972 for DO simulation; then, only one model parameter was changed at a time and
the regression coefficient for each new run of DO simulation was determined. Table 4 lists
the calibration parameters with the calibrated and uncalibrated values and the regression
coefficients of DO simulations with uncalibrated values for Lake Elmo in 2007–2009. In
Figures 15 and 16, sensitivity analysis graphs are plotted for five parameters: maximum
photosynthesis rate Gmax (used in Equations (9), (15)–(17) and (19)), sediment phosphorus
release rate SP (used in Equation (9)), half-saturation coefficient of phosphorus KP (used in
Equations (9), (15)–(17) and (19)), minimum Chla for grazing Chlamin (used in Equation (9)),
and settling velocities of algae (vc) and BOD (vB) (used in Equations (9) and (18)) for Elmo
and Pearl Lake, respectively. Units of these model parameters are given in Table 4, and the
below corresponding equations.
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Figure 15. Sensitivity analysis of Chla (left panels) and phosphorus (right panels) on (a) maximum photosynthesis rate
Gmax, (b) sediment phosphorus release rate SP, (c) half saturation coefficient of phosphorus KP, (d) minimum Chla for
grazing Chlamin, and (e) algae and BOD settling rates vc, and vB for simulation of Elmo Lake in 2007–2009.
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Table 4. Calibration parameters used in MINLAKE2020 for Lake Elmo with regression coefficients of the DO simulation.

Sensitive
Parameters Description of Parameter Uncalibrated

Value
Calibrated

Value
Regression
Coefficient

KBOD Detrital decay rate (d−1) 0.5 0.05 0.8955
Sb SOD coefficient at 20 ◦C (g O/m2/d) 0.5 1.7 0.7449

EMCOE (2) Multiplier of SOD below euphotic zone [-] 3 1 0.8931
Kr Algal respiration rate (d−1) 0.03, 0.03 0.06, 0.06 0.8924

Gmax Maximum growth rate of algae (d−1) 0.9, 0.9 0.6, 0.6 0.8966
Km Algal mortality rate (d−1) 0.015, 0.015 0.03, 0.03 0.8944
KP Half saturation coefficient of phosphorus (mg/L) 0.035, 0.035 0.07, 0.07 0.895
SP Benthic phosphorus release rate (g P/m2/d) 0.01 0.02 0.8931
vc Settling velocity for algae (m/d) 0.05, 0.05 0.15, 0.1 0.8931
vB Settling velocity for detritus (m/d) 0.05 0.15 0.8931

Topt Optimum temperature for algal growth (◦C) 27,27 20, 20 0.8931
Tmax Maximum temperature for algal growth (◦C) 42, 42 25, 25 0.8951
Tmin Minimum temperature for algal growth (◦C) 0, 0 3, 10 0.8931
ZP Zooplankton population (m−3) 200 100 0.8966

ZPmin Minimum zooplankton for grazing (m−3) 50 10 0.8966
Chlamin Minimum chlorophyll-a for grazing (mg/L) 0.001, 0.001 0.002, 0.002 0.8924

In Figures 15 and 16, the blue line corresponds to simulation results using the cal-
ibrated value of the parameter which has produced satisfactory results. The calibrated
maximum photosynthesis rate Gmax is 0.6 for Lake Elmo. When Gmax is increased to 0.9, the
Chla concentration increases throughout the simulation period on average by 30 percent;
the phosphorus concentration increases in the ice cover period because of the detrital decay
of increased algae. Higher Gmax corresponds to higher phytoplankton growth which uses
more nutrients (phosphorus) except the slow growth period under ice cover. This results
in an average 32% decrease in phosphorus concentration in open water season.

When the sediment phosphorus release rate SP was decreased from 0.02 to 0.01,
the phosphorus concentration decreased by 55% (on average). The phosphorus starts to
decrease during the ice cover period in December 2007 as the sediment phosphorus release
start contributing to the phosphorus concentration in anoxic condition. After ice melting,
as the algae begin to grow and use up phosphorus, the phosphorus concentration decreases
even further in summer. The half saturation coefficient of phosphorus is decreased from
0.07 mg/L to 0.035 mg/L. Since the surface layer is not limited by light, the decrease in
the half saturation coefficient results in greater phosphorus limitation which results in
increased algal growth. The phosphorus concentration decreases except for the ice cover
period which is governed by the sediment phosphorus release in anoxic condition. The
increase in the minimum chlorophyll-a threshold for grazing results in less grazing of
zooplankton and a subsequent increase in Chla. The settling velocity of algae (both green
algae and blue-green algae) is a very sensitive parameter for phytoplankton and BOD
simulation. In Figure 15e, as the settling velocity of green algae, blue-green algae, and
detritus was decreased to 0.75, 0.5, and 1.0, respectively, the phytoplankton concentration
increased due to less loss of phytoplankton from the simulating layer from settling. The
phosphorus concentration increases due to the release of phosphorus through respiration
of the increased algal population.

For a shallow lake such as Pearl, the effect of maximum photosynthesis rate
(Figure 16a) is not as straightforward as for a deep stratified lake such as Elmo Lake
(Figure 15a). In addition to the predicted increase, the Chla concentration decreases in
spring of 2011 and 2012, early summer and fall of 2012 as a result of the spring and fall
overturn when Gmax is increased from 0.25 to 0.4. The Chla is not very sensitive to the
half-saturation coefficient (KP) and the minimum Chla threshold for zooplankton graz-
ing (Chlamin). However, the phosphorus concentration decreased by an average of 60%
when KP is decreased from 0.03 to 0.005 mg/L (Figure 16c). As KP decreases, the Chla
increases throughout the time period except for a portion of summer and fall of 2012. This
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happens due to the increased respiration of algae which also causes a greater reduction
is phosphorus. The zooplankton grazing, being negligible for Pearl Lake, does not affect
the phosphorus concentration much. Hence, phosphorus is not sensitive of zooplankton
grazing in Pearl Lake.
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4.5. Long-Term Simulations Using MINLAKE2020

West and Stefan [23] performed a multiple-year simulation (same calibration param-
eters) using MINLAKE98 for Lake Riley and Elmo. For Lake Riley, a different set of
calibration parameters was needed for different years whereas, for Lake Elmo, the model
could simulate successfully for 1985–1990 with the regression coefficient for temperature
and DO as 0.91 and 0.79, respectively. For a simulation of 1985–1990 using the MIN-
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LAKE2020 NCDO model, the regression coefficient for temperature and DO are 0.9944
and 0.9715 against 146 profile data points, respectively. Simulated phosphorus and Chla
concentrations at different depths are satisfactory as well. MINLAKE2020 performed well
for multiple-year simulation allowing the user to simulate 20 consecutive years with the
same calibration parameters (Figure 17). For a 20-year simulation (1989–2009) using the
MINLAKE2020 NCDO model, the regression coefficients for temperature and DO are
0.9888 and 0.9419 against 864 profile data points, respectively. The simulated Chla and
phosphorus match reasonably well with observed values with the same trend. Moreover,
the phosphorus and Chla concentration at five simulation depths (1 m, 8 m, 12 m, 20 m,
and 30 m) match well with the available observed data [54].
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From 1989 to 1996, both phosphorus and chlorophyll-a seasonal variations were
reasonably stable. Phosphorus started to increase from 1997 and matched with observed
data from 2004 to 2007. The average daily phosphorus was 0.0071 mg/L from 1990 to
1996 and 0.0158 mg/L from 1997 to 2009. Comparing these two periods, the average daily
phosphorus increased by 0.0087 mg/L. As phosphorus increased, it resulted in some higher
peaks in spring algal blooms as shown in Figure 17a. The phosphorus increase trend is
caused by the increase in phosphorus release from the lake sediment which is related to the
anoxic condition in lakes. Therefore, the phosphorus release for each layer (the last term in
Equation (15) times the layer volume) and then each day (sum for all layers) was outputted
and added together for the annual phosphorus release amount. From 1990 (excluding
1989 for the initial condition effect) to 1996, the average yearly sediment phosphorus
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release is 151.8 kg (21.27 kg of standard deviation) but from 1997 to 2009 average yearly
sediment phosphorus release is 244.1 kg (53.28 kg of standard deviation). The average
annual phosphorus release increases by 60.8%. Figure 17c shows the time series of the
simulated DO at 41 m (1 m above the deepest lake bottom) from 1989 to 2009 and clearly
shows many anoxic days in the open water seasons and the ice cover periods, which result
in phosphorus release from sediment. From 1990 to 1996, the average anoxic days is 228 but
from 1997 to 2009 average anoxic days is 253 (34 days of standard deviation). An average
of 25 days more of the anoxic condition is one of the causes of the phosphorus increase
trend. From DO simulation it was observed that the anoxia started at a lower depth in the
water column (16 m) from 1999 to 2009 compared to earlier simulation years. As a result,
the anoxia had a greater horizontal-area coverage. Since the sediment release is a function
of the bottom area (Equation (15)), the increased bottom area resulted in the increased
sediment phosphorus release.

5. Conclusions

A one-dimensional daily water quality model MINLAKE2020 was developed from
the daily temperature and DO MINLAKE2012 model by incorporating phytoplankton,
zooplankton, nutrient, and BOD simulation into the model. The inflow-outflow submodel
of MINLAKE2020 was disabled for this study to focus on the internal nutrient dynamics
inside the lake. The model was applied to six Minnesota lakes with varying characteristics
in terms of depth (two shallow lakes, two medium-depth lakes, and two deep lakes) and
trophic status (two eutrophic, two mesotrophic, and two oligotrophic lakes). The simulated
water temperature, DO, Chla, and phosphorus time series and profiles were compared with
available observed data in 15–36 days for two to four years. The model was also applied to
long-term simulation over 20 years (1989–2009) for Lake Elmo. Simulation results from the
MINLAKE2020 model provide the following conclusions:

1. MINLAKE2020 was calibrated against measured profiles in six Minnesota lakes
(Table 4) for the short term (2–4 years) with an average standard error of 1.51 ◦C for
temperature and 2.33 mg/L for DO. The average standard error for DO simulation of
these lakes decreased by 24.2% from the original MINLAKE2012 model, which indi-
cates better model performance. DO results reflect/integrate reasonably simulated
phosphorus, Chla, and BOD results at different layers (see Figures 10–14 and 17).

2. The addition of phosphorus and Chla simulation in MINLAKE2020 improved model
performance in comparison to MINLAKE2012 where Chla was specified input. It
greatly affects the DO concentration in some lakes such as Pearl Lake (Figure 10).
Thrush Lake and Carlos Lake also showed significant improvement in DO simulation
with MINLAKE2020. The standard error decreased by 2.12 mg/L and 1.76 mg/L for
Thrush and Carlos Lake, respectively.

3. The deep lakes exhibit a certain trend for phosphorus and Chla simulation year
by year whereas the shallow lakes might show a significant change in phosphorus
and Chla concentration year by year due to two overturn periods (complete mix-
ing) and the complex interactions/connections among phosphorus, Chla, and DO
(Figures 13 and 14), which are evident through governing Equations (9) and (15)–(19)
and processes simulated (Figures 1–7).

4. DO concentration is a primary control of internal loading via anoxic release of
phosphorus from the lake sediment. MINLAKE2020 was applied to Lake Elmo for
a 20-year (1989 to 2009) continuous simulation with a single set of calibration param-
eters with regression coefficients of 0.99 and 0.94 for temperature and DO profiles,
respectively. An increasing trend of surface phosphorus was simulated from 1997 to
2009 which matches well with the observed condition and is directly related to sedi-
ment phosphorus release. The average yearly sediment phosphorus release increased
from 151.8 kg during the period 1990–1996 to 244.1 kg during the period 1997–2009.
This increase is caused by the average 25-day increase in the anoxic condition at the
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bottom depth (41 m) and the increase in the anoxic horizontal area (as a result of
anoxia at lower depths) in later years.

MINLAKE2020 explains the internal link between phosphorus, Chla, and DO. This
model can help in choosing/testing effective ways of lake restoration and management.
For example, since Lake Elmo experiences internal loading of phosphorus, removing
the external nutrient source might not be an effective restoration technique for this lake.
Though MINLAKE2020 has simulated six lakes with good correlation to the observed data,
more lakes need to be simulated to verify the model in different scenarios before using it
professionally for evaluating lake restoration measures. Since the nutrient model is complex
and requires a number of calibration parameters, incorporating automatic calibration (by
programming software) will make the model more efficient and user-friendly in the future.
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List of Symbols, Corresponding Description and Units

Symbols Description and Units
A Area (m2)
BOD Biochemical oxygen demand (mg/L)
Chla Chlorophyll concentration (mg/L)
Chlamin Minimum chlorophyll concentration for grazing to occur (mg/L)
DO Dissolved Oxygen concentration (mg/L)
DOsat Saturated oxygen concentration (mg/L)
f (L) Light limiting growth factor (between 0 and 1)
f (S) Michalis-Menten growth limiting factor [-]
f (T) Temperature function for growth [-]
Gmax Maximum growth rate (d−1)
GRmax Grazing maximum (mg Chla/ind. zooplankton/d)
Kgchla Half-saturation constant for grazing (mg/L)
I(z) Intensity of photosynthetically active radiation (µE/m2/h)
K1 Light limitation coefficient (µE/m2/h)
K2 Light inhibition coefficient (µE/m2/h)
KBOD Organic decomposition rate (d−1)
Ke Surface oxygen gas exchange (transfer) coefficient (m/d)
Km Mortality rate (d−1)
KN Half-saturation constant for nitrogen (mg/L)
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KNI Nitrification rate (d−1)
KNH(n) Half-saturation constant for preferential uptake of ammonia over nitrate [-]
KTN(n) Half-saturation constant of nitrogen for each algal class (mg/L)
KP Half-saturation constant for phosphorus (mg/L)
Kr Respiration rate (d−1)
Kzr Zooplankton respiration rate (d−1)
Kz Eddy diffusivity (cm2/s)
N Nitrogen concentration
NH4 Ammonia concentration (mg N/L)
NO3 Nitrate concentration (mg N/L)
NO2 Nitrite concentration (mg N/L)
NO2-3 Nitrite + Nitrate concentration (mg N/L)
n Phytoplankton species [-]
P SRP or soluble reactive phosphorus concentration (mg/L)
θBOD Temperature adjustment coefficient for BOD [-]
θSOD Temperature adjustment coefficient for SOD [-]
θm Temperature adjustment coefficient for mortality [-]
θr Temperature adjustment coefficient for respiration [-]
θzr Temperature adjustment coefficient for zooplankton grazing [-]
θNH Temperature adjustment coefficient for ammonia [-]
θNO Temperature adjustment coefficient for nitrate [-]
θNI Temperature adjustment coefficient for nitrification [-]
RAD Solar radiation (cal/cm2/d)
Sb Sedimentary oxygen demand rate at 20◦C (g O/m2/d)
SNH Ammonia release rate from sediment (g N/m2/d)
SNO Nitrite release rate from sediment (g N/m2/d)
SP Phosphorus release rate from sediment (g P/m2/d)
t Time (d)
T Air temperature (◦C)
TD Length of day light (h)
Tmax Maximum temperature at which phytoplankton growth is reduced 90 percent (◦C)
Tmin Minimum temperature at which phytoplankton growth is reduced 90 percent (◦C)
Topt Optimal temperature at which maximum phytoplankton growth occurs (◦C)
TP Total phosphorus (mg/L)
vc Phytoplankton settling velocity (m/d)
vB Detritus settling velocity (m/d)
Viz Volume of day depth (m3)
Vr Volume day depth/layer ratio [-]
YCHO2 Mass yield ratio of chlorophyll to oxygen
YNChla Mass yield ratio of Nitrogen to Chlorophyll-a
YNHBOD Mass yield ratio of ammonia to BOD [-]
YPBOD Mass yield ratio of ammonia to BOD [-]
YPCHLA Mass yield ratio of ammonia to BOD [-]
z Depth (m)
ZP Zooplankton concentration (#/m3)
ZPmin Minimum concentration of zooplankton for predation to occur (#/m3)
PDd Daytime predation rate (d−1)
Pd Daily predation rate (d−1)
XI Light intensity at the day depth (µE/m2/s)
XImax Light intensity at which no predation occurs (µE/m2/s)
XImin Light intensity at which no predation occurs (µE/m2/s)
Pmax Maximum predation rate (d−1)
DY Julian day of last day of minimum predation rate [-]
DYmin Julian day of last day of minimum predation rate [-]
DYmax Julian day of beginning of maximum predation rate [-]
PD(t,I) Nocturnal predation rate in layer I (#/m3)
PDn Nocturnal predation rate (d−1)
∆Tg(I) Time that zooplankton spent in a layer I during the night (d)
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