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Abstract: Non-point source pollution is a major factor in excessive nutrient pollution that can result in
the eutrophication. Land use/land cover (LULC) change, as a result of urbanization and agricultural
intensification (e.g., increase in the consumption of fertilizers), can intensify this pollution. An
informed LULC planning needs to consider the negative impacts of such anthropogenic activities to
minimize the impact on water resources. The objective of this study was to inform future land use
planning by considering nutrient reduction goals. We modeled the LULC dynamics and determined
the capacity for future agricultural development by considering its impacts on nitrate runoff at a
watershed scale in the Tajan River Watershed in northeastern Iran. We used the Soil and Water
Assessment Tool (SWAT) to simulate the in-stream nitrate concentration on a monthly timescale in
this watershed. Historical LULCs (years 1984, 2001 and 2010) were derived via remote sensing and
were applied within the Land Change Modeler to project future LULC in 2040 under a business-as-
usual scenario. To reduce nitrate pollution in the watershed and ecological protection, a conservation
scenario was developed using a multi-criteria evaluation method. The results indicated that the
implementation of the conservation scenario can substantially reduce the nitrate runoff (up to 72%)
compared to the business-as-usual scenario. These results can potentially inform regional policy
makers in strategic LULC planning and minimizing the impact of nitrate pollution on watersheds. The
proposed approach can be used in other watersheds for informed land use planning by considering
nutrient reduction goals.

Keywords: nitrate pollution; informed land use planning; watershed modeling; land use/land cover
(LULC) change; agricultural development; multi-criteria evaluation (MCE)

1. Introduction

Evaluating likely changes in water quantity and quality in the future is important
for informed planning and adaptive management. Land use/land cover (LULC) change
is an important stressor that impacts both water quantity and quality. It is, therefore,
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crucial to evaluate these impacts and incorporate them into our decisions for sustainable
management of water resources.

Conversion of forests, which cover ~30% of the world’s land, to agricultural lands
is a prevalent LULC change and a major concern across the globe. The United Nations’
(UN’s) Food and Agricultural Organization [1] estimated that over one million km2 of
the Earth’s tropical rainforests and moist deciduous forests were destroyed during the
1981–1990 period, representing an average annual deforestation rate of 0.8% of such forests
throughout the decade. Since forests provide several benefits such as flood protection and
ecosystem services, their loss has huge implications for water resources. While the loss of
forests is a global concern, their loss is a bigger concern in developing countries since it
can lead to more adverse impacts due to the limited synergy among the authorities and
stakeholders, the reliance on traditional management strategies for pollution and flood
mitigation and limited resources to study and manage these impacts [2]. It is, thus, critical
to project the impact of forest loss (as a result of conversion to other LULCs) on water
quantity and quality in these countries.

An example of such developing countries is Iran. The country has been experiencing
an escalating population growth and many forest lands have been converted to farmlands
as an effort to support increasing food demands. Loss of forests in Iran has been a serious
concern in recent years. Between 2015 and 2020, approximately 12,000 ha of forests across
the country has wiped out annually. According to Iran’s Forests, Range and Watershed
Management Organization (2018) [3], nearly 14.2 million ha of the entire country’s area is
covered by forests in 2017, compared to 19.5 million ha in 1942. In northern Iran, where the
forest LULC is dense and several valuable species exist, forest lands have been shrinking,
in which the area of this LULC has been estimated at 2.1 million ha in 1960, and in 2020, it
has shrunk to 2.0 million ha, even by taking the replanted areas into account. An emerging
example of such valuable forest species is Hyrcanian that has a long history (arised in
the Jurassic Period) and is among the world’s most valuable natural resources; the rapid
decline in its area has been a major concern in the recent years. Rajaei et al. [4] studied the
LULC dynamics in the northern parts of Iran and revealed that, in the past four decades,
the forest area decreased by 3.0%, while dry farming increased by 9.2%. Emadodin [5]
reported that the LULC change in Iran has increased over the past 50 years and is expected
to accelerate in the future. In addition, results obtained by Gholamalifard et al. (2013) [6]
showed that increased fragmentation in the Hyrcanian forest will continue in the future and
more shape complexity will be observed in coastal areas along the Caspian Sea. Tavangar
et al. [7] projected the effects of LULC change in a watershed in northern Iran for the
future period of 2016–2030 and found that, from 2016 to 2030, forest area will decrease by
5.3%, while the area of both residential and agricultural LULCs will increase by 20% and
6%, respectively. These past studies are in agreement on the escalating loss of forest and
increase in agricultural LULC, thereby raising concerns on the potential impacts on water
resources.

Over the past decades, improper agricultural management has negatively affected the
ecosystem services provided by Hyrcanian forest. LULC planning through identifying the
most suitable locations for agricultural activities based on local and regional knowledge
is vital to protect ecosystem services by such valuable natural resources through the
development of sustainability-based policies. Considering multiple benefits of Hyrcanian
forest and regional needs for the agriculture, an advanced optimization is needed to identify
the most suitable locations for agricultural activities. Multi-criterion evaluation (MCE)
could assist this problem based on a set of production scenarios and decision makers’
preferences. MCE techniques can be integrated with GIS to support LULC planning
and prioritizing competing alternatives. These techniques enable the determination and
prioritization of alternative zones, dealing with a number of parameters.

Recent years have witnessed an increasing use of MCE techniques like analytical
hierarchical process (AHP) [8] for LULC suitability analysis and land development [9–12].
To predict the impact of LULC change on water quality and quantity, researchers have
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coupled LULC change models with watershed models like Soil and Water Assessment Tool
(SWAT) [12]. Example applications in northern Iran include Sigaroodi et al. [13], Salmani
et al. [14], Zare et al. [15], Tavangar et al. [7] and Mehri et al. [16]. However, these studies
have focused on evaluating the LULC change on water quantity (surface runoff) without
studying the impacts on water quality.

The objective of this study was to investigate the applicability of LULC planning on
the reduction of nutrient rate in the Tajan River Basin in northern Iran. Three LULC maps
were first analyzed for the period of 1984–2010 using remote sensing and satellite imagery.
Land change modeler (LCM) was then applied to investigate the LULC transition and to
project future LULC. We projected future LULC change (year 2040) under two scenarios: (i)
business-as-usual or continuing the recent trend of LULC; and (ii) conservation scenario,
in which a LULC suitability map was developed for future agriculture development
using a GIS-based MCE technique and weighted linear combination (WLC). SWAT was
then used to simulate the nitrate load corresponding to years of 2010 and the two future
scenarios (business-as-usual and conservation). The method presented in this study can be
a foundation for sustainability-based land use planning and comprehensive management
of river basins in northern Iran to minimize negative impacts of LULC change on the
surface water pollution.

2. Materials and Methods
2.1. Study Area

The 4000 km2 Tajan watershed is in Mazandaran Province, Iran (Figure 1). Tajan
watershed includes forested mountains in the upstream and comprises of pasture and
agricultural areas in the coastal plain. The largest city in the watershed is Sari, the capital of
Mazandaran Province, with a population of ~310,000 in 2016. Given that the climate in the
watershed is wetter than other arid and semi-arid parts of the country, there have been a
growing interest in the use of lands for agricultural activities. Due to the recent droughts in
Iran, migration from other provinces to the Mazandaran province has also increased, which
has intensified and accelerated the LULC changes in this area. Deforestation is ongoing
in the region and the absence of appropriate conservation, restoration and rehabilitation
programs could result in even more dramatic forest loss in the future. Increase in farmlands
and agricultural activities and livestock grazing in forested areas are the primary causes of
forest loss [17].

Figure 1. Study area.
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In Mazandaran Province, agriculture is a major source of nutrient loading. Agricul-
tural activities, particularly paddy cultivation in the riparian zone, and application of
manure and livestock grazing, play a significant role in the contamination of surface water
through the pollutant washoff [18]. Other sources of nutrient pollution include nonpoint
source pollution from residential lands and direct deposit of untreated sewage from popu-
lation centers (e.g., Sari). The pollution from the agricultural, urban and industrial lands
is transported by Tajan River to the Caspian Sea, the largest inland waterbody across the
world. Tajan watershed also includes national parks and preserved areas and is a primary
source of water supply (irrigation and drinking water) in the region and a critical habitat
supporting commercial fishery and includes; the nonpoint source pollution can negatively
affect all of these.

Excess loading of nutrients to streams from agricultural runoff is the leading cause
of eutrophication of waterbodies and the loss of aquatic ecosystems in the watershed.
Since the late 1970s, increasing pollutants flowing into the Caspian Sea has resulted in an
accelerated eutrophication. Caspian Sea provides several benefits to the region, including
food and energy supply, transportation, aesthetic benefits and tourism, among others. Any
pollution in the Tajan watershed can, therefore, directly affect all these benefits. Tajan
River is also one of most important fisheries in Iran. During the reproductive season, adult
sturgeon fish enter the Tajan River; their population is imperiled because of overharvesting,
spawning habitat loss and extreme chemical pollution [19]. These all suggest the extent of
adverse impacts of unplanned agricultural activities and conversion of forests to ecosystem
services provided by Tajan River and Caspian Sea.

2.2. Land Use/Land Cover Change Modeling

The LCM is a method to predict LULC changes using transition probabilities. It is a
suite of tools, which the LUCC analysis and modeling can be combined with biodiversity
and greenhouse gas emission assessments. The change modeling module is based on
Markov chain matrices and transition susceptibility maps obtained by the logistic regression
or by training learning machines. The LCM was applied to identify trends in LULC, tropical
deforestation, urban growt, erosion under different conservation scenarios and habitat
modeling [20].

The remote sensing-based approach implemented here is based on IDRISI software’s
LCM module [20,21]. Modeling changes in LULC via the LCM is performed in five main
stages: (i) historical change analysis; (ii) modeling of potential transition (At this stage, the
probability of transfer from one type of land cover to another was determined by stimulus
variables) [21]; (iii) LULC change prediction (2010); (iv) assessing model accuracy; and (v)
LULC change projection for the future (2040). For the case study, LULC maps for 1984 and
2001, and five spatially-distributed variables [21]—normalized difference vegetation index
(NDVI), distance to rivers, distance to the edge of forests, distance to pasture lands and
empirical likelihood to change (To produce the empirical likelihood to change (qualitative
variable), a transition map was generated from all classes to agriculture)—were used
to model the transition potential (i.e., the potential for a LULC to transition to another
LULC). Transition potential included forest to agriculture, forest to pasture and pasture to
agriculture. After ensuring the model efficiency to predict the changes, LULC maps of 2001
and 2010 alongside the five driving variables were used to project LULC 30 years forward
(year 2040) [22]. Additional details on LCM could be accessed in Eastman [20,21].

The LULC maps for 1984 and 2001 and 2001 and 2010 were used sequentially and
changes in LULC were assessed and quantified over these years in each time slice across
all grid cells. All types of changes and transitions between the LULCs were classified
and categorized in sub-models and potential explanatory variables are identified. The
results obtained from this stage were mapped as potential transitions for each change.
Five variables—NDVI index as well as the distance to rivers, forests and pastures—with
an assessment of empirical likelihood to change were used in the LCM for the purpose
of modeling the transition potential. These are the standard variables in previous LULC
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change modeling [18,20,21]. To investigate the extent of relationship between variables in
the model (independent variables) and changes in the LULC (dependent variables), we
used the Cramer’s correlation coefficient [21]; the coefficient ranges between 0 and 1, and
a greater value indicates a higher correlation between the independent and dependent
variables.

In projecting the future LULC map for the Tajan watershed, we used a multi-layer
perceptron (MLP) neural network embedded in the LCM to assess the transition potential.
In using an artificial neural network, the accuracy rate and skill measures were computed
to evaluate the model performance [23].

LULC change prediction is quantified as probabilities of transitions from one year to
another (e.g., from 2001 to 2010) was calculated using the Markov chain. The predicted
LULC of 2010 was then compared with the observed LULC by LANDSAT 7 satellite with a
30 m spatial resolution.

We validated the LULC model against historical LULC maps. A three-way cross
tabulation between the most recent land cover map (2010), the prediction map and ob-
served LULC, was used as the validation approach. Multiple metrics—hits to false alarms
ratio, kappa index [2] and Relative Operating Characteristic (ROC)—were used to evaluate
the LULC model performance. The former metric measures the correlation between the
modeled and observed LULC; a ratio of >25% indicates a good correlation [20]. The ROC
statistic determines how well a continuous surface predicts the locations given the distribu-
tion of a Boolean variable. Both kappa and ROC range from 0 to 1; a value of 1 indicates
a perfect spatial agreement. An ROC >0.8 was considered a strong agreement [20]. The
MLP quantifies the relationship between the analyzed transitions and the corresponding
explanatory variables. MLP confirms that the model has a root mean square error (RMSE)
of <0.002 in both the training and the validation phases. Upon validation, the model was
applied to project LULC 30 years forward (2040).

2.3. Future Land Use/Land Cover Scenarios

The business-as-usual scenario was produced using the LCM and the MCE, assuming
that the future LULC follows the historical trends. In the conservation scenario, the most
suitable zones for agricultural development were selected. The MCE process includes
multiple phases (Figure 2). First, the relevant criteria (factors and constraints) are defined
based on a literature review and interviews with experts. Factors used to assess the ecolog-
ical potential of LULCs included pasture geology, soil erosion, climate, water resources,
LULC, elevation, ground slope, aspect, vegetation density, distance from the population
centers, distance to roads and distance to the population centers. The ground slope and
aspect maps were created from the digital elevation model (DEM) obtained from SRTM
(Shuttle Radar Topography Mission), roads map obtained from the Roads and Urban De-
velopment Organization and Soil map obtained from Jihad Keshavarzi organization. LULC
map was used to extract the spatial distribution of vegetation density and population
centers. Climatic and water resources information were obtained from the Meteorological
Organization, and Water Resources Management Organization respectively. The layers
were then converted to raster in the IDRISI software.

The second step in the MCE procedure was to define membership functions to deter-
mine the degree of class membership for each criterion. In the fuzzy model, which was
utilized to model human decision making behavior and human experience, each attribute
must be converted into a comparable scale for the use in the weighted linear combination
method. Using a standardization function, all parameters were given commensurate values
that allow their subsequent aggregation. Among the various standardization methods,
including deterministic, probabilistic and fuzzy methods, the map layers were standard-
ized using the fuzzy procedure in this study. The fuzzy set [24] is a class of objects with
a continuum of grades of membership. It is a superset of conventional Boolean logic
that handles the partial truth concept [25]. This set is characterized by a membership
function that assigns each object a membership rank between zero and one [24]. This is
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in contrast to the classic set in which each element must have 0 or 255 as the membership
rank [24,26]. Since the fuzzy method is capable of expressing gradual transitions from
membership to non-membership, it is widely used, not only to represent geographical
entities with indeterminate boundaries, but also for GIS-based operations and analyses,
including MCEs. The concept of membership function can be used to standardize criterian
maps (Malczewski & Rinner, 2015, p. 197). The fuzzy method involves determining a
membership function in a fuzzy set that can have one of the following forms: the, J-shaped,
sigmoidal, linear, or user-defined function” (Malczewski & Rinner, 2015) fuzzy member-
ships for Standardization of parameters is provided in the IDRISI Selva software. This
approach attempts to turn the artificially crisp and clear-cut criteria of the simple Boolean
approach into real-life continuous criteria that express a degree of suitability. Criteria can
be modeled as a continuous variable ranging from the most suitable to the least suitable, in
which the lowest value belongs to the minimum membership (zero) and the greatest value
showing the best choice belongs to the maximum membership, which was chosen to be
255 herein [24,25,27,28].

Figure 2. Schematic diagram of land use suitability for agriculture development in the watershed Tajan, Iran.

The third step was to derive the criteria weights based on the expert judgements.
Criteria weighting was based on the AHP and the Weight module in the IDRISI Selva 17.2
software were used to calculate the criteria weights. Pairwise comparisons were done to
facilitate the judgments and calculations for different decision making scenarios. The AHP
consists of the following steps: (1) identify and define the problems and objectives; (2)
determine the criteria and alternatives and rearrange them into a hierarchical sequence; (3)
apply pairwise comparisons to prepare comparison matrices; (4) determine the relative
weights of the factors; (5) compute the consistency index of the matrices; and (6) obtain an
overall weighting for each factores [29]. This method also computes the Consistency Ratio
(CR) as follows Equation (1):

CR = CI × RI (1)

where RI is the random consistency index. The CR must be less than 0.1 for the com-
parisons to be consistent. Table 1 shows the weight of each criterion. Last, the factors
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were aggregated in GIS via the WLC method; a map, which shows the land suitability
for agricultural development, was generated.Among the different multi-criteria evalua-
tion methods proposed for GIS-based land suitability analysis, the WLC and the Boolean
overlay operations are the most common in land suitability evaluation and considered
appropriate for combining a set of criterion maps. WLC is to obtain an overall suitability
score by standardizing the suitability maps, assigning weights of relative importance to
these, and then combining the weights and standardized suitability maps. Unlike the
Boolean operations, the WLC is a compensatory method, in which a low score on one
suitability criterion can be compensated by a high suitability score on another. In the WLC,
the overall suitability of an alternative can be defined as follows:

S =
n

∑
1=1

WiXi (2)

where S is the overall suitability; Xi is the value of index i; Wi is the weight of index i and
n represents the number of indexes. There are four steps in the WLC based on the above
Equation (2): selecting index (i), providing index value (Xi), determining index weight (Wi)
and employing the overlaying rule [26,27].

Table 1. Relative weights of criteria/factors used in future land use planning under the conservation scenario.

Criterion Subcriteria Weight (Pasture) Weight (Forest) Weight (Agriculture)

Natural Vegetation

Rangeland condition 0.18 0.03 0.062

Vegetation density 0.036 0.105 0.011

Forest type —– 0.161 —-

Geology — 0.019 0.052 0.025

Soil
Soil texture 0.062 0.15 0.162

Sensitivity to erosion 0.11 0.04 0.073

Climate
Temperature (◦C) 0 0.06 0.04

Rainfall (mm) 0.035 0.11 0.084

Water Resource Distance to dam (m) 0/058 0/005 0/091

Distance to the stream and water
channels and other water sources (m) 0/110 0/035 0/122

Land use 0/050 0/062 0/032

Topography Elevation (m) 0/008 0/030 0/003

Slope (◦) 0/129 0/090 0/261

Aspect —— 0/011 0/001

Distance from the
human distributions Distance to residential areas (m) 0/109 0/030 0/011

Natural Vegetation Distance to roads (m) 0/078 0/030 0/022

Finally, 10% of best suited locations for the agriculture, based on the future LULC
(2040 year), were selected for future agricultural development in addition to the existing
agriculture LULC. Upon generation of the future LULC scenarios, we analyzed the future
dynamics and interchanges among LULC classes by comparing the three scenarios: baseline
(historical), business-as-usual (future) and conservation (future) scenarios.

2.4. Watershed Modeling

SWAT version 2012 was used to simulate nitrate [10]. Required input datasets include
topography (DEM), climate (precipitation, air temperature, solar radiation, wind speed
and relative humidity), hydrology, soil, vegetation, LULC, point sources and agricultural
practices (e.g., manure and fertilizer). The watershed was delineated into 27 subwatersheds
and 407 Hydrologic Response Units (HRUs). A uniform spatial resolution of 30 m was used
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for the spatially distributed datasets and a daily time step was used for all the temporally
varied datasets. Collected data from five meteorologic stations, which were in or close to the
study watershed, were used to represent the climate data. Point sources in the watershed
included fish ponds along the river, residential houses (pets and straight pipes), industrial
plants, dairy, poultry and livestock slaughterhouses, a pharmaceutical factory and livestock
enclosures [18]. Required information on cropping pattern, planting and harvesting dates,
irrigation management, the area of the main cultivated crops and fertilizers, were obtained
from Iran’s Ministry of Agriculture Jihad (MAJ) [30]. We also verified and updated these
data by interviewing several local farmers.

The actual evapotranspiration (ETact) was simulated in SWAT via a user-defined
potential evapotranspiration (ETP) method and daily leaf area index (LAI). For the purpose
of this study, we: (1) specified harvesting period (growing season) of major crops in the
model; (2) adjusted the parameters affecting LAI, ETact and crop yield; (3) simulated and
calibrated LAI and actual daily evapotranspiration, and finally, (4) simulated the crop yield.

SWAT Calibration and Uncertainty Procedures (SWAT-CUP) [31] was used to assist
with the model parameterization and Sequential Uncertainty Fitting version 2 (SUFI2) was
used as the optimization technique. The periods of 2001–2010 and 2011–2014 were used
for calibration and validation, respectively. Calibration parameters are listed in Table 2;
these were selected based on the general recommendations for SWAT calibration [12] and
previous SWAT applications in the study area [18]. Observations at three stream gauges—
Solaimantange, Rigcheshme and Kordkhil—were used to calibrate and validate the model
for the 2000–2014 period. Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) and
coefficient of determination (R2) were used to assess the model performance. The model
performance was graded following the recommendations by Moriasi et al. [32,33] and
Ahmadisharaf et al. [34] Additional details on the model setup and calibration-validation
can be found in the study of Rajaei et al. [18].

Table 2. Parameters adjusted in the calibration of Soil and Water Assessment Tool (SWAT).

Parameter Description Initial Range Optimal Value

SOL_CBN Organic carbon content 0.05–10 0.44

HLIFE_NGW Half-life of nitrogen in groundwater (days) 0–500 15.8

SOL_AWC Available water capacity of the soil layer (mm
H2O/mm Soil) 0–1 0.26

HRU_SLP Average slope steepness (m/m) 0–1 −0.7

USLE_P USLE equation support pra 0–1 0.24

CN2 SCS runoff curve number for moisture condition 35–98 75

CANMX Maximum canopy storage (mm) 0–100 7

BIOMIX Biological mixing efficient 0–1 0.29

EPCO Plant uptake compensation factor 0–1 0.63

ESCO Outflow simulation option 0–1 0.7

GW_REVAP Groundwater “revap” coefficient 0.02–0.2 0.05

GW_DELAY Groundwater delay (days) 0–500 170

GWQMN Threshold depth of water in the shallow aquifer
required for return flow to occur (mm) 0–5000 290

SMTMP Snow melt base temperature (◦C) −20–20 0

ANION_EXCL Fraction of porosity from which anions are excluded 0.01–1 0.55

The calibrated-validated model was then applied to simulate nitrate in the baseline
(2010) and the two future (business-as-usual and conservation) scenarios. In these simula-
tions, only the LULC dataset was changed and other model inputs were kept the same. The
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simulated nitrate in a five-year period (2035–2040) was used for the comparative analyses
between the baseline and future scenarios.

3. Results and Discussion
3.1. Land Use/Land Cover Change Modeling

The overall kappa index in the LULC maps of 1984, 2001 and 2010, was 81%, 83% and
87%, respectively. The results of the model validation show that the predicted output of the
model had an ROC value of 0.92, suggesting a high spatial agreement to the reference LULC
map (2010). Hits to false alarms ratio was at 45%, which reflects the accuracy of predicted
changes. Accuracy rate and skill measures of transition modeling using MLP were 0.82
and 0.81, respectively, suggesting a satisfactory performance based on Onate-Valdivieseo
et al. [35].

Major LULC changes in Tajan watershed have occurred during the past 26 years
(1984–2010). The rates at which the transition occurred is of concern, as high transition
rates might act in the system as if they were unique and extreme events from which the
system need to recover. During the period of 1984–2010, forest area decreased from 286,748
ha to 281,983 ha, while the area of pasture and agricultural increased from 75,821 ha and
90,919 ha to 107,236 and 123,145 ha, respectively. The forest was still the dominant land
cover in the entire period (72% in 1984 and 55% in 2010). Area occupied by agricultural
land was 19% in 1984 and 26% in 2010. In general, gains in the agricultural land came from
forest and pasture land We projected that, during the 2010–2040 period, forest areas can
decrease by 34,739 ha (16.3%), if the recent LULC trends continue (Figure 3a,b). Pasture and
agriculture are expected to increase by 7668 ha (+7.3%) and 27,071 ha (+40.5%), respectively.
In the business-as-usual scenario, forests are projected to face a high conversion to other
land covers, in which only ~84% of its 2010 extent will remain in 2040.

Figure 3. Land use maps for: (a) 2010, (b) Continuity scenario (2040) and (c) limitation and conservation scenario from left
to right.

The LULC trends detected for the study watershed was similar with trends in other
parts of Iran and the world [36–41]. Deforestation is due to the expansion of agricultural
land, with more than 70% of deforested land in Africa and Asia and about 90% in South
America being converted to farmland [42]. During the 26 years studied (1986 to 2010), about
1.6% of the forests in the Tajan watershed have decreased, most of which, like other parts of
the Hyrcanian forests [43] has become the agricultural land. This trend of forest reduction
has been less compared to deforestation in other areas of Iran and the world. For example,
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between 2000 and 2012, about 32% of the world’s tropical forests were destroyed [41].
However, it is predicted that about 0.5% of the forest area of the Tajan watershed will
decrease per year by 2040, which is more than 0.06% of the global average projected for
2030 [44,45]. Moreover, the deforestation rate of the study area is higher compared to the
western Iran, which decreased by an average of 0.4% per year during the years 1993 to
2016 [46].

3.2. Future Land Use Planning

We produced the suitability map for LULCs via the MCE module of IDRISI software.
The top 10% areas with the greatest suitability were chosen as the most suitable areas for
future agricultural expansion in the watershed (Figure 3c). The results showed that sub
watersheds 21, 17, 12 and 13 are the most suitable areas for agricultural development in
the future. As per the resulting land suitability map, the suitable area for cropland was
2379 ha.

3.3. Land Use/Land Cover Change Impact on Nitrate Load

Using the criteria suggested by Moriasi et al. [33] and Ahmadisharaf [34], the model
represented the observed flows and nitrates satisfactorily, during both the calibration
and validation periods. Model evaluation statistics and optimized parameter values for
calibration and validation of runoff and nitrate for the three stations are presented in
Tables 3 and 4. Observed and simulated nitrate during calibration and validation period
for the three stations are presented in Figure 4. Also, Figure 5 shows the simulation values
and the reported values of the National Water Document. The results of this figure indicate
the proper performance of the model in simulating real evapotranspiration. Due to the
lack of lysimetric data in the region, the maximum reported evapotranspiration rates from
the Iran National Water Document in the study area were used as a basis for comparison
and calibration of the model for each crop in wet years. The mean values of simulated
evapotranspiration were compared with the mean values of maximum evapotranspiration
reported by the Iran National Water Document [47].

Table 3. Model evaluation statistics for calibration and validation of runoff.

Solaimantange Station Rigcheshme Station Kordkhil Station

Statistic Calibration
(2006–2010)

Validation
(2011–2014)

Calibration
(2001–2010)

Validation
(2011–2014)

Calibration
(2005–2010)

Validation
(2011–2014)

R2 0.67 0.78 0.53 0.58 0.50 0.77

NSE 0.58 0.75 0.52 0.5 0.53 0.47

NSE: Nash–Sutcliffe efficiency; R2: Coefficient of determination.

Table 4. Model evaluation statistics for the calibration and validation of nitrate.

Stations Solaimantange Station Rigcheshme Station Kordkhil Station

Statistic Calibration
(2009–2013)

Validation
(2013–2014) Calibration (2009–2012) Validation

(2013–2014)
Calibration
(2009–2013)

Validation
(2013–2014)

R2 0.51 0.67 0.82 0.58 0.65 0.77

NSE 0.55 0.66 0.61 0.54 0.50 0.49

NSE: Nash–Sutcliffe efficiency; R2: Coefficient of determination.
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Figure 4. Observed and simulated nitrate during calibration and validation period at Kordkhil (a), Rigcheshme (b) and
Solaiman Tange stations (c) and Observed and simulated run off during calibration and validation period at Kordkhil (d),
Rigcheshme (e) and Solaiman Tange (f).

3.3.1. Projecting Annual Nitrate Loads

Figure 6a presents the spatial distribution of nitrate loading in comparison to the
baseline scenario (year 2010). We found that changes in nitrate export at the scale of full
watershed was not significant (significance level = 0.05). This finding is in agreement with
previous studies [48,49] that the impacts of LULC change on total nitrogen pollution is
smaller at larger spatial scales. The information on spatial distribution of nitrate can help
water managers to understand and prioritize subwatersheds for pollution mitigation. Of
the 27 subwatersheds, midstream subwatersheds 18 and 17 exported the greatest nitrate
loads, primarily because of the large percentage of agricultural land, population centers
and the presence of several point sources.
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Figure 5. Simulation values and the reported values of the National Water Document.

Figure 6. Nitrate Loads for: (a) 2010, (b) continuity scenario, and (c) limitation and conservation scenario from left to right.

Subwatershed 19, 7, 3, 17, 18 and 5 have larger nitrate loads than other subwatersheds,
due to the extensive expansion of agricultural areas, existence of population centers,
recreation and industries, and accumulation of fish farming ponds. Field surveys and
interviews with local people as well as urban and rural water and sewerage officials, Sari
County Environment Department, identified the main contaminating population centers
in Tajan watershed, including the entry of part of Sari and suburban sewerage, indicated
that about 10,000 people in the city of Sari (subwatershed 3) and Kiasar (subwatersheds
17 and 18) discharge their sewerage directly into the Tajan River. Further, field visits of
the region, interviews with the officials of recreation centers and information from Sari
Tourism Organization showed that a massive load of pollution is exported by the tourists,
including subwatersheds 19 and 3 were recognized from other locations of pollution entry
to the Tajan River, especially in spring and summer. On the other hand, the nitrate load is
lowest in subwatersheds 23, 16, 27 and 10, primarily due to the low percent of agricultural
land and the dominance of forest and pasture. Many studies have showed that pasture
and forest have a positive contribution to water quality [50,51]. The results are consistent
with previous studies and confirm the mitigating effects of forest and grassland LULC on
nutrient pollution [52,53].
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The conservation scenario proposed in this study can guide implementing conser-
vation plans to reduce pollution, preserve valuable forest resources and well-informed
selection of lands for farming. Other studies have also shown the positive impact of conser-
vation scenarios on improving the quality of the environment. For example, Wilson and
Weng [54], the results of LCM for three future land use/planning scenarios showed that the
development of commercial and industrial sectors can help reduce the level of some pollu-
tants, especially phosphorus. Under the economic and conservation scenarios developed
by Shrestha et al. [55], the in nitrate nitrogen loading was significantley decreased in the
future. In the planning scenarios defined by Trisurat et al. [56] emphasized on the partici-
pation of local people in conservation activities, reforestation and mixed-cropping system,
the level of water resource pollution in the case study area is significantly improved.

Future LULC change (business-as-usual) can result in up to 100% increase in nitrate
load by up to 29 kg/km2 in the Tajan watershed (Figure 6b). Analyzes of subwatersheds
in 2040 showed that in many subwatersheds, where agriculture areas increased, nitrate
loading also was increased. Such an increase in nitrate load could be due to growing crops
in newly transformed areas that would require fertilization. Subwatersheds 6 (upstream)
and 10 (midstream) exemplifies the opposite trend of other subwatersheds, where both
forest and pasture LULCs were converted into croplands but increase in nitrate load was
still low. This can be due to the agricultural growth. Therefore, although we find a positive
relationship between the changes in LULC and their impact on nutrient loading, other char-
acteristics of subwatersheds such as topographic slope may also play a vital role in nutrient
export by the subwatersheds [57]. In upstream subwatershed 21, the increase in cropland
area would produce less nitrate load. On the other hand, midstream subwatersheds 19 and
14 have relatively small LULC change but nitrate loading significantly increases in these
subwatersheds.

As can be seen on Figure 3, by 2040, if the historical LULC trend continues, forest will
be reduced significantly (212,081 ha to 177,342 ha) and will be converted to agricultural
and pasture land. While LULC changes show potential for some agricultural activities,
they may not be feasible for farming due to other factors such as soil and slope. In this
scenario, most increases to agricultural LULC occurred in subwatershed 21, but nitrate load
had a minor change (<0.1%) (Figure 6c). This can be because changes selected in the most
suitable areas for agricultural expansion as characteristics of individual subwatersheds
may play a vital role in the nitrate export. This may partially explain why larger amounts
of LULC change in different subwatersheds have less impact on the nitrate load at the
outlets of subwatersheds [58]. As mentioned in Section 2.3, many factors were used to
select the most suitable area for future agriculture expansion. For example, low nitrate
pollution in subwatershed 21 can be because the farms are located in the appropriate slope
and therefore have less runoff. In a study by Shen et al. [59], watershed characteristics
(topography, ground slope and drainage area) were found to be the important factors in
determining the nitrate loading.

3.3.2. Projecting Monthly Nitrate Loads

By calculating the average monthly values of nitrate load in the simulation period
separately for each user and then estimating the share of each user compared to other uses,
the pattern of monthly nitrate changes per user was obtained, which is shown in Figure 7.
Pastures, which cover 23% of the watershed, only 5.7% of the nitrate load of the basin,
while agricultural lands, which cover only 20% of the study area, yield more than 64% of
the nitrate load. Nitrate pollution in the agricultural LULC seems to be higher than other
LULCs, primarily due to the application of chemical and animal fertilizers, suggesting that
the abundant fertilization in agricultural fields has a negative effect on the water quality. In
confirmation of this, many studies have reported that urban and agricultural use plays an
essential role in reducing water quality in the adjacent water system, changing soil surface
conditions, increasing impermeable surface, and producing pollution. Additionally, the
amount of nitrate load produced by a cropland depends on the type; rainfed wheat, rice
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and orchards are the main crops in this region. Rainfed wheat accounts for 13% of the
nitrate load, while about 55% of the agricultural land is allocated to this crop. As a result,
less polluted runoff is produced and nitrate transfer is postponed to the beginning of the
rainy season and with the increase of surface flows in October, December and September,
there is a significant increase in the amount of nitrate output in this LULC. Paddy fields
account for 25% of the agricultural area and 25.5% of the annual nitrate pollution. Different
rice cultivation compared to other crops, the use of abundant fertilizer and a long period of
flood cultivation have caused soluble nutrients to be easily lost. It is observed that nitrate
output from rice fields reaches its maximum in the spring (May-June). Considering the
cultivation and fertilization stages in this season, it seems reasonable to increase nitrate
transfer from paddy fields. Nutrient loss occurs when water overflows from paddy fields
during rainfall events and overflows [60]. About 20% of the agricultural land is covered
by orchards, while 25.5% of the nitrate production is shared. Orchard cultivation, like rice
cultivation, has a high share in nitrate output. Orchards have the highest nitrate content in
the summer. This increase may be because in the warm months of the year, the amount
of irrigation reaches its maximum, which causes the transfer of large volumes of nitrate.
Animal manure is also used in large quantities in orchards that the application of this
manure is always associated with the loss of large amounts of nitrogen and leaching excess
amounts can increase the pollution load to the water. Population areas cover 1.3% of the
basin but produce 6% of the nitrate pollution. The load leaving the population centers due
to the population sewage caused by the population centers flows in almost all months,
except the dry season of the year, and increases with rainfall. The results are consistent with
the previous studies [50,51,61] on the positive relationship between the area of agricultural
lands and discharge and negative relationship between the area of forest and rangeland
LULCs and discharge.

Figure 7. Relative contribution of different land use/land covers (LULCs) to nitrate loading across
various months.

Also, Jamshidi et al. [62] indicated that untreated wastewater and failing septic systems
are the main sources of nitrate loading in the Jajrood river system. The runoff from orchards
is another significant source of nitrate. It can be also concluded from the measurements
that the maximum flow rate and nitrate load in the Jajrood River occurs from February to
June, which implies that, nitrate load increases at high flow rates [62].

As shown in Figure 8, the nitrate time pattern indicated that the average annual nitrate
load of the total output from the Tajan watershed is higher in the winter months (January-
March). Nitrate load in the three winter months accounts for 49% of the total annual nitrate
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load (17,767 kg). The highest level of nitrate in the study period is in February (average of
2720 kg) and the lowest is in September (average of 470 kg).

Figure 8. The average nitrate load output the Tajan watershed during the months of the year.

These results are consistent with the study by Lee et al. [51]. From May to September,
nitrate levels are inversely related to plant growth; nitrate load decreases with increasing
vegetation and increases from September with harvest [63]. This indicates that nonpoint
sources such as agricultural runoff play a major role in production of nitrate loading.
Further, due to the decrease in rainfall in summer, the pollution transport in the river has
decreased. Reduced nitrogen removal and reduced consumption by plants and microbes
due to snow accumulation and low water temperature can also cause higher nitrate levels
in the winter [59].

3.3.3. Components Related to Nitrate Losses

For each LULC, the nitrate export was categorized into three components of NSURQ,
NLATQ, NO3L (Figure 9). The greatest percentage of nitrate export in orchards is related to
leaching. In wheat crop, the highest percentage of export is related to the runoff flow, which
can be due to rainfed cultivation of this crop, and rainfall will have less opportunity for
leaching. However, in forests and rangelands, nitrate export is not significantly different
from the three nitrate export components. In population centers, the largest share of
nitrogen transfer is through washoff. Intensive fertilization during the farming season in
agricultural land exports massive amounts of nitrate.

3.3.4. Limitations and Future Research

The proposed approach can be used for future land use planning by the consideration
of nitrate load reduction. However, the MCE-based approach used a statistic methodology,
where only a single land use scenario was suggested to achieve the water quality reduction
goals. This approach did not account for the feedback (nitrate reduction) from a scenario
to the next land use planning scenario. Future work should utilize dynamic optimization
methods, where such a feedback informs next scenarios and eventually an optimal land
use scenario is obtained.

In the modeling, management practices such as agricultural and urban best manage-
ment practices were not considered. These practices reduce the nitrogen load and should be
considered in the future work to provide a fuller picture of the LULC change impacts and
support informed agricultural planning. We also solely focused on the surface water qual-
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ity. Nutrient leaching is a critical issue in agricultural watersheds, which was not studied
here. Research is needed to investigate the impacts of LULC change on nutrient leaching
and evaluating the combined ground and surface water impacts. Also, the contribution of
manure to nitrate loads was not considered in this study.

Figure 9. Various components related to nitrogen losses. NSURQ: NO3 contributed by HRU in
surface runoff to reach (kg N/ha), NLATQ: NO3 contributed by hydrologic response unit (HRU) in
lateral flow to the adjacent stream (kg N/ha), NO3L: NO3 leached below the soil profile (kg N/ha).

The proposed land use planning approach only considered one pollutant, nitrate,
the main pollutant in the study watershed. Future research should incorporate multiple
pollutants using approaches similar to the methodology proposed in this study. In addition
to water quality goals, other water management goals, such as groundwater flow, hydro-
logic regime (e.g., low flows) and soil erosion, Eutrophication process can be studied for a
holistic land use planning.

We used a deterministic approach for watershed-scale modeling of nitrate. No uncer-
tainties were incorporated in the analyses. The uncertainty is present in the model inputs,
the watershed model structure, model parameters and calibration-validation data [34,64].
These uncertainties affect model predictions (e.g., nitrate concentrations) and projected
future water pollution. Future research should use stochastic watershed modeling [65] and
ensemble modeling approaches [66] to quantify the uncertainty in the model predictions.

4. Conclusions

This paper presented an approach for informed land use planning by considering
water quality reduction goals. The study predicted the future LULC impacts on nitrate
loading in the Tajan watershed, north of Iran. With the recent LULC changes as a result of
deforestation and agricultural activities, it is expected that continuing changes make the
nitrate loading worse off in the watershed. We investigated the trends in LULC change
using satellite data over 26 years (1984–2040) at the subwatershed level. Three LULC
scenarios were studies: a base case (year 2010) and two future LULCs—business-as-usual
and forest conservation—both of which represent year 2040. The business-as-usual scenario
represented the scenario that the historical LULC trends continue in the future. Watershed
simulations of future LULC projections via SWAT indicated that, if historical LULC trends
continue, nitrate loading will substantially increase (up to 100% in 2040 compared to
2010). The informed land use planning approach (conservation scenario), however, showed
that, agricultural development by considering the water quality impacts, can reduce the
in-stream pollution.
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Our results have implications for agricultural planning by considering nitrate runoff
reduction. The proposed method to protect forests (i.e., conservation scenario) is useful
to evaluate multiple criteria and to incorporate experts’ opinion on land use planning.
Identifying suitable areas for agricultural expansion can help with the food supply and
the reduction of negative environmental impacts, including the pressure on natural forests.
The proposed methodology in this study can help in preventing impacts on the environ-
ment, especially runoff and flooding, soil erosion, impacts on aquatic habitats and the
improvement of water quality via sustainable land use planning. An analysis of future
LULC management evolution combined with the suitability of LULC can help prioritize the
zones that export nitrate loads. Land use planners and watershed managers can potentially
utilize the results and the proposed methodology of this study to reduce the ecological
consequences of LULC change and to increase the compliance with applicable water quality
standards to achieve sustainable development in the future with limited resources.

Also, this study can potentially help pollution mitigation efforts in Iran and watersheds
deadling with similar agricultural issues. In Iran, our research can potentially assist the
ongoing project “Preparation of solutions for quality management of the Tajan River”.
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