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Abstract: With the acceleration of human economic activities and dramatic changes in climate, the
validity of the stationarity assumption of flood time series frequency analysis has been questioned.
In this study, a framework for flood frequency analysis is developed on the basis of a tool, namely,
the Generalized Additive Models for Location, Scale, and Shape (GAMLSS). We introduced this
model to construct a non-stationary model with time and climate factor as covariates for the 50-year
snowmelt flood time series in the Kenswat Reservoir control basin of the Manas River. The study
shows that there are clear non-stationarities in the flood regime, and the characteristic series of
snowmelt flood shows an increasing trend with the passing of time. The parameters of the flood
distributions are modelled as functions of climate indices (temperature and rainfall). The physical
mechanism was incorporated into the study, and the simulation results are similar to the actual flood
conditions, which can better describe the dynamic process of snowmelt flood characteristic series.
Compared with the design flood results of Kenswat Reservoir approved by the China Renewable
Energy Engineering Institute in December 2008, the design value of the GAMLSS non-stationary
model considers that the impact of climate factors create a design risk in dry years by underestimating
the risk.

Keywords: manas river basin; non-stationarity; gamlss model; design flood

1. Introduction

In recent decades, with global warming and the potential influence of human activities
on climate change or directly changing the hydrological cycle [1], the assumption of
random independent co-distribution of flood time series has been greatly challenged.
In fact, all water-related infrastructures were and are based on conventional stationary
frequency analysis methods (assuming that there is no trend or sudden change in flood
time series data) for design flood analysis, and the reliability of the results obtained is
questioned [2,3]. Therefore, it is particularly necessary to consider non-stationary methods
for flood frequency analysis. Several researchers have begun exploring the validity of this
hypothesis for flood conditions in many parts of the world, taking into account the effects
of global climate variability and human activities [4–9]. These studies show that the flood
time series clearly violates the assumption of stationarity.

Previous studies have shown that the hydrological series in the Manas River Basin
is mainly dominated by abrupt changes [10,11]. The variability shown by hydrological
and climatic variables is the main reason for its abrupt change [12,13]. However, with the
exception of Chen et al. [10,14], little research has identified the stationarity of flood status
in the Manas River basin, which is located in the inland river in the arid region. These
results show that the flood frequency analysis based on a stationary condition cannot meet
the realistic flood control safety standard.

Water 2021, 13, 2007. https://doi.org/10.3390/w13152007 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-6374-0351
https://orcid.org/0000-0001-6465-1978
https://doi.org/10.3390/w13152007
https://doi.org/10.3390/w13152007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13152007
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w13152007?type=check_update&version=1


Water 2021, 13, 2007 2 of 21

For flood frequency analysis in non-stationary environments, most hydrologists use
indirect methods. The method mainly includes the rainfall-runoff relationship method
of the watershed, the decomposition and composition method of time series, and the
hydrological model method. In recent years, to restore the original hydrological time series,
an increasing number of methods have been adopted to directly study the non-stationary
hydrological series by using probability theory and mathematical statistics theory, such
as conditional probability method, mixed distribution method and time-variant moment
method [15–19]. In the literature, most of the studies on the frequency analysis of non-
stationary floods assumed trends in time. However, trends may change in the short- and
long-terms as a result of climate variability and the intensification of human activities,
which are the true drivers, so it is not entirely correct to use a model that only depends on
time to predict. Generalized Additive Models for Location, Scale, and Shape (GAMLSS) [20]
is a kind of time-varying moment model, it has a more flexible modeling framework than
traditional statistical models. At the same time, it can be added to consider climate change
and water conservancy engineering factors to construct a non-stationarity model, so that
the model can better describe changes in flood conditions over time [21–24].

Under the background of environmental changes and the study of the sudden change
of the snowmelt flood time series of the Manas River in the study area, the prediction of a
model that only depends on time is not completely correct. Therefore, the aim of this paper
is to address non-stationary modelling of snowmelt floods in the Kenswat River in the
arid area, and demonstrate that the incorporation of climate indices (P1, P3 and T78) may
result in appropriate covariates to describe changes of floods. We have used the GAMLSS
proposed by Rigby and Stasinopoulos [20] to incorporate external covariates. In addition,
in order to analyze the importance of the non-stationary modeling in flood frequency
analysis, we compared the results of the Kenswat Reservoir design flood simulated by the
non-stationary modeling with the design flood results approved by the China Renewable
Energy Engineering Institute in December 2008. The research results can provide scientific
guidance for the flood control safety, flood control management and basin planning of the
Manas River hydraulic engineering.

2. Study Area

The Manas River originates in the Yilian Habir Mountain on the northern slope of
the Tianshan Mountains in China. The total length of the main stream is 324 km and the
basin is bounded by 43◦27′ N to 45◦21′ N latitude and 85◦01′ E to 86◦32′ E longitude. The
study area (Figure 1) is the Kenswat hydrological station, with basin area of 4637 km2

and annual average runoff is 12.21 × 108 m3. At an altitude of more than 3600 m, it is
covered with snow all the year round, and there are modern glaciers with an area of
608.25 km2, which is the main source of supply for various rivers. The study area has a
typical temperate continental climate with a dry climate. The average annual temperature
is 5.9 ◦C, the annual average rainfall is 338.2 mm and the average annual evaporation is
1550.6 mm [25,26].

The Kenswat reservoir (43◦58′ N, 85◦57 ′E) is located 2 km upstream of the Kenswat
hydrological station. The normal storage level of the reservoir is 990 m, the maximum dam
height is 129.4 m, the total storage capacity is 1.88 × 108 m3 [27,28]. Geological exploration
of the Kenswat Reservoir began in January 2003. After years of design planning, the
reservoir design flood was approved by the China Renewable Energy Engineering Institute
in December 2008, and a preliminary design report of the Kenswat hydraulic engineering
was formed in December 2009 [29]. The Manas River is a river with frequent flood disasters.
Floods mainly occur in July and August during the flood season, where the average rainfall
can reach 43.56 mm and the average daily temperature is 22.4 ◦C, which fully shows the
characteristics of rivers during the flood season in summer.
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Figure 1. Location of the Manas River Basin and its upstream DEM map. 

3. Data and Methods 
3.1. Dataset 

The measured annual maximum peak discharge (Qmax) and daily averaged discharge 
time series from the Kenswat Hydrometric Station on the Manas River over the period 
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different days and the snowmelt flood characteristic time series. The statistical signifi-
cance of Pearson and Spearman tests was set to 5% [30–32]. 
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3. Data and Methods
3.1. Dataset

The measured annual maximum peak discharge (Qmax) and daily averaged discharge
time series from the Kenswat Hydrometric Station on the Manas River over the period
1957–2006 are used (Figure 1). From the daily averaged discharge time series, five records
are created: annual maximum 1, 3, 7, 15 and 30-day flood volume (Wmax1, Wmax3, Wmax7,
Wmax15, and Wmax30), by accumulating the daily discharge value. At the same time, the
time series of mean temperature of July and August and the influence of rainfall of 1, 3, 5,
7, 15 and 30 days (P1, P3, P5, P7, P15 and P30) before the occurrence of the flood peak were
collected at Kenswat Hydrological Station from 1957 to 2006 as basic data.

3.2. Methods
3.2.1. Correlation Analysis

In this study, the Pearson correlation coefficient was used to analyze the correlation
between the temperature mean series in July and August and the snowmelt flood char-
acteristic time series (satisfying the normal distribution). The Spearman rank correlation
coefficient was used to analyze the time series of precipitation affected by the early stage of
different days and the snowmelt flood characteristic time series. The statistical significance
of Pearson and Spearman tests was set to 5% [30–32].
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3.2.2. Generalized Additive Models for Location, Scale, and Shape (GAMLSS) Theory

For non-stationary hydrological time series analysis, the parameters of the selected
distribution in the modeling framework can vary as a function of explanatory variables.
In this paper, we use the (semi-)parametric regression model proposed by Rigby and
Stasinopoulos in 2005, GAMLSS. The model can add a variety of explanatory variables, and
fit the linear and non-linear functional relationship between the statistical parameters of the
response variable series and the explanatory variables. In this study, the model response
random variable Y (Qmax, Wmax1, Wmax3, Wmax7, Wmax15 and Wmax30 in this paper) has
a parametric cumulative distribution function, and the parameters can be modeled as a
function of selected covariates, namely time or climate index. Therefore, the stationary
model (model 0) was established, in which the distribution parameters do not depend on
covariates; the time-varying model (model 1), in which the distribution parameters vary as
function of time only; and the model that incorporates covariates (model 2), in which the
distribution parameters can vary as a function of climate.

The GAMLSS model assumes that the independent random variable observations
yi, i = 1, 2, . . . , n obey the probability density function f

(
yi
∣∣θi ) where θi = (θ1i, θ2i, θ3i, θ4i)

= (µi, σi, υi, τi) is the distribution (statistic) parameter vector corresponding to a certain
moment, n is the number of observations, and p is the number of distribution (statistic)
parameters. The parameters µi and σi are generally defined as the location parameter and
the scale parameter vector, corresponding to mean vector and mean squared (or coefficient
of variation) vector, respectively, represented as random variables. The other parameters
in the distribution are collectively referred to as shape parameters. The general shape
parameters are only two at most, and skewness vector and kurtosis vector of the random
variable series are represented by υi and τi, respectively. Let gk(•) denote θk a monotonic
function relationship with the corresponding explanatory variable Xk and the random
effect term, generally expressed as:

gk(θk) = ηk = Xkβk +
Jk

∑
j=1

Zjkγjk, (1)

where θk are vectors of length n; βk =
(

β1k, β2k, · · · , β Ikk
)T , which is a regression parameter

of length Ik Vector; Xk is an explanatory variable matrix of n× Ik; Zjk is a known fixed de-
sign matrix of n× qjk; γjk is a normal distribution random variable vector of qjk dimension;
Zjkγjk is the j-term random effect term; qjk is the random influence factor dimension of the
j-term random effects.

The distribution characteristics of hydrological time series are often described by
statistical parameter mean, mean square error and skewness coefficient. The model usually
adopts a two-parameter or three-parameter probability distribution function. In this paper,
a two-parameter model with linear variation of location parameter θ1 and scale parameter
θ2 with covariate is used.

In this paper, we considered as candidates four widely used two-parameter distribu-
tion functions in modelling streamflow data (Table 1): Log normal (LOGNO), Gamma (GA),
Gumbel (GU), Poisson inverse Gaussian (PIG) [7]. It can be seen from these alternative
distribution functions that they have the characteristics of both exponential distribution
and power function, which accord with the actual situation of hydrological time series.
When the model incorporates the selected covariates, the relation between the distribu-
tion parameters and the selected covariates will increase the complexity of the model. In
order to avoid model overfitting, the Akaike information criterion (AIC), the global fit
deviation (GD) and the Schwarz Bayesian criterion (SBC) [20,33] were used to optimize the
model selection.
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Table 1. Summary of the four two-parameter distributions considered in this study to model the streamflow data. LOGNO
means Log normal distribution; GA means Gamma distribution; GU means Gumbel distribution; PIG means Poisson
inverse Gaussian distribution.

Distribution Probability Density Function Distribution Moments

LOGNO fY(y|µ, σ ) = 1√
2πσ2

1
y exp

{
− [log(y)−µ]2

2σ2

}
y > 0, µ > 0, σ > 0

E(Y) = ω1/2eµ

Var(Y) = ω(ω− 1)e2µ

ω = exp
(
σ2)

GA fY(y|µ, σ ) = 1
(σ2µ)1/σ2

y1/σ2−1e−y/(σ2µ)

Γ(1/σ2)

y > 0, µ > 0, σ > 0

E(Y) = µ
Var(Y) = σ2µ2

GU fY(y|µ, σ ) = 1
σ exp

[(
y−µ

σ

)
− exp

(
y−µ

σ

)]
−∞ < y < ∞, −∞ < µ < ∞, σ > 0

E(Y) ∼= µ− 0.57722σ
Var(Y) = π2σ2/6

PIG pY(y|µ, σ ) =
(

2α
π

) 1
2

µye
1
σ Ky− 1

2
(α)

(ασ)yy!
y = 0, 1, 2, · · · , ∞, µ > 0, σ > 0

α2 = 1
σ2 +

2µ
σ

Kλ(t) = 1
2
∫ ∞

0 xλ−1 exp
{
− 1

2 t
(

x + x−1)}

The GD of GAMLSS model is defined as follows:

GD = −2l(θ̂i), i = 1, 2, 3, 4 (2)

where l
(
θ̂i
)

is the logarithmic likelihood function corresponding to the estimated value of
the regression parameter. Meanwhile, the generalized Akaike information criterion (GAIC)
is introduced for judgment, and its expression is:

GAIC = GD + #d f (3)

where d f is the overall degree of freedom of the model, # is the penalty factor. If the penalty
factor # = 2, it is called the AIC; if # = log(n) (n is the sample size of the explanatory
variable), it is called the SBC. The AIC and the SBC are two special cases of the GAIC. The
model with the smallest GAIC value is taken as the optimal model. Because the value of
the maximum likelihood does not provide information about the quality of the fitting [34].
Therefore, we examine the first four statistical moments of the residuals and the Filliben
correlation coefficients [35] ensure that the selected models can adequately describe the
systematic part. For the remaining independent and identically distributed random noise,
we use the residual diagnostic plot (residuals vs. response, qq-plots and worm plots) for
visual inspection [36,37].

4. Results
4.1. Correlation Analysis of Temperature and Snowmelt Flood

Table 2 summarizes the Pearson correlation coefficients of the mean temperature series
in July and August (T78) and the snowmelt flood characteristic time series. It can be seen
from the table that the Pearson correlation coefficient between the mean temperature series
and the annual maximum peak discharge (Qmax) and annual maximum flood volume series
(Wmax) is between 0.3–0.5 (statistically there is a medium correlation). For all correlation
coefficients the null hypothesis that the correlation coefficient is equal to 0 can be rejected
at a 0.05 significance level. Not all of the time series non- stationarity of snowmelt flood is
caused by temperature changes, there are also by rainfall, underlying surface and other
factors. Therefore, there is a moderate correlation between the mean temperature series
and the characteristic series of snowmelt flood, and the calculated results are reasonable
and reliable.



Water 2021, 13, 2007 6 of 21

Table 2. Summary for the correlation between the mean temperature series in July and August and
the snowmelt flood characteristic series: r represents the Pearson correlation coefficient; p-value
means the significance value; Qmax means the measured annual maximum peak discharge; Wmax1,
Wmax3, Wmax7, Wmax15, and Wmax30 mean the annual maximum 1, 3, 7, 15 and 30-day flood
volume, respectively.

Qmax Wmax1 Wmax3 Wmax7 Wmax15 Wmax30

r 0.3673 0.3670 0.3818 0.4030 0.4186 0.4290

p-value 0.0087 0.0088 0.0062 0.0037 0.0025 0.0019

4.2. Correlation Analysis between Precipitation in Early Stage and Snowmelt Flood

Figure 2 shows the Spearman rank correlation coefficients of rainfall series of different
days before flood and snowmelt flood characteristic time series. It can be found from
Figure 2 that, except for the P15 and P30, there is a strong correlation between the previous-
period rainfall series of other days and the snowmelt flood characteristic series. The
prior-period rainfall series with the largest correlation coefficient is selected as the optimal
correlation series. The Qmax has the strongest correlation with the P3, while the Wmax1,
Wmax3, Wmax7, Wmax15 and Wmax30 have the best correlation with the P1, and all the
correlations can be tested by a 0.05 significance level. The correlation coefficients between
the P1 and the Wmax1 and Wmax3 are all between 0.5–1.0, showing a strong correlation;
while the correlation coefficients between the P1 and the Wmax7, Wmax15 and Wmax30, the
P3 and the Qmax are all between 0.3–0.5, showing a medium correlation. Meanwhile, the
Spearman rank correlation coefficients of the Wmax1 and Wmax3, Wmax7, Wmax15 and Wmax30
are calculated respectively. The study found that the correlation is gradually decreased
but not significant, and Wmax1 and Wmax30 is the lowest value (0.879), but there is still a
strong correlation. For the rainfall series of different days before a flood, the correlation
coefficients between P1 and P3, P7, P15 and P30 show a downward trend, among which
the correlation coefficient between P1 and P30 is only 0.255, and the correlation coefficient
between P3 and P30 is 0.610. Therefore, the P1 and P3 with the strongest correlation with
the snowmelt flood characteristic series are selected as the influencing factors of the model.
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4.3. Results with Stationary Approaches: Models 0

This section presents the fitted stationary model (models 0) for the Kenswat hydro-
logical station control basin of the Manas River. Table 3 summarizes the optimal fitting
distribution of the characteristic series of snowmelt flood under the stability model using
AIC. It can be seen from the table that for the Qmax the LOGNO distribution and the PIG
distribution have similar fitting effects; for the Wmax, the LOGNO distribution and the GA
distribution have similar fitting effects. In the four candidate distributions models, the AIC
value of the LOGNO distribution is the smallest, which is the optimal fitting distribution.

Table 3. The Akaike information criterion (AIC) was used to determine the fit of Generalized
Additive Models for Location, Scale, and Shape (GAMLSS) under different probability distributions
of snowmelt flood time series. Lower AIC represent a better performance.

Distribution Qmax Wmax1 Wmax3 Wmax7 Wmax15 Wmax30

LOGNO 630.94 804.73 890.34 948.26 1010.42 1060.20
GA 638.12 811.39 895.91 952.86 1016.10 1064.42
GU 696.45 872.56 948.20 1001.48 1075.57 1115.66
PIG 633.01 1183.23 1307.98 1387.78 1534.77 1582.77

Table 4 and Figure 3 summarize the fitting quality of the optimal fitting distribution in
model 0, which are based on the residual plots and the estimation of the first four moments
of the residuals. When the snowmelt flood sample size of 50, the Filliben’s coefficient is
greater than or equal to 0.977 to pass the 5% significance level. The results show that the
residual Filliben’s coefficients of the optimal fitting distribution model for the snowmelt
flood characteristic series are all less than 0.977, which fails the significance test. Moreover,
as can be seen from Figure 3, part of the standard residual points of the optimal model of
the annual maximum flood time series are outside the 95% confidence interval, which does
not meet the requirements. It can also be seen from the residual distribution moments of



Water 2021, 13, 2007 8 of 21

each model that the residuals of each model cannot meet the requirements of obeying the
normal distribution.
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Table 4. Residual distribution moments and Filliben coefficients for optimal fitting distribution of snowmelt flood time
series (model 0).

Snowmelt Flood
Characteristic Series Distribution Mean Variance Skewness Kurtosis Filliben

Coefficient

Qmax LOGNO 0 1.020 0.919 3.596 0.968
Wmax1 LOGNO 0 1.020 0.958 3.976 0.961
Wmax3 LOGNO 0 1.020 0.909 3.918 0.959
Wmax7 LOGNO 0 1.020 0.864 3.927 0.962
Wmax15 LOGNO 0 1.020 1.072 5.089 0.959
Wmax30 LOGNO 0 1.020 0.851 4.510 0.966

Based on the above analysis, model 0 has low fitting accuracy and poor fitting effect.
Therefore, the use of a stationary model under the two-parameter distributions can no
longer be satisfied, and it is necessary to consider the frequency analysis and calcula-
tion of the non-stationary model for the snowmelt floods characteristic series under the
mutation condition.

4.4. Based on the Results of the Non-Stationary Model with Time Variables: Model 1
4.4.1. Model Fitting Evaluation

The non-stationary model is constructed with time t as the explanatory variable,
and the cumulative probability distribution parameters θ1 and θ2, namely the mean and
variance of the corresponding characteristic series of snowmelt flood are considered. We
use GD, AIC and SBC discriminant criteria to determine the optimal fitting distribution, the
optimal covariate of the distribution parameters, and the functional relationship between
the distribution parameters and the optimal covariates under the non-stationary model,
as shown in Table 5. For the Qmax, the LOGNO distribution is the best fitting distribution.
The distribution parameter θ1 exhibits a linear dependence on time t in the four candidate
distributions models. The distribution parameter θ2 exhibits a linear dependence on time t
in the LOGNO, GA and GU distribution models, but is independent of the time trends in
the PIG distribution model.

Table 5. Summary for the fitted models type 1 and the type of dependence between time and the distribution parameters: t
means linear dependence; ct refers to a parameter that is constant. Global fit deviation (GD) denotes the evaluation value of
the GD. AIC denotes the evaluation value of the AIC criterion. Schwarz Bayesian criterion (SBC) denotes the evaluation
value of the SBC criterion. Lower AIC and SBC represent a better performance.

Distribution
θ1 θ2 GD AIC SBC θ1 θ2 GD AIC SBC

Qmax Wmax1

LOGNO t t 620.22 628.22 635.86 t t 791.88 799.88 807.53
GA t t 626.19 634.19 641.84 t t 795.94 803.94 811.59
GU t t 677.45 685.45 693.10 t ct 856.48 862.48 868.21
PIG t ct 626.37 632.37 638.10 t ct 1175.83 1181.83 1187.57

Wmax3 Wmax7
LOGNO t t 878.16 886.16 893.81 t t 935.70 943.70 951.35

GA t t 881.42 889.42 897.07 t t 938.05 946.05 953.70
GU t ct 931.93 937.93 943.67 t ct 983.88 989.88 995.62
PIG t ct 1300.30 1306.30 1312.04 t ct 1378.81 1384.81 1390.54

Wmax15 Wmax30
LOGNO t t 996.86 1004.86 1012.51 t t 1045.25 1053.25 1060.90

GA t t 999.76 1007.76 1015.41 t t 1046.86 1054.86 1062.51
GU t ct 1058.44 1064.44 1070.18 t ct 1097.66 1103.66 1109.39
PIG t ct 1525.68 1531.68 1537.42 t ct 1574.07 1580.07 1585.81

For the Wmax, the LOGNO distribution and the GA distribution have similar fitting
effects. However, among the four parameter distributions, the LOGNO distribution has
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the smallest AIC value, which is the best fitting distribution. In the LOGNO and GA
distribution models, the distribution parameters exhibit a linear dependence on time t.
In the GU and PIG distribution models, the distribution parameter θ1 exhibits a linear
dependence on time t, and the distribution parameter θ2 is constant and independent of
the time trends.

Figure 4 and Table 6 summarize the fitting quality of the optimal distribution of Model
1, which are based on the residual plots and the estimates of the first four moments of
the residuals. The results show that the Filliben’s coefficient of the fitted residuals are all
greater than or equal to 0.977, and all pass the significance test. At the same time, it can be
known from the residual distribution moments of each model that the residuals of each
model obey the normal distribution well. Therefore, the models fit the data adequately.
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Table 6. Residual distribution moments and Filliben coefficients for optimal fitting distribution of snowmelt flood time
series (model 1).

Snowmelt Flood
Characteristic Series Distribution Mean Variance Skewness Kurtosis Filliben

Coefficient

Qmax LOGNO 0 1.020 0.830 3.562 0.977
Wmax1 LOGNO 0 1.020 0.543 2.563 0.977
Wmax3 LOGNO 0 1.020 0.476 2.577 0.978
Wmax7 LOGNO 0 1.020 0.379 2.420 0.979
Wmax15 LOGNO 0 1.020 0.457 2.921 0.982
Wmax30 LOGNO 0 1.020 0.180 2.665 0.990

4.4.2. Analysis of Optimal Model Fitting Results

It can be seen from Figure 5 that most of the measured points of the snowmelt flood
characteristic series are within the interval of 5th to 95th percentile gray scale, indicating
that the LOGNO distribution parametric model can capture well the variability exhibited
by the data. The GAMLSS non-stationarity model with time as the covariate can be used
for trend analysis of snowmelt flood feature series. The characteristic series of snowmelt
flood increased with time, and the fitting effect is close. The larger the quantile, the more
obvious the trend of the increase in the quantile curve. Among them, the upward trend
of the quantiles after 1993 have increased significantly. Taking the 95th percentile as an
example, the specific performance was that the growth rate of the Qmax after 1993 increased
by 39.03% compared with that before 1993, and the average growth rate of the Wmax after
1993 increased by 30.85% compared with that before 1993. However, with the passage
of time, the variation trend of the snowmelt flood characteristic series is not an infinite
increase. In actual conditions, the variation of snowmelt flood is affected by many factors
such as climate change and human activities. The characteristic series of snowmelt flood
should fluctuate. Therefore, model 1 can only describe the trend of the series over time, so
it cannot fully describe the dynamic change process of the characteristic series under the
influence of many factors.
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4.5. Based on the Results of the Non-Stationary Model with Climatic Factors: Model 2
4.5.1. Model Fitting Evaluation

On the basis of Model 1, the climate factors (P1, P3 and T78) are used to replace the dis-
tribution parameter explanatory variable time t as a new interpretation, and the GAMLSS
non-stationary model with climate factors as covariates (model 2). Table 7 summarizes
the selected distributions as well as the optimal explanatory variable of the distribution
parameters and the functional relationship between the distribution parameters and the
optimal explanatory variable for Model 2.

Table 7. Summary for the fitted models type 2 and the type of dependence between Climate factor and the distribution
parameters: ct refers to a parameter that is constant. GD denotes the evaluation value of the GD. AIC denotes the evaluation
value of the AIC criterion. SBC denotes the evaluation value of the SBC criterion. Lower AIC and SBC represent a better
performance.

Distribution
θ1 θ2 GD AIC SBC θ1 θ2 GD AIC SBC

Qmax Wmax1

LOGNO T78 + P3 t 610.08 618.08 625.73 T78 + P1 P1 765.05 775.05 784.61
GA T78 + P3 ct 612.61 620.61 628.26 T78 + P1 P1 764.72 774.72 784.28
GU T78 + P3 ct 661.83 669.83 677.48 T78 + P1 P1 779.19 789.19 798.75
PIG P3 ct 621.21 627.21 632.94 T78 P1 1164.72 1172.72 1180.37

Wmax3 Wmax7
LOGNO T78 + P1 P1 856.04 866.04 875.60 T78 + P1 P1 919.13 929.13 938.69

GA T78 + P1 P1 855.85 865.85 875.41 T78 + P1 P1 919.56 929.56 939.12
GU T78 + P1 T78 + P1 865.91 877.91 889.38 T78 + P1 P1 933.82 943.82 953.38
PIG T78 + P1 ct 1278.51 1286.51 1294.15 P1 ct 1371.10 1377.10 1382.84

Wmax15 Wmax30
LOGNO T78 + P1 P1 983.80 993.80 1003.36 T78 + P1 T78 1035.10 1045.10 1054.66

GA T78 + P1 P1 984.95 994.95 1004.51 T78 + P1 T78 1035.91 1045.91 1055.47
GU T78 + P1 P1 1005.48 1015.48 1025.04 T78 + P1 P1 1056.75 1066.75 1076.31
PIG T78 ct 1521.19 1527.19 1532.99 ct ct 1578.77 1582.77 1586.60

For the Qmax, the LOGNO distribution is the best fitting distribution. Among the three
candidate indicators of T78, P1, and P3, P1 does not pass the screening, indicating that the
rainfall of the day before the occurrence of the flood peak is not suitable for describing the
non-stationary changes of the Qmax. The T78 and P3 indicators tend to describe the linear
variation of the distribution parameter θ1, that is, the mean (location parameter) change
of the Qmax, which are more susceptible to the influence of the temperature in July and
August and the impact of the rainfall in the 3 days before the flood peak appears. Among
them, the P3 indicator has an influence on the Qmax of all distribution models, which is
only reflected in the linear dependence between the Qmax and the P3. The T78 indicator
also affects the Qmax of models other than the PIG distribution, which is also only reflected
in the linear dependence between the Qmax and the T78. The distribution parameter of all
distribution models is constant, indicating that the variance of the Qmax has little to do
with climatic factors.

It can be seen in table that the LOGNO and GA distributions offer the best overall
results in modelling the annual maximum flood time series frequency. The GA is used to
better fit the Wmax1 and Wmax3; LOGNO distribution is used to better fit the Wmax7, Wmax15
and Wmax30. Among the three candidate indicators of T78, P1, and P3, P3 does not pass the
screening, indicating that the rainfall of the day before the occurrence of the flood peak is
not suitable for describing the non-stationary changes of the Wmax.

The T78 indicator of the Wmax1, Wmax7 and Wmax15 are mainly expressed as the linear
dependence of the distribution parameter θ1, while the P1 indicator is mainly expressed
as the linear dependence of the distribution parameters θ1 and θ2. Therefore, the mean
value is mainly affected by the temperature in July and August and the rainfall of the
day before the flood peak, while the variance is mainly affected by the rainfall of the day
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before the flood peak. The T78 indicator of the Wmax3 and Wmax30 are all expressed as the
linear dependence between the distribution parameters θ1 and θ2, and the P1 indicator
is also expressed as the linear dependence between the distribution parameters θ1 and
θ2. Therefore, the mean value is affected by the temperature in July and August and the
rainfall of the day before the flood peak. However, the variance of the Wmax3 is mainly
affected by the rainfall of the day before the peak, and the temperature is less affected;
while the variance of the Wmax30 is mainly affected by the temperature in July and August,
and the influence of the rainfall of the day before the peak is small.

The results of Figure 6 and Table 8 are similar to the previous analysis results in
Section 4.4.1 (Figure 4 and Table 6). This result supports the inference that the models fit
the data adequately.
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Table 8. Residual distribution moments and Filliben coefficients for optimal fitting distribution of snowmelt flood time
series (model 2).

Snowmelt Flood
Characteristic Series Distribution Mean Variance Skewness Kurtosis Filliben

Coefficient

Qmax LOGNO 0 1.020 0.352 3.425 0.985
Wmax1 GA 0 1.011 0.007 1.896 0.986
Wmax3 GA 0 1.019 0.015 1.863 0.987
Wmax7 LOGNO 0 1.020 0.082 1.795 0.985
Wmax15 LOGNO 0 1.020 0.246 1.916 0.983
Wmax30 LOGNO 0 1.020 0.108 2.194 0.992

4.5.2. Analysis of Optimal Model Fitting Results

Figure 7 summarizes the quantile gray-scale map of the optimal fitting distribution
model with the climate factor as covariable for the snowmelt flood characteristic series.
This parametric model (model 2) can capture the dynamic change process of the snowmelt
flood characteristic series well under the influence of environmental change, which is the
most obvious process in the description of the large flood events in 1996 and 1999. In the
case of ignoring individual outliers in the figure, the main cause of the dynamic change
in the snowmelt flood characteristic series in the figure is climate change, which mainly
includes change in temperature and rainfall. According to statistics, the temperature and
rainfall in the Manas River basin have shown an increasing trend in recent years. The
average temperature in the basin during 1996–2014 has increased by 2.13 ◦C compared
with the average temperature in 1956–1995; the contribution rate of precipitation increase
to runoff increase is 59.64% [11,12]. The variation of the underlying surface also has an
effect on the series characteristics, but the effect is not significant, because the underlying
surface in the study area is less affected by human activities.

Figure 8 and Table 9 summarize the 90th, 95th and 98th percentile curves, correspond-
ing extreme values and occurrence years of the Qmax and Wmax under the optimal fitting
distribution model with climate factor as the covariate.

Model 2 indicate the existence of periods in which flood frequency experienced
significant variability (decreases and increases). The maximum values of the 90th, 95th
and 98th percentiles curves of the snowmelt flood characteristic series all appeared in 1996,
while the minimum values all occurred in 1972. Due to the impact of climate change, the
dynamic range of the Qmax at the 98th, 95th and 90th percentiles are 351~1459 m3 s−1,
341~1172 m3 s−1, 328~966 m3 s−1, respectively. The dynamic change process of the Wmax1,
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Wmax3, Wmax7, Wmax15 and Wmax30 is basically similar to that of the Qmax, the dynamic
range are shown in Table 9. In the non-stationary snowmelt flood frequency analysis, the
98%, 95%, and 90% quantiles represent the flood events with the probability of exceeding
0.02, 0.05, 0.1 (i.e., return period of 50, 20 and 10-year) respectively.

Table 9 also shows the design flood results of Kenswat Reservoir approved by the
China Renewable Energy Engineering Institute in December 2008. Comparing the design
flood results of Kenswat Reservoir with the snowmelt flood quantile values, it can be seen
that the snowmelt flood value should show a dynamic change process under the combined
influence of climate change and human activities, that is, it should have a dynamic range of
change. The design flood value is a static behavior which is used to measure the snowmelt
flood value under unstable conditions and can lead to two possible major problems: In
dry years, it may appear conservative, while in wet years, especially in years when major
floods occur, there may be certain risks.

Table 9. Summary of the results of modeling the snowmelt flood time series with model 2 under non-stationary conditions.
The results show estimates of the 90th, 95th and 98th percentiles. The design flood values for the 50-, 20-, and 10-year return
periods of Kenswat Reservoir (approved by China Renewable Energy Engineering Institute in December 2008).

Snowmelt Flood
Characteristic Series

Extremum Year
Quantile of Snowmelt Flood

Time Series Design Standard Value

98% 95% 90% 50-Year 20-Year 10-Year

Annual maximum peak discharge
(m3/s)

maximum 1996 1459 1172 966
1249 856 600minimum 1972 351 341 328

Annual maximum 1-day flood
volume (105 m3)

maximum 1996 11,636 10,141 8937
7406 5206 3756minimum 1972 2013 2215 2077

Annual maximum 3-day flood
volume (105 m3)

maximum 1996 26,029 22,623 19,998
15,920 12,090 9425minimum 1972 6424 5984 5578

Annual maximum 7-day flood
volume (105 m3)

maximum 1996 41,058 35,625 31,400
29,430 23,120 18,620minimum 1972 13,721 12,744 11,939

Annual maximum15-day flood
volume (105 m3)

maximum 1996 69,712 61,205 54,513
56,830 44,230 35,340minimum 1972 26,262 24,281 22,759

Annual maximum 30-day flood
volume (105 m3)

maximum 1996 89,702 80,799 74,637
93,383 74,599 61,042minimum 1972 44,883 42,446 40,431
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Figure 7. The series of snowmelt flood is modeled using the optimal distribution, with parameters depending on climate
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5. Conclusions

The flood frequency under non-stationary condition between the annual maximum
peak discharge and the annual maximum flood volume series in Kenswat Reservoir of
Manas River covering the period 1957–2006 is analyzed. Use GAMLSS theory to construct
a traditional stationarity model (model 0), and two non-stationarity models based on time
as a covariate (model 1) and based on climate factors as a covariate (model 2). The main
findings of this work can be summarized as follows:

Departures from the traditional assumption of stationarity in the snowmelt flood
series in the Manas River are clear.

In the modelling of time-varying parameters, GAMLSS provides a flexible modeling
framework to represent the non-stationarity in snowmelt flood distribution. The study
found that the characteristic series of snowmelt flood showed an increasing trend over
time in the Kenswat Reservoir control basin.

The climate change-related covariables were incorporated into GAMLSS framework
to model snowmelt flood, where the location parameter of the annual maximum flood
peak series depended on the T78 and P3 indicators. The location parameter of the annual
maximum flood volume series depended on the T78 and P1 indicators. Moreover, the
scale parameter can be related only to the P1 indicator, and does not show any significant
dependence on temperature. The covariate model that incorporates the effects of rainfall
and temperature can better describe non-stationarities in the frequency and magnitude of
the snowmelt flood in Kenswat Reservoir.

Comparing the results obtained in Model 2 with the Kenswat Reservoir design flood
results approved by the China Renewable Energy Engineering Institute in December
2008, the snowmelt flood value has a dynamic range, while the design flood value is a
static behavior. For snowmelt flood time series with 0.02, 0.05, and 0.1 annual exceeding
probabilities (corresponding to 50, 20, and 10-year regression periods under stationary
conditions), the variations obtained are dramatic, with extended periods in which the flood
quantile values are much higher than the existing design flood value. Therefore, using the
existing design value to measure the snowmelt flood value under the combined influence
of climate change and human activities will appear conservative in dry years, while in wet
years, especially in the years of major floods, there may be greater risks than expected.
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