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Abstract: Frequency estimates of extreme precipitation are revised using a regional L-moments
method based on the annual maximum series and Chow’s equation at lower return periods for
the Jiangsu area in China. First, the study area is divided into five homogeneous regions, and
the optimum distribution for each region is determined by an integrative assessment. Second,
underestimation of quantiles and the applicability of Chow’s equation are verified. The results show
that quantiles are underestimated based on the annual maximum series, and that Chow’s formula is
applicable for the study area. Next, two methods are used to correct the underestimation of frequency
estimation. A set of rational and reliable frequency estimations is obtained using the regional L-
moments method and the two revised methods, which can indirectly provide a robust basis for
flood control and water resource management. This study extends previous works by verifying
underestimation of the quantiles and the provision of two improved methods for obtaining reliable
quantile estimations of extreme precipitation at lower recurrence intervals, especially in solving
reliable estimates for a 1-year return period from the integral lower limit of the frequency distribution.

Keywords: regional l-moments; revision of frequency estimation of extreme precipitation; chow’s
equation; annual maximum series; annual exceedance series

1. Introduction

Natural flood disasters occur frequently in China. As a consequence, flood control is
an important topic relevant to the preservation of human life, property, and society [1,2].
Scientific and robust flood control standards are critical to engineering and urban flood
control design, for which an important theoretical basis of estimation is hydrological
frequency calculation [3]. Rapid economic development and enhanced environmental
consciousness have led to increased attention on extreme hydrometeorological events and
growing concern for events occurring at lower return periods, fueled by the increasing
seriousness of urban waterlogging disasters [1,4]. However, the sampling method and the
choice of probability distribution can influence frequency estimations at low recurrence
intervals [5]. Therefore, knowledge regarding sampling and the optimum distribution is a
key element of frequency analysis.

The determination of an appropriate distribution is an important step in frequency
analysis. Selection of the optimum distribution has been extensively researched because
the theoretical distribution curve is unknown [6,7]. For example, the person type III (PE3)
distribution has been selected as the appropriate fit in the United States, and the generalized
extreme value (GEV) distribution has been recommended in more than ten countries [8,9].
However, the adoption of a “one-size-fits-all” scenario may lead to poor accuracy in
quantile estimation due to heterogeneity and discordancy associated with different sites
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in the region [10]. Therefore, some researchers have recommended selecting an optimum
distribution for each homogeneous region based on practical grounds, showing that the
accuracy of quantile estimates is significantly improved [8,11,12]. In this study, Monte Carlo
(MC) simulations and a diagram of L-moments ratios are used to determine goodness-of-
fit. However, the criterion from MC simulation can be unreliable when data are serially
linked or cross-correlated among sites [13]. Therefore, a summary assessment is performed
using different statistical criteria to determine the optimum distribution, in order to avoid
obtaining an arbitrary result from any single test.

For sampling, the annual maximum series (AMS) and partial duration series (PDS)
can be used to select extreme values from a long hydrological time series. In the AMS,
the largest event in each year is extracted and recorded in a series that contains critical
information such as extreme precipitation or peak flow amount. These data are easily
obtained and widely used in hydrological statistical analysis [14–17]. However, the AMS
extracts only the largest event, and secondary events occurring in one year may exceed the
annual maximum of other years. In addition, annual maximum events observed in dry
years may be very small, and interpretations based on these events can lead to significant
bias with respect to the outcome of an extreme value analysis [18–20]. Extensive research
has shown that quantiles based on AMS data are underestimated to a certain extent at
low return periods [1,12,21]. For example, Lin et al. showed underestimation of extreme
precipitation based on AMS data from daily precipitation data obtained from 1438 stations
in the southwestern United States [20]. However, less research has been done to assess the
underestimation of quantiles in China, or to verify the results in a specific area [22].

The PDS method extracts all of the extreme events above a truncation or threshold
level for the analysis and therefore does not suffer from the drawbacks inherent to the
AMS data. If a descending sort of PDS is selected, such that the number of values in the
series equals the number of years on record, the series is called the annual exceedance
series (AES). The AES data not only simplifies sample selection and subsequent statistical
analysis, but also gives similar results to that obtained with PDS data and can be regarded
as a special case of the PDS [20]. A complete description and solid theoretical basis of
precipitation and flood processes exists in the PDS. Previous research has shown that the
PDS is more efficient for quantile estimation than the AMS because it is more suitable for
a heavy-tailed distribution, which is common in hydrological applications [23–25]. The
accuracy of estimation based on the PDS is closely related to the selection of an appropriate
threshold level and independence of the sample data [26–28]. Construction of a PDS
model can be hampered by several difficulties and is less commonly used in hydrologic
research than AMS methods. First, events should be independent; hence, criteria explicitly
identifying independent events must be defined. Second, the selection of an appropriate
threshold is important to the result and should ensure that a maximum amount of relevant
information is included in the analysis without violating basic statistical assumptions.
Third, the return period of the PDS in sampling units is not consistent with the return
period of the AMS in years. Conversion and verification of recurrence intervals are difficult
with PDS data [19,29,30].

Although it has a solid theoretical base, difficulties such as data availability make the
construction of a PDS model difficult. At most sites in China, only AMS data are available
for a variety of reasons. Therefore, the development of a simple and feasible method
for calculating reliable quantile estimates on the basis of AMS data is critical. Chow [21]
derived a relation for AMS and AES between two recurrence intervals corresponding to the
same event that has been widely accepted and used in engineering practice [31]. Lin et al.
subsequently verified the applicability of Chow’s equation in the southwestern United
States [20]. Takeuchi noted that the precision of estimations can satisfy the requirement
using the return period in sampling units of Chow’s equation if the size of the PDS is
in accordance with a Poisson distribution [32]. Ghahraman noted that the relationship
between the recurrence intervals of AMS and PDS should be a function of rainfall duration
and the number of samples [33]. Is the frequency conversion related to local hydrological
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characteristics and other factors? Is Chow’s formula applicable to hydrological frequency
analysis in China? These questions require in-depth analysis and research. If Chow’s
formula is appropriate for sites in China, calculation of reliable frequency estimates based
on the AMS data and Chow’s formula can be performed. Because only AMS data exist for
most sites in China, this highlights the purpose and importance of this study.

The objectives of this study are to verify the underestimation of quantiles, provide
two revised methods for reliably estimating the frequency of extreme precipitation, and
to solve the problem of the distribution integral lower limit. To achieve these objectives,
different homogeneous regions are first identified and the optimum distribution for each
homogeneous region in the study area is determined. Second, we compare exceedance
frequencies with the exceedance probabilities in order to verify whether quantiles are
underestimated based on AMS data in the study area. Third, frequency estimates are
computed using real AMS data, real AES data, and generated AES data based on the
Chow’s equation and AMS data, to verify the applicability of Chow’s equation in this study.
Last, a set of reliable frequency estimates is obtained using a regional L-moments method
based on AMS data and Chow’s equation. We revise the estimation of quantiles at each
site at low return periods for the AMS data and also solve the quantiles for a 1-year return
period; the latter is a major merit of this research that extends previous work conducted
to date.

2. Materials and Methods
2.1. Study Area

An important part of Yangtze River Delta, Jiangsu Province (116◦18′–121◦57′ E, 30◦45′–
35◦20′ N) covers an area of about 1.07 × 105 km2 and is located downstream of Yangtze
River and Huaihe River basins. The terrain is dominated by plains, accounting for more
than 70% of the area. Hills are concentrated in the southwest, accounting for 14.3% of
the total area. The terrain slopes from west to east. The river network is intricate and
includes the three major river systems of the Yishusi River drainage: Downstream of the
Huaihe River, the Yangtze River, and Taihu Lake stream. Jiangsu is located in a transitional
subtropical to warm temperate climate zone. The area is characterized by four distinct
seasons, which are cold and dry in winter, and warm and humid with plum rains in the
late spring and early summer, and typhoons in summer and autumn. The annual average
rainfall is 996 mm. Precipitation gradually increases from south to north and is greater on
the coast than inland. Rainstorm zones are mainly located in the south of Yimeng Mountain.
The elevation, stream network, and meteorological stations of the study area are shown in
Figure 1.

2.2. Data

Daily precipitation from meteorological stations was obtained for this study from the
National Meteorological Information Centre of the China Meteorological Administration
(http://cdc.cma.gov.cn/shuju). Data from 63 representative stations in the Jiangsu area
obtained between 1961 and 2011 were used for analysis. The AMS was extracted from the
daily precipitation data using a bubble sort method. The annual maximum series xl, x2,
x3, . . . . . . , xN is a collection of the maximum data for each year, where N is the number
of years in the observed time series. The partial duration series yl, y2, y3, . . . . . . , yM is a
collection of exceedance over a certain truncation level, the Mth largest in the whole time
series of Nyr. In this study, the threshold value was equal to three. That is, the three largest
daily rainfalls were selected from each year and form the PDS. The PDS was sorted and
intercepted the largest N events in descending order, which includes the AES. Therefore,
the AES may be regarded as a special case of the PDS. The frequency estimations for
extreme precipitation based on AMS and AES were assessed and compared.

http://cdc.cma.gov.cn/shuju
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Figure 1. Map showing the locations of meteorological stations in Jiangsu province.

2.3. Methodology
2.3.1. Regional L-Moments Method

The L-moments method is aimed at the issue of the robust parameter estimation.
Regional analysis provides a solution to reduce the uncertainties that exist in at-site statisti-
cal analysis. Accordingly, many studies have shown that a regional L-moments method
is a reasonable and reliable method to improve the precision and accuracy of frequency
estimation [12,20].

Regional frequency analysis employs data from several sites in a region to estimate
the frequency distribution of the underlying population at each site. The approach makes
the assumption that the shape of the probability distribution function is shared among
a group of sites. An index-flood procedure was used in the estimation of precipitation
frequency. It assumes that the frequency distribution at each of the N sites in a region is
identical apart from a site-specific scaling factor, the index-flood, and that the region is
homogeneous. That is, the quantile estimates at site i, QT,j,i can be computed by a regional
component that reflects the common precipitation character and a local component that
reflects the site-specific scaling factor. The formula can be written as:

QT,j,i = qT,j × xi,j (1)

where xi,j is commonly the at-site sample mean used for the location estimator, j = 1, 2, . . . ,
N; qT,j, namely the regional growth factor (RGF), is defined as the dimensionless regional
frequency distribution common to the N sites in the region at multiple desired return
periods, Tj. It can be determined by a set of regional parameters that are weighted average
values over N sites for a selected distribution. For example, the regional Linear coefficient
of deviation (L-Cv) can be written as follows:
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L̂Cv
(R) =

N

∑
i

ni L̂Cv
(i)/

N

∑
i

ni, i = 1, 2, . . . , N (2)

where L̂Cv
(R) and L̂Cv

(i) are respectively denoted as the regional L-Cv and the single station
L-Cv at site i.

2.3.2. Identification of Homogeneous Regions

The identification of homogeneous regions is an important task. First, cluster analysis
is used to identify homogeneous regions on the basis of four variables: Longitude, latitude,
elevation, and the mean annual precipitation. This analysis is conducted using Ward’s
method based on Euclidean distance by Statistical Analysis System (SAS) hierarchical
clustering software [34] More details on cluster analysis can be found in reference [13].
Second, a measurement of heterogeneity (H) is used to assess hydrological similarity and
determine regional homogeneity. H is denoted as:

Hi =
(
Vi − µVi

)
/σVi i = 1, 2, 3 (3)

where µVi and σVi are the expectation and standard deviation of Vi, which can be defined
as follows:

V1 =
{

∑N
i=1 ni(t(i) − tR)

2
/∑N

i=1 ni

}1/2
,

V2 = ∑N
i=1 ni

{
(t(i) − tR)

2
+ (t(i)3 − tR

3 )
2
}1/2

/∑N
i=1 ni,

V3 = ∑N
i=1 ni

{
(t(i)3 − tR

3 )
2
+ (t(i)4 − tR

4 )
2
}1/2

/∑N
i=1 ni.

(4)

where t(i), t(i)3 , and t(i)4 are separately the coefficient of sample L-moments. tR, tR
3 , and tR

4
denoted regional average L-moments coefficient weighted the site’s record lengths, which
are defined as:

tR =
N

∑
i=1

nit(i)/
N

∑
i=1

ni, tR
3 = ∑N

i=1 nit
(i)
3 /∑N

i=1 ni, tR
4 = ∑N

i=1 nit
(i)
4 /∑N

i=1 ni (5)

where N is the number of sites, ni is the site’s record lengths. Hosking and Wallis [13]
suggested that a region may be considered “acceptable homogeneous” if H < 1, “possibly
heterogeneous” if 1 ≤ H < 2, “definitely heterogeneous” if H ≥ 2, and “possibly correlated”
if H < 0.

Finally, a measurement of discordancy (Di) is used to identify data that are grossly
discordant with the region as a whole [13]. The critical values for discordancy experiments
are dependent on the number of sites in the region [13]. More detailed information on
these procedures can be found in [12,13].

2.3.3. The Goodness-of-Fit

The MC simulation and the Root Mean Square Error (RMSE) of the sample L-moments
are used to determine the appropriate distribution according to an arbitrary result of any
one test. Due to the relative stability and flexibility of 3 parameters, five kinds of commonly
used 3-parameter distributions are investigated for goodness-of-fit as follows [12,13]:
Generalized logistic (GLO), GEV, generalized normal (GNO), generalized pareto (GPA),
and PE3.

A large number of synthetic datasets are generated by MC simulation and used
to access the deviation from the mean point to the distribution in L-Ck scale. For each
distribution, the goodness-of-fit measure is defined as follows:

ZDIST =
(

τDIST
4 − tR

4 + B4

)
/σ4 (6)
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where tR
4 is the regional average L-kurtosis, weighted proportionally to the site’s record

length; τDIST
4 is the L-kurtosis of the fitted distribution, where DIST can be any of GLO,

GEV, GNO, GPA, and PE3. For the mth simulated region, after the regional average L-
kurtosis t[m]

4 obtained, the bias (B4) and standard deviation (σ 4) of tR
4 can be calculated

as follows:

B4 =

[
Nsim

∑
m=1

(
t[m]
4 − tR

4

)]
/Nsim (7)

σ4 =

{[
Nsim

∑
m=1

(
t[m]
4 − tR

4

)2
− NsimB2

4

]
/(Nsim − 1)

}1/2

(8)

Assuming that Z takes the form of a standard Gaussian distribution, the criterion
|Z| ≤ 1.64 is chosen as the cutoff threshold, and the smallest |Z| value, the best distribution.

The MC simulation emphasizes the effect of the regional average. The RMSE is used
to assess the variability of the sample L-Ck of the real data at N sites to accurately evaluate
the distribution pattern. The RMSE is calculated for each of the plausible distributions
as follows:

RMSE =

{
N

∑
i=1

ni(Si,L−Ck − Di,L−Ck)
2/

N

∑
i=1

ni

}1/2

(9)

where Si,L-Ck is the sample L-Ck at site i and Di,L-Ck is the distribution’s L-Ck at sample
L-Cs of site i. The distribution with the smallest RMSE is selected as the most appropriate
distribution based on this experiment. More details of the MC and RMSE methods can be
found in the literature [12,13,20].

2.3.4. Conversion of AES-AMS

Chow [21] derived a relation between the two recurrence intervals TAMS and TAES
corresponding to the same event, as follows:

TAES =

[
ln
(

TAMS

TAMS − 1

)]−1
or TAMS =

1

1− e−
1

TAES

(10)

where TAMS and TAES are, respectively, the return period of AMS and AES.
Chow’s equation is a frequency conversion relation that has been widely adopted for

use in engineering research. Table 1 gives the return periods based on AES data. Frequency
estimation can be computed by using non-exceedance probability (PNON). However, the
computer program cannot be computed if PNON equals zero. From Equation (10), it is
clear that it is not computable for a 1-year event under AMS data. If Chow’s equation is
applicable to this study area, we can not only correct the frequency estimation at low return
periods based on AMS data, but can also compute quantiles for a 1-year recurrence interval
based on Chow’s equation.

Table 1. Return periods based on AMS data.

TAES(−year) TAMS(−year) P = 1/TAMS PNON = 1−1/TAMS

N/A 1 1.0 0.0 *
1.44 2 0.50 0.50
4.48 5 0.20 0.80
9.49 10 0.10 0.90
24.50 25 0.04 0.96
49.50 50 0.02 0.98

* Note: It is incomputable for 1-year event based on AMS data.
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3. Results
3.1. Results and Analysis of the Goodness-of-Fit

The study area was divided into five homogeneous regions according to the above-
mentioned procedures in methods section (Figure 2). After identification of homogeneous
regions, the optimum distribution is determined based on the regional L-moments analysis.
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Figure 2. Spatial map of five homogeneous regions.

The results of the goodness-of-fit simulation experiments for the five regions are
shown in Table 2. It can be seen from Table 2 that GLO and GEV are, respectively, the
optimum distributions based on the two indices of |Z| and the RMSE for regions I and III,
IV, and V. For region II, GNO is the best distribution from the |Z| value, and GEV is the
best based on the RMSE. However, the difference between the |Z| and RMSE estimations
is small. Therefore, GNO and GEV can be considered as the best-fitting distributions based
on the two tests. However, abrupt changes in frequency estimations at the borders of
adjacent homogeneous regions should be avoided. The frequency estimation has a good
correlation with the tail thickness of distribution and decreases in the order of GLO, GEV,
GNO, GPA, and PE3. The regions adjacent to region II have an appropriate fit with GLO.
Therefore, GEV is the best distribution based on the two tests and the change in adjacent
regions. Similarly, the optimum distributions of the five regions for the AES data are GNO,
GPA, GPA, GPA, and GPA.
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Table 2. Results of MC and RMSE measures for a 1-day duration.

Test Index Distribution
Homogeneous Region

I II III IV V

Z

GLO −0.17 2.63 −0.28 2.00 2.47
GEV −1.39 0.26 −1.66 0.05 0.37
GNO −2.05 −0.25 −2.05 −0.78 −0.56
GPA −4.46 −5.11 −4.87 −4.71 −4.79
PE3 −3.21 −1.35 −2.83 −2.27 −2.24

Zmin GLO GNO GLO GEV GEV

RMSE

GLO 0.0404 0.0650 0.0401 0.0591 0.0655
GEV 0.0424 0.0445 0.0509 0.0395 0.0447
GNO 0.0834 0.0466 0.0604 0.0452 0.0470
GPA 0.0555 0.0885 0.1239 0.0811 0.0773
PE3 0.1057 0.0546 0.0797 0.0632 0.0628

RMSEmin GLO GEV GLO GEV GEV

3.2. Comparison between Exceedance Frequency and Exceedance Probability

The regional L-moments analysis is applied to obtain the quantiles at each station
on a region-by-region basis. The exceedance frequencies from 2-year to 100-year return
periods are calculated station-by-station and averaged first over the region and then over
the study area. The data exceedance frequencies at each station for study area are found
from Table S1 in Supplementary Material. The average region-by-region exceedance
frequencies are shown in Table 3 over the entire study area. It can be seen from Table 3
that the average exceedance frequencies are higher than the corresponding theoretical
exceedance probabilities for 2-year to 100-year return periods over the study area, which
are 0.507, 0.206, 0.111, 0.045, 0.021, and 0.011 for 2-year, 5-year, 10-year, 25-year, 50-year, and
100-year return periods, respectively. The corresponding real return periods are calculated
to be 1.97 years, 4.85 years, 8.99 years, 22.25 years, 47.49 years, and 91.87 years, which
indicates that extreme precipitation events occur more frequently. These data indicate that
current quantile estimates based on AMS data are underestimated for frequent events in
the study area.

Table 3. Average exceedance frequencies for the study area.

Region

Return Period (R.P.)/Exceedance Probability (E.P.)

2-yr 5-yr 10-yr 25-yr 50-yr 100-yr

0.50 0.20 0.10 0.04 0.02 0.01

I 0.518 0.210 0.124 0.051 0.022 0.012
II 0.505 0.201 0.106 0.045 0.021 0.011
III 0.500 0.201 0.120 0.044 0.020 0.010
IV 0.508 0.217 0.101 0.041 0.022 0.013
V 0.502 0.202 0.106 0.044 0.021 0.009

Average E.P. 0.507 0.206 0.111 0.045 0.021 0.011
Real R.P. 1.97-yr 4.85-yr 8.99-yr 22.25-yr 47.49-yr 91.87-yr

3.3. Verification of the Applicability of Chow’s Equation in the Study

The underestimated frequencies from the AMS data can be revised for low-return
periods if Chow’s equation is applicable to this study area. The procedure for verification
is as follows: First, the quantiles based on real AES and AMS data are independently
estimated for the study area (Table 4). Then the AES–AMS ratios are obtained based on
frequency estimates from 2-year to 100-year return periods. Second, frequency estimations
and their ratios are calculated based on real AMS data, where AES is obtained based on
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AMS data and Chow’s equation. The best-fit distribution of each homogeneous region is
used to calculate the frequency estimates. The verification results are shown in Figure 3.

Table 4. Quantile estimates of extreme precipitation for a 1-day duration with different return periods
in homogeneous region I.

Site Name
Quantile Estimates Based on AES Data

2-yr 5-yr 10-yr 25-yr 50-yr 100-yr

Fengxian 92.2 117.3 139.7 175.1 206.8 243.3
Peixian 98.4 125.2 149.1 186.9 220.7 259.7
Pizhou 106.6 135.6 161.5 202.4 239.0 281.2
Xuzhou 103.2 131.3 156.4 196.0 231.5 272.4

Xinyi 98.2 124.9 148.8 186.4 220.2 259.1
Donghai 98.9 125.9 149.9 187.9 221.9 261.1
Suining 115.4 146.8 174.9 219.2 258.9 304.6

Suyu 116.5 148.2 176.5 221.2 261.3 307.5
Siyang 104.9 133.4 158.9 199.1 235.2 276.7
Sihong 104.5 132.7 154.9 185.5 209.6 234.5

Quantile estimates based on AMS data and Chow’s equation

Fengxian 91.0 116.6 139.1 174.9 207.9 246.9
Peixian 99.4 127.4 152.0 191.1 227.2 269.8
Pizhou 106.0 135.9 162.1 203.8 242.2 287.6
Xuzhou 103.9 133.2 158.8 199.7 237.3 281.9

Xinyi 96.8 124.1 148.0 186.1 221.2 262.7
Donghai 99.0 126.9 151.4 190.3 226.2 268.6
Suining 111.7 143.2 170.8 214.7 255.2 303.1

Suyu 111.9 143.4 171.0 215.0 255.5 303.5
Siyang 105.6 135.3 161.4 202.9 241.1 286.4
Sihong 100.0 128.2 152.9 192.2 228.5 271.4

Mean RE (%) 1.72 1.60 1.41 1.68 2.49 3.64
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Figure 3. Comparison of AES–AMS ratios obtained using Chow’s equation and real data.

Taking Region I as an example, quantile estimates based on AES data, AMS data, and
Chow’s equation are shown in Table 4. The results from region II, III, IV, and V can be
found in Table S2 in Supplementary Material. The frequency estimates obtained from the
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real AES data have good consistency with that obtained from computed AES data. The
mean relative error from 2-year to 100-year return periods is 2.09%, indicating that the
AMS data and Chow’s equation may be used as an alternative method when only AMS
data are available. Figure 3 indicates that the general trend is consistent between Chow’s
equation and the data. The AES–AMS ratio gradually decreases with increasing length of
the return period; ratios are >1 when the recurrence intervals are less than 25 years, near 1
between 25-year and 50-year return periods, and <1 for return periods longer than 50 years.
However, the magnitude of the decrease is largest when the recurrence interval is less than
25 years. It can also be seen from the curve trend that different sampling methods can have
a substantial effect on the low-return-period interval. Taken overall, the best-fit Chow’s
case is consistent with the best-fit real data, indicating that Chow’s equation can be used as
a simple method to obtain reasonable AES-AMS ratios consistent with those obtained from
real AES and AMS data.

3.4. Reliable Frequency Estimation and Spatiotemporal Analysis

By applying Chow’s equation, quantiles derived from AMS data can be revised at low
return periods. A set of rational and reliable frequency estimations can be obtained using a
regional L-moments method based on the AMS data and Chow’s equation. Solving the
quantile for a 1-year return period is most important, which means solving the integral
lower limits of the frequency distribution curve. For example, frequency estimates for
different return periods in region I are shown in Table 4. It can be seen that the estimates
increase incrementally with the length of the recurrence interval as a whole. The maximum
estimation occurs at the Suyu station. We compared the quantile estimates with the
maximum of the 24-h observation series for each station, which can indirectly reflect
estimation accuracy to some extent due to the unknown true value of the frequency
estimate. Considering the 24-h record length (51 years) of the Suyu station, frequency
estimates for the 50-year recurrence interval were selected to assess consistency. The
quantile estimate is 255.5 mm, which is consistent with the maximum observed 24-h value
(253.9 mm). The frequency estimates also agree with observations at other sites and provide
a scientific basis for flood disaster warnings and urban construction, among other uses.

Figure 4 shows the spatial mapping of frequency estimates for a 24-h duration for
1-year, 10-year, 25-year, and 50-year return periods, which have similar patterns. The
estimated values at the northern end of the study area are greater than those at the southern
area, and all of the estimates increase with increased length of the return period. The
highest frequency estimates are observed near the Suqian and Lianyungang stations in
the northern part of Jiangsu, and low values are observed in the southern Taihu lake
basin. These data suggest that Xuzhou and Lianyungang are in a high-risk area of extreme
precipitation that may be subject to flash floods. Therefore, decision makers should pay
heightened attention to the risk of flooding and water resource management in these areas.

3.5. Validation of Frequency Estimations of Extreme Precipitation

Because the true value of the frequency estimation is unknown, the accuracy of the
estimated value cannot be evaluated using the error of the estimated value and the true
value. However, the accuracy of quantiles is indirectly reflected by a comparison of the
estimation and observation at the same frequency. The plotting-position estimator is used
to compute the experience frequency. The experience frequency is defined as follows:

P = (i + A)/(n + B) (11)

where i is the sequence number from ascending series, n is the number of sequence length
for each site, A and B are the parameters, A is equal to −0.35, and B is zero [13].



Water 2021, 13, 1832 11 of 17
Water 2021, 13, x FOR PEER REVIEW 11 of 17 
 

 

 

Figure 4. Map of quantile estimates for (a) 1-year, (b) 10-year, (c) 25-year, and (d) 50-year return periods. 

3.4. Validation of Frequency Estimations of Extreme Precipitation 

Because the true value of the frequency estimation is unknown, the accuracy of the 

estimated value cannot be evaluated using the error of the estimated value and the true 

value. However, the accuracy of quantiles is indirectly reflected by a comparison of the 

estimation and observation at the same frequency. The plotting-position estimator is used 

to compute the experience frequency. The experience frequency is defined as follows: 

P = (𝑖 + 𝐴) (𝑛 + 𝐵)⁄  (11) 

where i is the sequence number from ascending series, n is the number of sequence length 

for each site, A and B are the parameters, A is equal to −0.35, and B is zero [13]. 

Three statistical criteria, RE, RMSE, and the correlation coefficient (r) are used to 

judge the precision of frequency estimates. The results can be found in Table 5. The aver-

age RE, RMSE, and r of all stations in the study area are 5.56%, 0.107 mm, and 0.969, re-

spectively. This indicates that the estimation is in good agreement with the observation. 

Figure 5 shows a scatterplot of measured and observed quantiles at the same frequency 

for each site in each homogeneous region. It can be seen from Figure 5 and Table 5 that 

the simulation is consistent with the set of observations as a whole, with a value of r 

greater than 0.96 in each homogeneous region. From the above, it may be concluded that 

the frequency estimation is reasonable and reliable for low return periods. As a whole, 

frequency estimations based on the regional L-moments method are in good agreement 

with observations. 

  

85

75

80

70

9
0

75

75

85

7
5

85

85

85

80

85

8
0

80

80

75

75

8
0

75

80
80

70

122°0'0"E

122°0'0"E

120°0'0"E

120°0'0"E

118°0'0"E

118°0'0"E

116°0'0"E

116°0'0"E

3
4

°0
'0

"N

3
4

°0
'0

"N

3
2

°0
'0

"N

3
2

°0
'0

"N

Legend

Contour

Bound

Q1year

68.52 - 73.61

73.62 - 78.12

78.13 - 82.25

82.26 - 85.8

85.81 - 93

±

0 100 200 300 40050

Kilometers

(a) 1-year

160

155 150

145

165

140

135

1
7
0

165

15
0

16
0

14
5

1
5
5

1
5
0

145

16
0

1
5
5

145

122°0'0"E

122°0'0"E

120°0'0"E

120°0'0"E

118°0'0"E

118°0'0"E

116°0'0"E

116°0'0"E

3
4

°0
'0

"N

3
4

°0
'0

"N

3
2

°0
'0

"N

3
2

°0
'0

"N

Legend

Contour

Bound

Q1day

134.24 - 142.7

142.71 - 148.14

148.15 - 154.45

154.46 - 161.19

161.2 - 170.79

±

0 100 200 300 40050

Kilometers

(b) 10-year

180195
190

185

175

170

200

205

16
5

1
8
5

1
9
0

185

200

1
9
5

180

1
9
0

195

175

180

19
5

122°0'0"E

122°0'0"E

120°0'0"E

120°0'0"E

118°0'0"E

118°0'0"E

116°0'0"E

116°0'0"E

3
4

°0
'0

"N

3
4

°0
'0

"N

3
2

°0
'0

"N

3
2

°0
'0

"N

Legend

Contour

Bound

Q1day

164.73 - 175.11

175.12 - 182.19

182.2 - 190.26

190.27 - 198.01

198.02 - 206.74

±

0 100 200 300 40050

Kilometers

(c) 25-year

220

22
5

215 210

205

200

230

195

235
240

245

19
0

215

2
2
0

2
1
5

2
3
5

225

2
3
0

200

210

230

2
2
0

2
0
5

205

230

23
5

210

20
5

195

122°0'0"E

122°0'0"E

120°0'0"E

120°0'0"E

118°0'0"E

118°0'0"E

116°0'0"E

116°0'0"E

3
4

°0
'0

"N

3
4

°0
'0

"N

3
2

°0
'0

"N

3
2

°0
'0

"N

Legend

Contour

Bound

Q1day

189.53 - 202.12

202.13 - 211.04

211.05 - 220.65

220.66 - 232.09

232.1 - 247.65

±

0 100 200 300 40050

Kilometers

(d) 50-year

Figure 4. Map of quantile estimates for (a) 1-year, (b) 10-year, (c) 25-year, and (d) 50-year return periods.

Three statistical criteria, RE, RMSE, and the correlation coefficient (r) are used to judge
the precision of frequency estimates. The results can be found in Table 5. The average RE,
RMSE, and r of all stations in the study area are 5.56%, 0.107 mm, and 0.969, respectively.
This indicates that the estimation is in good agreement with the observation. Figure 5
shows a scatterplot of measured and observed quantiles at the same frequency for each site
in each homogeneous region. It can be seen from Figure 5 and Table 5 that the simulation is
consistent with the set of observations as a whole, with a value of r greater than 0.96 in each
homogeneous region. From the above, it may be concluded that the frequency estimation
is reasonable and reliable for low return periods. As a whole, frequency estimations based
on the regional L-moments method are in good agreement with observations.

Table 5. Comparisons between estimation and observation.

Homogeneous Regions RE
(%)

RMSE
(mm) r

Region I 5.47 0.101 0.975
Region II 5.31 0.093 0.975
Region III 4.77 0.09 0.971
Region IV 5.88 0.118 0.965
Region V 5.96 0.119 0.961

All 5.56 0.107 0.969
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Figure 5. Scatterplot of estimations and observations at the same frequency for each homogeneous region.

4. Discussion

The results of this study are valuable for revising the underestimation of quantiles
and obtaining a set of reliable quantile estimates in the study area. However, some issues
may benefit from a more in-depth analysis in future research.

The determination of homogeneous region is an important step in regional frequency
analysis. The optimum distributions are, respectively, GEV and GPA distribution based on
the AMS data and AES data for most regions of the study area, which is consistent with
many previous studies. Many research studies have shown that GEV is the most commonly
used for AMS analysis, and GPA is frequently proposed for PDS analysis [35–39]. However,
the national guidelines and regulation for calculation design storm and flood in China
recommend the use of PE3 distribution, which is inconsistent with the research in this
paper [40]. The main attribution includes that PE3 is a recommended choice based on the
conventional moment method, which is very different from when sample size is small,
or the skewness of the sample is considerable. Many research studies have proved that
L-moments are less subject to bias in estimation and enable more reliable inferences to
be made from small samples than conventional moment method [22,41–43]. Therefore,
the optimum distribution of this paper is rational and reliable based on the summary
of judgement. At the same time, identification of homogeneous region may cause the
discontinuity around the boundary of adjacent regions. Very few papers dealing with the
discontinuity are found in the literature. So, spatial consistency should be considered and
further research in the next study.

Research has shown that the quantiles based on AMS data are underestimated at
low return periods in this paper, which is in accordance with previous research and
theories [1,18,20,22]. Lin et al. verified the result that exists a significant underestimation
based on 1438 stations data in southwestern United States [1,20]. Frequency estimates are
underestimated but the magnitude of underestimation is not obvious in this study. Some
possible reasons are analyzed and discussed as follows. By analyzing the AMS data of
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the site, it is found that a negative correlation exists between the exceedance frequency
and skewness coefficient of the station; that is, the larger the positive skewness coefficient,
the smaller the exceedance frequency. The frequency distribution diagram based on the
AMS data is used to analyze the causes (Figure 6). Taking Region I and Region V for
example, the stations with the largest L-Cs (58013 and 58,349 sites) and with the smallest
L-Cs (58,131 and 58,345 sites) are selected to analyze the underestimated reasons in this
study. It can be seen from Figure 6 that the station with the largest L-Cs have the maximum
rainfall value in the corresponding region, and the AMS sequence with the smallest L-Cs
is approximate to normal distribution, which has uniform and continuous characteristics
and no extra-large value. We may come to the conclusion that the distribution of sparse
and discontinuous extreme precipitation data at large value intervals is the main factor
resulting in low exceedance frequency values. Second, factors including small sample
sizes and data series of inadequate length can also affect the calculation of the exceedance
frequency. Therefore, a larger range and longer sequence of data should be collected and
analyzed in future research.
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Figure 6. Frequency diagram of AMS data at representative site.

A set of rational and reliable frequency estimations can be obtained based on the
abovementioned two methods, especially quantiles for the 1-year return period in this
study. It is the main innovation of this paper that was missing from previous works.
Many researchers have solved the quantile estimates for greater than or equal to a 2-year
recurrence interval in regional frequency analysis [16,44–46]. Only few papers solving
the quantiles of a 1-year return period are found in the literature [47–49]. However,
these studies assume that the non-exceedance probability of a 1-year return period is
equal to 0.1 because it is not computable if the non-exceedance probability equals zero.
The assumption has no theoretical basis, and the quantile results are inaccurate at lower
recurrence intervals due to the underestimation of the AMS analysis. On the basis of
verification of Chow’s equation applicability, the quantiles can be corrected based on AMS
data at low-return periods. It is a very valuable practical element in China because only
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AMS data is available from China Meteorological Administration since the 1960s [50]. As
a whole, frequency estimations based on the regional L-moments method are in good
agreement with observations. The findings validate the reliability of frequency estimations
at low return periods. However, the quantiles are slightly overestimated or underestimated
in cases of large extreme precipitation. Potential reasons for the deviation of quantiles
at large return periods include spatial inconsistencies around the boundary of adjacent
regions, short sampling series, and other factors. Future research should conduct a more
in-depth analysis of these possibilities.

It is a pity that hourly extreme precipitation data were not available for this study.
Ideally, complete quantile estimates from 1-h to 30-day durations would be carried out in
the future in the study region. Thus, a complete set of spatiotemporal frequency estimates
from multi-duration and multi-return periods can be obtained in the region, which can
provide more of a quantitative and scientific basis for decision making. Such data would
provide a reference criterion of different duration for comparison, and also provide a
stronger scientific basis for issuing storm disaster and flash flood warnings.

5. Conclusions

In this paper, a regional frequency analysis of extreme precipitation in the province of
Jiangsu in the Yangtze River Delta was studied using regional L-moments methods. A set
of rational and reliable frequency estimation was obtained based on AMS data and Chow’s
equation. Some of the main findings obtained from the research are as follows:

The study area is categorized into five homogeneous regions using cluster analysis.
Five distributions (GLO, GEV, GNO, GPA, and PE3) are investigated, and MC simulations
and RMSE tests are used to identify the optimum distribution in each homogeneous region.
The best-fit distributions based on AMS data are GLO, GEV, GLO, GEV, and GEV for the
five homogeneous regions, respectively. The best-fit distributions based on AES data are
GNO, GPA, GPA, GPA, and GPA, respectively. By comparing exceedance frequencies
with exceedance probabilities it can be seen that extreme precipitation events occur more
frequently, and that current quantile estimates based on AMS data are underestimated for
frequent events in the study area.

Verification of Chow’s equation in this study area shows that there is generally good
consistency between real AES data, and AES data generated using Chow’s equation and
real AMS data. As a whole, the results indicate that Chow’s equation can be used as a
simple method to obtain reasonable AES-AMS ratios, similar to those obtained from real
AES and AMS data. This finding also means that frequency estimations can be revised at
lower return periods based on real AMS data and Chow’s equation. Two methods can be
used to correct for underestimation of frequency estimates. The first method is to use AES
data in combination with theoretical exceedance probabilities, such as 0.5, 0.2, 0.1, 0.04,
and 0.02 for the corresponding return periods of 2 years, 5 years, 10 years, 25 years, and
50 years. The second way is to use AMS data in combination with the correction of return
periods based on Chow’s conversion equation. The two methods are equivalent in quantile
estimation. However, the second method is strongly recommended due to its simple data
processing requirements and reliable results, especially when only AMS data are available
for the study area.

A set of rational and reliable frequency estimations can be obtained using the regional
L-moments method based on AMS data and Chow’s equation. Solving the quantile for
a 1-year return period is most important, which means the integral lower limits of the
frequency distribution curve. The results show that the estimates increase incrementally
with the recurrence interval, and that the estimates agree with observations as a whole. The
spatial mapping of quantiles shows that similar patterns exist for 1-year, 10-year, 25-year,
and 50-year return periods, and that quantiles in the northern part of the study are greater
than in the southern area. The highest frequency estimates are observed near the Suqian
and Lianyungang stations in the northern part of Jiangsu, and low values are observed in
the southern Taihu lake basin. This suggests that the Xuzhou and Lianyungang areas are
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likely at high risk of flash floods due to extreme precipitation. Decision makers should pay
heightened attention to flood risk and water resource management in these areas.

Based on the three criteria of RE, RMSE, and r, the accuracy of estimations can be
evaluated by comparing estimations and observations at the same frequency. The results
show that frequency estimations are in good agreement with observations, with the average
RE, RMSE, and r of all stations being 5.56%, 0.107 mm, and 0.969, respectively, especially
a r > 0.96 was found in each homogeneous region. Frequency estimations based on the
regional L-moments method are in good agreement with observations. The findings vali-
date the reliability of frequency estimations at low return periods. A set of reliable quantile
estimates are obtained based on two revised ways, which provide a new perspective in
regional frequency analysis.
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