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Abstract: Pakistan is water stressed, and its water resources are vulnerable due to uncertain cli-
matic changes. Uncertainties are inherent when it comes to the modeling of water resources. The
predicted flow variation in the Kunhar River Basin was modeled using the statistically decreased
high-resolution general circulation model (GCM) as an input for the Hydrologiska Byråns Vatten-
balansavdelning (HBV) model to assess the hydrological response of the Kunhar River Basin under
prevailing climate changes. The model’s best performance during the calibration and validation
stages was obtained with a regular 0.87 and 0.79 Nash–Sutcliffe efficiency in the basin, respectively.
Under the high-end emission scenario, a 122% increase was expected in evapotranspiration in the
rising season of months during the winter period 2059–2079, and such developments were attributed
to an immense increase in liquid precipitation and temperature. The model’s output reflects a poten-
tial for basin stream flow in terms of increasing liquid precipitation up to 182% at the beginning of
the monsoon season in the period 2059–2079 in the scenario of high-end emissions. Moreover, the
study produced possible uncertainties in high-elevation zones, where the modeling of a catchment
can lead to typical snow ablation and accumulation in future projections. This study revealed that
the precipitation rate will increase annually, resulting in an increase in the summer stream flow over
the basin, though snow is hardly expected to accumulate in the basin’s future climate.

Keywords: HBV model; Kunhar River Basin; projection; snowmelt runoff; simulation

1. Introduction

Hydrological systems are considered to be excessively critical with respect to their
direct effect on economic and environmental development. The hydrological cycle of a
basin is greatly influenced by the basin’s physical features, climate, and human activity.
Many researchers have found that temperature, precipitation, humidity, and wind trends
are changing in climatic variables, particularly in precipitation and temperature [1,2]. In
recent years, Taylor RG et al. (2013), Green TR et al. (2011), Goderniaux P et al. (2009),
and Eckhardt et al. (2003) have initiated the use of general circulation models (GCMs) to
investigate the consequences of future climate change on global water resources [3–6]. The
spatial resolution (200–500 km) for models limits their application to being considered
appropriate for the basic level; as such, an excellent spatial resolution is needed for small
basins [7]. Researchers have developed complex, quantitative, and computationally effi-
cient techniques for routing basin scales and GCM resolution. With a high resolution of
5–50 km, the regional climate model (RCM) uses the GCM’s efficiency while providing
high-resolution quality and extensive data on the basin level. Quantitative equations for
studying the basin scale and GCM (precipitation and temperature) were developed with
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statistical downscaling (SD) methods [8]. Statistical downscaling methods thus ensure that
successful strategies/approaches are adopted by scientists. Ankur Srivastava et al. used the
variable infiltration capacity (VIC-3L) semidistributive model to estimate evapotranspiration
(ET) on a grid scale with satisfactory results over a tropical river basin in eastern India [9].
The author has, also on this river, successfully quantified its main hydrological compo-
nents using the VIC-3L semidispersion model and the identification of unit hydrograph
and component flows from the rainfall, evapotranspiration, and streamflow (IHACRES)
conceptual model [10]. Another conceptual model, the satellite-based hydrological model
(SHM), has been evaluated with positive results, but the scope has not been expanded as
the product has not yet been developed outside India [11]. The HBV model is used in order
to predict expected river water flows in these kinds of large and small basins [12,13].

In recent years, as a result of the general circulation models (GCMs), increasingly
detailed, quantitative, and integrated prototypes have been incorporated with hydrological
models to investigate future predictions of climate change in river systems in different
regions of the globe [14–16]. These may not be appropriate at the watershed scale in
specific smaller watersheds, which demand a fairly fine image quality [17,18]. Rainfall–
runoff methodologies and mathematical modeling been established to link the precision
of the GCM and the river scale. A wide-quality digital regional climate model (RCM)
with a complicated downscale of approximately 5–50 km was used with the outcomes
of a GCM to give details and high-quality river system outcomes [19,20]. Furthermore,
statistical downscaling (SD) methods, e.g., climate prediction, correlation, and transcription
of climatic conditions, produce empirical and statistical connections (e.g., temperatures and
precipitation) between the GCM scale and the watershed-level parameters. In particular,
in comparison to dynamic downscaling, SD techniques, which are computer based, are
significantly faster, offering approaches that can be easily embraced by the broader scientific
community [21].

Pakistan is one of the countries under the most stress due to reductions in its water
resources from just 5000 cubic meters per capita in 1952 to 1100 cubic meters per capita in
2014 [22]. A United Nations study revealed that countries with fewer water sources, such as
1000 cubic meters per capita annually, are classified as having scarce water [23]. Thus, under
rapidly changing climate conditions, an exact estimate of future water resources would
greatly help in terms of operating, planning, and managing hydrological installations in
Pakistan [24–26]. Various research, such as that of Akhtar et al. (2008), Bocchiola et al.
(2011), and Ahmad et al. (2012), has evaluated the adverse effects of weather changes
on Pakistan’s water resources [8,11,27]. Most of these studies were accomplished with
hydrological modeling throughout the Upper Indus Basin, which used the snowmelt runoff
(SRM), the SWAT, and the water and energy budget-based distributed hydrological model
with improved snow physics (WEB-DHM-S) prototypes. Thus far, no studies have been
conducted in the Kunhar River Basin with the HBV model. This basin is one of the major
influences of the Jhelum River and is completely within Pakistan. The genetic impacts of
climate change on water resource systems can be explored because the water that melts
from the glacier significantly affects the flow of water in the Kunhar River Basin [28,29].
Precipitation rises whenever snow melts and then accumulates if melting ends [30].

In addition, in-depth studies on hydrology and the need to improve water resource
management require a full awareness of the advantages and disadvantages of the GCMs
that are popularly studied across different regions. Lumped conceptual models were
thoroughly compared in order to determine the best performing model for reproducing
different components of the hydrograph, including low and high flows in data-poor catch-
ments [10,31]. In general, GCMs can be used as inputs in hydrological studies because of
their uniform datasets, and these products can be used immediately in flow simulations.
This is the great advantage of reanalysis datasets when comparing them to satellite precipi-
tation products, which lack accompanying temperature data and heterogeneous timescales.
To the best of our knowledge, the applicability of GCM data for hydrometeorological
studies has not yet been adequately investigated outside of China, including in Southeast
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Asia [32]. The huge, rugged areas of hydrometeorology in Pakistan usually depend upon
the geography; alpine terrain generally has significant amounts of solid and liquid rainfall,
which can also be accumulated as reservoirs. This can serve as an incredible resource for
climate crisis detection and climate impact assessment [33,34]. The complexity and mutual
interdependence of environmental activities at high altitudes in nature produce massive
issues in the investigation of the impact of the atmosphere [35]. Rapid river discharge
forecasts through different climate change scenarios can provide significant guidance for
monitoring national energy systems by providing timely alerts of extremely high or low
discharge volumes, which would allow hydroelectric power to be adjusted by electrical
power systems [36]. This paper predicts these initiatives because it provides appropriate
statistics for developing effective strategies for Indigenous experts, which would ultimately
contribute to water protection and sustainable development in the basin [37–40].

The study of projections of river modeling quickly gained attention in the context of
climate change and environmental change [41], as have their combined impacts on water
supplies and society. It is therefore important to consider the dynamics of the hydrological
system in the Kunhar River watershed to predict the future stream flow. After recognizing
the roles of the watershed’s various components (e.g., land use, soil, geology, snow, glaciers,
and climate) in discharge, the relationships were identified. Consequently, annual freezing
rainfall management and stream flow prediction in Pakistan’s snowy areas are of crucial
significance, as water resource management is one of the major issues of the Kunhar River
system. According to these conditions, the prediction of streamflow in the Kunhar River
while considering climate is an important topic for discussion because it could help in
terms of utilizing and managing water resources in the region [2]. The aims of this study
were (1) to apply the HBV model in the Kunhar River while considering snow conditions
and climatic concerns and (2) to determine the probability of fluctuation in river streams
with the GCM. The core objective of this study is to predict the climatic behavior of the
Kunhar River Basin for the period of 2017 to 2079.

2. Data and Methods
2.1. Study Area Description and Data Sources
2.1.1. Kunhar River Basin

The Kunhar River watershed is located in the northern part of Pakistan with the
coordinates 34.2◦–35.1◦ N, 73.3◦–74.1◦ E (Figure 1). The Kunhar River flows through the
southern plateau of the Greater Himalayas. It comes directly from the Kaghan Valley and
through Lulusar Lake. It passes through Bata Kundi, Jalkhand, Kaghan, Naran, Balakot,
Kawai, and Gari Habibullah, and it meets the Jhelum River at Rara [42]. As far as the water
of Kunhar is concerned, it is rich in algal flora and thus harbors a great diversity of aquatic
life. The drainage area possessed by the Kunhar River is 2535 km2, and the elevation
ranges from 600 to 5000 m. The Kunhar is regarded as one of the transboundary area’s most
significant tributaries [43]. Figure 2 demonstrates the more important topography, such as
the contour lines, gradient, delineated sub-basins, and aspects obtained with DEM. This
figure shows that the sloping intensity of the Kunhar River ranges from 0” to 76” km. The
plateau along the Kunhar River is moderately sloped. It is crucial, however, to note that the
majority of the basin is moderately sloped (>8◦ and 29◦) [44]. The large variety of vegetation
includes subtropical grassland forests, temperate grassland forests, agricultural land, high
mountain glaciers, and snow [45,46]. This challenging topography was categorized into
seven key classifications to investigate the Kunhar River Basin’s surfaces. Most of the
area of the watershed is occupied by snow, agriculture, and forests. This knowledge was
obtained from land coverage data from the Kunhar River Basin with a 1-km resolution.
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2.1.2. Data

For the current study, climate model statistics (highest temperature, lowest tempera-
ture, and rainfall) were also acquired [47]. The SDSM (statistical downscaling model), a
system composed of various systematic explanatory variables and meteorological data,
was used with the worldwide weather patterns from HadCM3 to find the decline in
precipitation and temperature over the period of 2011–2099 [48,49].

While observing the historical data from three climate stations (average precipitation
and temperature), this study gathered data from the Pakistan Meteorological Department
(PMD) along with data from the Water and Power Development Authority (WAPDA) for
two hydrometric stations between 2000 and 2016. Table 1 summarizes the necessary and
appropriate geographic descriptions of the hydrometeorological stations. To ensure data
quality, this study identified outlying values (+/−2 standard deviations). In addition,
the data were checked to determine whether or not it was possible to proceed over time
and space. The Kunhar station was feasible in terms of both time and space. To forecast
the same flow in the basin at 0.5◦, BCC-CSM2-MR, CAMS-CSM1-0, MPI-ESMI-2-HR, and
HadGEM2AO were used with reliable spatial and time resolutions.

Table 1. HBV model parameters for the Kunhar River Basin.

Parameter Explanation Unit Span Value

Meteorological
data

P Calt Gradient of precipitation %/100 m 12 12
T Calt Gradient of temperature ◦C/100 m 0.58 0.58

Snow and glacier
routine

TT Threshold temperature ◦C −5 −1.48
DDF Degree-day factor of snow mm/(◦C_day) 3 3
SCF Snowfall correction factor - 0–2 0.76
CC Coefficient of cooling - 0.03 0.03

CCW Capacity to contain water - 0.14 0.14
Cg Factor of increased melt office - 0.98 0.98

Ca Factor of increased melting from the south slope
to north slope - 1–2.5 1.2

Soil routine
FC Maximum of SM (storage in the soil) mm 100–380 347.3
LP Threshold for reduction of evaporation (SM/FC) - 0.4–1 0.84

BETA Shape coefficient - 1–4 2.3

Response routine
MFULB Maximal flow from upper to lower G-W box mm/day 1–7 4.1
RCUS Recession coefficient (upper storage) /day 1–2 1.03
RCLS Recession coefficient (lower storage) /day 0.01–0.6 0.08

Routing routine MAX-BAX Routing length of weighting function /day 2 1.3

2.2. Methods
HBV Model and Input Data

The current edition of the HBV model for this study was obtained from the University
of Zurich. The HBV model adopted in this study can be used on a monthly or nearly daily
basis [50]. The simulations performed are of good temporal quality on the daily scale.
Input parameters, such as precipitation and temperature, were required to drive the model
to obtain climatological values, such as potential evapotranspiration rates and monthly
temperatures (Figure 3). The feedback of the precipitation, either in the form of frozen snow
or liquid rain, depends on the temperature during every rising season [51]. With this taken
into consideration, every precipitation type was subsequently treated with the soil moisture
when appropriate and efficient precipitation occurred, and the resulting value was used as
the external leakage for calculation [52]. The remaining portion of the liquid precipitation
was instrumental in adding to the soil water reservoir, which could have quantitatively
evaporated [53]. Below the surface, samples of substances in the water were found (Table 1).
At the channel of the Kunhar River Basin, the core output of the HBV model was water
flux and had three sections: interflow, external flow, and baseflow [54]. After incorporating
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the appropriate hydrometeorological data, the HBV model was developed on a daily time
scale (Figure 2).
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Intensive geospatial input data were required in order to extract the watershed HBV
model. Topography, land use, soil, weather, and hydrological data were collected from dif-
ferent sources/agencies (Table 2) and used in this model. Digital elevation models (DEMs),
land-use/land-related maps, soil maps, environmental conditions, and hydrological details
were the main inputs for the HBV model. A 30 × 30 m DEM (digital elevation model)
from the USGS (National Elevation Dataset) dataset [55,56] is shown in Figure 3A; it was
used to derive the drainage network of the watershed, sub-basins, and elevation maps
for categorization. Land-use data at a spatial resolution of 300 m were obtained from
the European Space Agency (ESA) database (Figure 3B). The land-use data consisted of



Water 2021, 13, 1740 7 of 23

eight major groups: urban areas (11.26%), grasslands (18.3%), irrigated croplands (13.08%),
evergreen forests (6.47%), water bodies (14.39%), rangelands (3.95%), deciduous forests
(0.49%), and mixed forests (32.06%). These land-use groups were used to define the land-
use classes for the HBV model (Table 3). The land-use data from the ESA were sufficiently
detailed to assign the appropriate land-use types in the HBV model. The global IPCC
(The Intergovernmental Panel on Climate Change) land soil classes (5 km resolution) from
the UN Food and Agriculture Organization (FAO) were extracted to create a land soil
file with four soil classes (Figure 3C) for HBV modeling in the Kunhar River. The land
map’s physical features included the water efficiency, texture, saturated permeability, mass
density, organic carbon, and soil albedo. Long-term climate records from four climate sta-
tions (Balakot, Muzaffarabad, Astore, and Naran) during the time frame from 2000 to 2016,
which included daily precipitation, daily maximum and minimum temperatures, and daily
solar radiation with relative humidity, were obtained from the Meteorological Department
(PMD). Since 1961, the WAPDA (Power and Development Authority) has monitored the
normal streamflows in the watershed. The regular streamflow records (2000–2016) for the
two stream-gauging stations, Naran and Balakot, were obtained to be used during the
calibration and validation of the model and to further model the watershed’s hydrology.

Table 2. List of sources from which data were obtained.

Data Type Origin Level of
Precision Explanation

Topography USGS National Elevation Dataset 30 × 30 m DEM (Elevation)

Land-use data
European Space Agency (ESA) Global
Land Cover http://ionia1.esrin.esa.int/

Access date: 3 August 2020
300 × 300 m

Classified land use, such as
forests, agriculture, crops,

water, etc.

Soil data
FAO–UNESCO global soil map

http://www.fao.org/nr/land/soils/
Access date: 8 September 2020

5 km
Classified soil and physical

properties, such as sand, silt,
clay, bulk density, etc.

Climatic data Pakistan Metrological Department
(PMD) Daily

Precipitation, temperature,
solar radiation, wind speed;

Balakot, Naran,
Muzaffarabad, and Astore

stations (2000–2016)

Table 3. Features of the Kunhar River land-use map.

Sr. No. Information Area (km2) % Area HBV Land-Use Symbol

1 Agricultural croplands 432.21 13.08 AGRR
2 Urban areas 271.85 11.26 URLD
3 Deciduous forests 15.67 0.49 FRSD
4 Evergreen forests 238.21 6.47 FRSE
5 Rangeland 73.21 32.06 RNGB
6 Mixed forests 708.46 3.95 FRST
7 Grasslands 568.42 18.3 RNGE
8 Water Bodies 410.57 14.39 WATR

Total - 2718.6 100 -

2.3. Hydrological Modeling Method

The HBV model incorporates a routine to calculate daily evapotranspiration (PETm)
from monthly values. As inputs, the routine needs the long-term monthly mean potential
evapotranspiration (PETm) obtained from the Thorn Thwaite method, which estimates
evapotranspiration. Although this method for computing potential and actual evapotran-
spiration is highly accepted and widely used, it is unfeasible to perform these calculations
with large data sets, such as long-term monthly temperature average (Tm) and daily mean
air temperature (Td). The daily evapotranspiration was calculated by transforming (adjust-
ing) the PETm through the difference between the Td and Tm and a coefficient C. Bergström

http://ionia1.esrin.esa.int/
http://www.fao.org/nr/land/soils/
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mentioned that the adjusted potential evapotranspiration is limited to positive values and
is not allowed exceeding twice the monthly average [57].

PET = (1 + C · (Td − Tm)) · PETm (1)

2.3.1. Snowmelt and Snow Accumulation Module

The snowmelt and snow cover were supposed to be dependent upon temperature in
this method. The threshold temperature (TT) was perceived as a critical design parameter
for the melting and accumulation of snow at the TT. First, the TT was adjusted to −5 de-
grees (valid hypothesis) and then modified in the range in which the parameter could
be changed. Precipitation in the form of snow occurred when a precipitation situation
happened under the TT temperature; therefore, rainfall was expected [58]. The precipita-
tion was considered in the water flow whenever the level of the average temperature rose
above the TT. However, when the threshold was higher, both snow and rainfall started to
contribute to the drain significantly. The snowmelt strength was measured as the amount
of water from Equation (2):

Sm = DD × (T1 − TT) (2)

where Sm is the snowmelt rate in mm/day, DD is in mm/◦C/day, and T1 is the average
daily temperature in ◦C. As described, the DD shows that the rainwater due to snow
increased due to a decrease of 3 ◦C below the snow limit.

2.3.2. Concept of the Ice Module

A systematic daily analysis technique was used to estimate the melting of the ice,
which was ultimately related to the glacier’s water absorption, and the daily ratio of
snow to glacier ice was computed. The percentage of melted ice in the basin changed
spatially and temporally, meaning that the meltwater outflow processes were continuously
changed [59], as shown by Equation (3):

Qg = (KGmin + dKG × e (−AG × SWE))× S (3)

where Qg is the snow runoff, KGmin is the minimum per day, dKG is the runoff coefficient of
the glacier, and AG is a 1-mm measurement parameter. SWE is a measure of the snowpack’s
water, while S is the snowpack’s water content.

2.3.3. Efficient Subcritical Rainfall

The rainfall and accumulation of snow that fell into the water runoff basin were
usually divided into two sections: the original surface infiltration that participated and
then the donation of external discharge. Depending on the amount of soil humidity during
the rainy seasons, a surface module was computed with the HBV model. The coefficient of
water content (FC) is defined as the minimum soil moisture storage in the subsurface region.
A lower soil moisture content with liquid or solid precipitation indicated an increased the
amount of rainfall in the flow. When the amount of water flow approached the value of the
FC, the permeability decreased and the rainfall’s impact on the flow increased [60]. The
precipitation was calculated with the absorption of the actual content of the water flow, as
shown in Equation (4):

De f f =

(
SM
FC

)
β (M + Sm) (4)

where Deff is the effective precipitation in mm, SM is the net soil vapor in mm, FC is the
reduction in the amount of groundwater storage in mm, M is the evaluation of daily rainfall
in mm, and β is a variable. β indicates the amount of liquid (M + Sm) water that contributes
to runoff. In addition, the coefficient of the runoff increases exponentially when the SM
exceeds the FC.
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2.3.4. Evapotranspiration Module

As an input for measuring the real evapotranspiration, the long-term mean of the
monthly evapotranspiration (EPa; m = 1–12) was used. Afterwards, the reformative
potential evapotranspiration was determined with respect to the time interval of the
specific transmission period by using the observation that the mean daily temperature
varied substantially from the actual monthly average temperature, as shown in Equation (5).

EPa = (1 + Z(T − Ta))× EPa (5)

If EPa is adjusted as the potential evapotranspiration in mm, then T is the daily
temperature standard in ◦C, Ta is the monthly mean in degrees, and Z is a variable. If
EPa is adjusted, the soil vapor and real outcomes of the evapotranspiration are linked
through the PWP (Equation (6)), which shows a relationship between water and the actual
evapotranspiration.

Eact + EPa
(

SM
PWP

)
If SM is less than PWP (6)

Eact = EPa If SM is equal to PWP

Here, Eact is the maximum evapotranspiration in mm. Equation (5) clearly shows that
once the moisture of the soil is equal to the PWP, the Eact actually changes at a rate opposite
to that of the EPa. The PWP describes the evapotranspiration level of a soil vapor, i.e., when
the SM is under the PWP, the Eact is beyond the EPa. The amount of evapotranspiration
gradually decreases during soil vapor deposition [61], which is a major flaw of the PWP in
Equation (6).

2.3.5. Application of Runoff

In this application, the runoff at a watershed outlet is calculated based on water
storage. Water storage was used to simulate the flow of water in a near-surface system.
The water storage was used to simulate a quick and steady subsurface system from a
material point of view. Transport through the basins occurred at a specific constant speed
of capillary action of Qperp. Once the permeable measurement in the upper part of the
basin was higher than its LT sensitivity (mm], the overspill quickly followed from the upper
Q0. The runoff responses of multiple outlets were smoother. The elements of monitoring
(K0, K1, K2) responded to centralized storage operations. The original value of K0 was
considered to be less than that of K1 to produce quick runoff. The third outlet of (Q2)
response was faster than that of the second outlet (Q1), and K2 had a lower value than that
of K1, as described in Equation (7):

Q0 = K0 (Ru − LT) If Ru is greater than LT (7)

Q0 = 0 If Ru equals LT

Q1 = K1 × Ru (8)

Qperc = Kperc × Ru (9)

where Q0 is the near-surface flow in mm/day, Q1 is the interflow in mm/day, Q2 is the
baseflow in mm/day, Qperp is the percolation in mm/day, K0 is the field-adjacent influx
data factor, K1 is the interflow-reservoir controller for each day, K2 is the per-day baseflow
storage coefficient, Kperc is a percolation storage coefficient for each day, Ru is the principal
fluid storage, Ru is the secondary storage, Ru is the secondary fluid storage rank in mm,
and A is a combination of the primary and secondary sources QA = (Q0 + Ql + Q2), which
was achieved for the total simulated runoff QA.

Finally, for a single-input reservoir, the time-dependent model is determined as a
watershed where the specific runoff Q(t) is proportional to the water saved S(t). Thus, we
can obtain a (t) variable based on the coefficient of maximum storage according to Darcy’s
Law (Equation (10)).

Q(t) = K × S (t) (10)
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Snow cover and water flow, as well as freezing processes, were simulated in the
HBV prerendering. In addition, four-dimensional classification in the South, North, West,
and East horizontal aspect categories was also improved in order to offer various effects
on the snow and ice streams (Table 4). The flow of ice was transmitted by the regular
historical-grade-day rain and snow routines; furthermore, the opposite behavior of the
snow was attributed to the reduced surface temperature and the acceleration of the degree-
day measurement to remove water [62]. The overall vegetation cover for the three cover
areas showed an area of 5682 km2 at an elevation of about 5320 m.a.s.l.; the highest entire
area of 424 km2 was at approximately 3600 m.a.s.l., and there was prevalent glaciation
over approximately 1700 km2 between 6300 and 5200 m.a.s.l. (Table 4). The genetic
algorithm and Powell (GAP) method was applied to the optimal calibrated values of the
HBV parameters in forest land, pasture land, and glacier land, as presented in (Table 4).

Table 4. Accumulation of three land-use/cover areas.

Sr. No. Elevation
(m)

Vegetation
Zone (km2)

Barren Land
Zone (km2)

Glaciation
Zone (km2)

Total Area
(km2)

1 2160 482 122.75 5 662
2 3420 2750 450.16 2 2843
3 4750 4855 369.20 28.23 4675
4 5530 5328 40.186 720 5912
5 6380 2370 4.64 689 2431
6 7240 1542 2.48 123 467
7 8430 239 2.3 24.78 45

2.4. Calibration and Validation of the HBV Model in the Kunhar River Basin

The genetic algorithm and Powell (GAP) optimization approach was used for model
calibration. The GAP is a stochastic design method and works evolutionarily by selecting
and recombining high-performing parameter sets with each other. The GAP algorithm
consists of two steps [58,59]. First, optimized parameter sets are generated by an evolu-
tionary mechanism of selection and recombination of a set of initial, randomly selected
parameter sets (again within user-defined parameter boundaries). During the second
step, parameter sets are fine-tuned using Powell’s quadratically convergent method, as
described in [60]. The HBV model, as for the calibration method, was used to calibrate
the HBV model by the GAP method. With the GAP evolutionary method, the procedure
was repeated 100 times to run the model and 1000 times additionally with Powell local
optimization [61]. When running the GAP procedure 100 times, 100 different parameter
data sets are computed, and then the appropriate set regarding the selected goodness-of-fit
criteria is computed. Moreover, the GAP procedure was repeated to run 100 times, but with
only 16 parameters (GAP16). In this way, it was tested whether the parameter values were
closer to the initial ones rather than by using all 16 parameters (GAP16). A similar fixing of
some of the parameters to avoid over-parameterization was done as described in [62]. The
model was first calibrated for each of these time periods and then tested using validation
periods selected to reflect specific climate conditions (dry, wet, warm, and cold). Each
calibration period was validated by three different types of PE input data: precipitation,
air temperature, and potential evapotranspiration. The analysis encompassed the entire
study period, and the validation periods did not overlap. The procedure is schematically
presented in Figure 1. The hydrological model with input data and with known model
parameters shown in Table 1 was calculated. The HBV model’s performance with the set of
parameters was calibrated (2000–2009) and validated (2010–2016) for Gari-Habibullah and
Naran, which accurately represent the Kunhar River Basin’s hydrological characteristics
(Table 5). The principal origin of the river that flows into the Kunhar watershed is ice,
glacier runoff, and rainfall. For this reason, the criteria of the parameters were selected
based on these river flow origins. The HBV model frequently ran throughout the calibration
and validation for Gari-Habibullah and Naran and worked consistently well between the
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calibration and validation stages, with Nash–Sutcliffe (NSE) efficiency values of 0.87 and
0.79 around the basin. The relationship between the simulated and observed river flows in
the calibration and validation periods became extremely good, with NSE values of 0.87
and 0.79, respectively (Figures 4 and 5). The model reflected excess discharge in 2006 in
Gari-Habibullah and high discharge in 2007 during the calibration process, whereas in
2011 and 2015, the discharge was unpredictable and significantly overstated throughout
the validation period.

Table 5. Nash–Sutcliffe efficiency (NSE), coefficient of determination (R2), and percentage bias
(PBIAS) for calibration (2000–2009) and validation (2010–2016) with the stream gauges in the Kunhar
River Basin.

Parameters Units
Yearly

Calibration Validation

Coefficient of determination (R2) 0.95 0.94
Nash–Sutcliffe efficiency (NS) 0.88 0.85

Percentage bias (PBIAS) % 0.47 14.61
Correlation coefficient (CC) 0.95 0.94

Average error (AE) Cumec 0.01 0.24
Average absolute error (AAE) Cumec 0.4 0.45

Standard error (SE) Cumec 0.69 0.68
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The year 2013 was reported as one of Pakistan’s warmest times. The highest average
temperature in northern Pakistan was 47.5 ◦C on 19 July 2013. The temperature might have
increased stream flows through excessive ice melting and melting of glaciers, but this was
not effectively identified by the model due to undervaluation of the river flows in 2013.
By comparison, the years 2011 and 2015 were also mentioned in Pakistan’s unpredictable
weather history, which is the justification for the accurate assessments; these may be
irregularities in the existing meteorological data. Likewise, for the validation period, in
Pakistan, 2013 was one of the warmest years, and the temperatures in different regions
of the country ranged from 47 to 51 ◦C. Briefly, the causes behind our overestimations of
the projected stream flows may be due to mistakes made with the climate index method
in the simulation system, inadequate seasonal rainfall, or extreme precipitation in certain
seasons. Similarly, in a past analysis, the seasonal river flows throughout the Kunhar
River Basin were uncertain [8]. The hypothesized inadequate seasonal flow in the Kunhar
River Basin was focused on environmental impacts relative to several other inadequate
catchments in the Upper Indus Basin (UIB), Pakistan, which are dependent on winter
rainfall and early spring flow in the Kunhar River Basin. Furthermore, various conditions
influence the melting of ice and glaciers, including the landscape, weather, dimensions,
elevation, hillsides, and soil types of the region, whether intentionally or unintentionally.
After all, the weather scale approach does not accurately describe certain parameters [63].
PBIAS revealed unfavorable results of 0.47 and 14.61, indicating that the calibration and
validation cycles were inadequate for the actual model (Table 5). The maximum projected
discharge was 582 mm per year for the calibration period (2000–2009) and 592 mm for the
measured flow, indicating a clear correlation between the projected and measured flow.
For the 2010–2016 validation periods, the average yearly discharge from the simulation
and analysis was 488 and 495 mm, respectively. For both the calibration and validation
periods, the average error (AE), average absolute error (AAE), and standard error (SE)
were minimal (Figures 4 and 5). The relationship between the actual and the measured
streamflow was strong, with determination coefficients (R2) of 0.95 and 0.94 simultaneously
across the periods of calibration and validation. The model significantly estimated the
river discharge on a regular basis in 2004, but underestimated it significantly during the
calibration period in 2004 and 2006. During the validation, the same river flow as on
the regular basis underestimated the river discharge in 2011 and 2012 and overstated it
significantly in 2013. During both calibration and validation, the model underestimated
the seasonal streams.

To evaluate the efficiency coefficient, a statistical approach was performed to deter-
mine the hydrological system’s predictive control with the Nash–Sutcliffe (NSE) efficiency
coefficient [51]. It is defined as

Re f f = 1 − Σ(Qobs − Qsim)2
Σ(Qobs − Qobs)2

(11)

where Qobs is observed, Qsim is simulated, and Re f f is the NSE. A reference value of 1
shows an absolutely ideal match. Calibration and validation, which resulted in NSE values
of 0.87 and 0.79 around the basin, were highly effective in the HBV model (Figure 3). After
achieving these parameters for the HBV model, the expected river flow changes for the
periods of 2017–2037 (near), 2038–2058 (mid), and 2059–2079 (far) were incorporated into
the HBV. This was based on four GCMs and four RCP scenarios.

2.5. Comparison in Each Time Scale (Daily/Monthly/Seasonal)

At the daily scale, the statistical results show no significant difference between the
GCMs rain data, with CC of 0.39/0.48 and AAE values of 14.3/16.4, respectively (Table 6).
A difference is found in that the GCMs’ values underestimated the actual precipitation,
with a PBIAS value of −15.24%, while RCPs overestimated the actual precipitation with a
PBIAS of 98.4%. Therefore, the AE value of the GCMs is also much higher than that of the
RCPs, with values of 7.3 and 5.8 mm/day, respectively.



Water 2021, 13, 1740 13 of 23

Table 6. GCMs and RCP rainfall data on the Kunhar River Basin from 2000 to 2016.

Time Scale GCMs Mean
(mm)

Correlation
Coefficient

(CC)

Average
Error
(AE)

Average
Absolute Error

(AAE)

PBIAS
(%)

Daily BCC-CSM2-MR 8.02
4.83

0.39
0.48

7.3
5.8

14.3
16.4

97.1
−15.24

Monthly CAMS-CSMI-0 258.34
113.7

0.78
0.64

165.33
65.31

156.12
82.41

98.4
−17.25

Rainy
Season MPI-ESMI-2-HR 2675.4

1328.3
0.5
0.3

1568.7
342.3

471.5
181.5

113.1
−7.3

Dry Season HadGEM2AO 421.2
165.1

0.7
0.8

289
119.4

107
83.4

−52.7
−39.8

As predicted, the trend described above is also seen on the monthly scale. The CC
values of the RCP data ranged from 0.39 to 0.48, showing a good correlation with the GCMs’
data. Moreover, the AE and AAE values of the GCMs are many times higher than those of
the RCPs. The errors at the daily scale were eliminated by the aggregation to the monthly
scale, causing the CC to become more balanced; however, this does not explain the big
difference observed in the evaluation trends between GCMs. The GCMs’ precipitation data
is always overestimated across the basin, and the largest bias statistic indicator values were
recognized with this dataset in evaluations by Mou Tan et al. (2017) [64] and Roth Lemann
et al. (2016) [65]. Generally, the GCMs’ precipitation data are slightly more accurate and
agree relatively better than the RCPs’ data with observations measured on the monthly
scale. As shown in Table 6, the analysis results of the seasonal statistical indicators obtained
from the RCPs’ data show the largest mean errors, with AE and AAE values that are
too large. At the same time, the PBIAS value of the GCMs in the dry season is −39.8%,
many times different from the rainy season value of −7.3%. This is related to the very low
GCMs’ rainfall that occurs in the dry season; the lower rainfall value in the denominator of
Equation (7) will cause the PBIAS value to be higher. Due to underestimating rainfall in the
dry season, the rainfall in the GCMs’ data makes the difference between the two seasons
much larger than the observed data. The rainfall ratios between the dry and rainy seasons
for GCMs were 17% and 93%, respectively.

3. Results
3.1. Projected Changes in Precipitation

Expected increases in the monthly precipitation in GCMs of the near, mid, and far
future for the four RCPs were estimated through a model simulation (Figure 6). In the warm
weather and in early fall, precipitation significantly increases when using CAMS-CSM1-0,
showing an increase of up to 58% for return intervals in a deep-term period and 38% percent
for the progressing monsoon months in the mid-future period in the RCP 2.9 emission
scenario. In the RCP 4.1 emission scenario, BCC-CSM2-MR has an increase of 60% in early
monsoon precipitation in the approximated future, although CAMS-CSM1-0 indicates a
reduction of approximately 48% in the autumn period in the long term. HadGEM2AO has
a forecast for a 61% rise in the beginning of the monsoon cycle for the near future, while
CAMS-CSM1-0 predicts a 47% decrease in the advancing monsoon season duration for the
upcoming future timeframe in the RCP 6.3 emission scenario. BCC-CSM2-MR estimates
an incredible 139% shift in the start date of the monsoon. For the relatively near-future
period, a significant 93% decrease is assumed according to the MPI-ESMI-2-HR project in
the RCP 8.8 emission scenario. The general opinion in the identification of relevant plans is
that there will be an indicative liquid precipitation increase (from the rainy season) and an
increase in the intensity of rainfall (from the cold season) in the future, according to the
results from the watershed [66].
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3.2. Projected Changes in Temperature

The predicted periodic temperature changes for four RCPs of the GCMs are shown in
Figure 7. The temperatures of the Kunhar River Basin are predicted to rise, on average, until
around the end of the decade. According to MPI-ESMI-2-HR, an increase of up to 3.5 ◦C
was recorded in the RCP 2.9 emission scenario during summer-to-winter transition months
in the future. According to the MPI-ESMI-2-HR data, a much greater increase of 4.5 ◦C
is expected during the winter-to-summer transition months. In addition, cold-to-warm
transition seasons are predicted with MPI-ESMI-2-HR in the RCP 6.3 emission scenario
to rise 5.6 ◦C higher than RCPs 2.9 and 4.1 throughout the winter. Moreover, during the
cold-to-warm transition period, an alarming 8.5 ◦C increase (the maximum increase among
all RCPs), as indicated by MPI-ESMI-2-HR, would occur in the future under the RCP 8.8
scenario. All of the simulations of the temperature assume that the period for which the
snow stays is likely to reduce the glacial period’s metamorphic phase due to the massive
variations in all of the emission scenarios across the watershed. In other words, due to
the start of mid-summer that is predicted for the basin, a significant glacial reduction is
expected [67].
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Figure 7. Projected climatology of changes in temperature under AR5-based emission scenarios. 

3.3. Projected Changes in Evapotranspiration 
The increases in quarterly evapotranspiration expected were described for four 

RCPs of the GCMs (Figure 8). For the mid- and long-term winter peaks, the highest en-
hancement of 46% was reported under the MPI-ESMI-2-HR emission scenario with RCP 
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3.3. Projected Changes in Evapotranspiration

The increases in quarterly evapotranspiration expected were described for four RCPs
of the GCMs (Figure 8). For the mid- and long-term winter peaks, the highest enhancement
of 46% was reported under the MPI-ESMI-2-HR emission scenario with RCP 2.9. In the
highest recorded winter months, a greater increase of up to 64% can be seen for the far-
future timeframe, as defined by the MPI-ESMI-2-HR in the RCP 4.1 emission scenario.
Furthermore, a significant increase of up to 69% was observed in the coldest months for
future periods predicted in the RCP 6.3 emission scenario for MPI-ESMI-2-HR. Furthermore,
an impressive 98% change was recorded for the coldest months in the extended period, as
shown by MPI-ESMI-2-HR in the RCP 8.8 emission scenario.
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3.4. Projected Changes in Stream Flow

The maximum flow variability in the RCP 8.8 emission scenario was calculated
(Figure 9). With BCC-CSM2-MR, monsoon flow is expected to rise by up to 42% in the
mid future, while for MPI-ESMI-2-HR, it is projected to decrease by up to 19% in the
winter months in the long-term RCP 2.9 emission scenario. The monsoon flow in the next
few months showed a rise of up to 63%, and in the extreme winter months, it showed
an increase of up to 34% in the middle of the next half according to the IPSL-CM5A-LR
state in the RCP 4.1 emission scenario. CAMS-CSM1-0 forecasted a rise of up to 76% in
progressive rainy season stream flow over several months, while the RCP 6.3 emission
scenario projected a decrease of up to 21% in the peak cold months in the long term. In
addition, CAMS-CSM1-0 projected an increase of up to 149% during monsoon initiation
periods for the far-future period, and with MPI-ESMI-2-HR, the fall flows are expected to
drop to 36% in the RCP 8.8 emission scenario. It was observed that all GCM results are
compatible in the direction of flow changes in each emission scenario. Simultaneously, a
series of small variations were reported for the river streams during the forecast periods.
The effects of the water flow measurements indicate a significant increase in hot season
water flows and a complete decline in cold season water flows. This could be due to



Water 2021, 13, 1740 17 of 23

the essential rise in spring temperatures, which contributed to the monsoon months and
significant winter evapotranspiration changes in the GCMs. After all, the measurements of
the rapidly increasing flows substantially exceed the amounts of decreasing flows in all
estimates that were compatible with the results [68].
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in March and April. The Kunhar River Basin receives its maximum precipitation in win-
ter and spring, which results in a clear temporal separation in accumulation of the snow 
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Figure 9. Projected climatology of discharges (mm/month) triggered with the deployed GCMs under the AR5-based
emission scenarios.

4. Discussion

In the mountain region of the Kunhar River basin Pakistan, the large amount of
precipitation leads to a substantial accumulation of snow during the winter and spring
season. The stream flow increases rapidly with the beginning of the snow melting period in
March and April. The Kunhar River Basin receives its maximum precipitation in winter and
spring, which results in a clear temporal separation in accumulation of the snow and the
time of the peak flow. The Kunhar River is characterized by a seasonal cycle of river flow
with maximum flow in the summer season. Summer runoff of the upstream catchments
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of the Southern Asian Rivers is controlled by the melting of snow and glaciers, which, in
glacierized catchments, contributes up to 50% of the seasonal flow [69]. The downscaled
precipitation and maximum/minimum temperature estimates from the five GCMs were
in good agreement with the measurement-based data under the baseline condition. The
product of multiple GCMs of the Intersectoral Impact Model Intercomparison Project
(ISI-MIP) was used to assess the influences of the climate variation on the hydrological
regimes, considered a suitable representative [48,70,71].

The meteorological data from four climate stations and streamflow data from one
hydrological station were used in this study. We analyzed the possible consequence of
projected climate variation on interseasonal and annual water flow, as well as on snowmelt
in the Kunhar River basin. We studied the responses of hydrological processes, such as
discharge and extreme and median flows, to climate variation. The temporal impacts of
the projected climate change were assessed by coupling a well-calibrated semidistributed
hydrological model (HBV) with the results of the five GCMs under two greenhouse gas
emission scenarios (RCP 4.1 and RCP 8.8). The effect of topography was corrected by
applying the elevation band (temperature lapse rate and precipitation lapse rate) approach
in this study, which improved the simulation results. We presented the results of the
streamflow calibration and validation for the Kunhar River. Additionally, by using the
HBV tool, we studied the sensitivity and prediction uncertainty of the model parameters,
which was necessary to evaluate the strength of the calibrated model. The results of the
GCMs presented continuous warming over the Kunhar River basin at the annual and
seasonal scales in the middle and at the end of this century.

This finding is consistent with the results of previous studies in the South and Central
Asian regions, including the Pamir-Alay [72,73], the Tian Shan–Pamir–North Karako-
ram [74], the Himalayas [75], and the Tibetan Plateau [76]. It is expected that the wet and
dry seasons in the basin will become more severe than those in the baseline period. We
showed that these phenomena are predicted to be stronger under RCP 8.8 than under
RCP 4.1. A possible reason for these alterations is that in the future, more meltwater
will be produced in early summer and more snow will be replaced by rain. The typical
changes will accelerate the convergence of water flows and raise the flooding frequency
and intensity. Folini et al. [77] reported that aerosol emissions in the 20th century might
increase, in association with the enormous population and industrialization growth. Simi-
larly, Bollasina et al. [78] confirmed that in Asia, the concentration of atmospheric aerosols
has increased steadily.

Xin et al. [79] reported that over China and Central Asia, a rising trend in the concen-
tration of aerosols in the atmosphere could cause a substantial rise in temperature. The
mean annual precipitation over the Kunhar River basin is expected to rise in the 2038–2058
future time period under RCP 4.1, as evidenced by the results of two GCMs (CAMS-CSM1-
0 and HadGEM2AO), as well as the two GCMs (MPI-ESMI-2-HR and HaDGEM2AO) that
indicated a rising trend of precipitation in the second time period (2059–2079) under RCP
8.8. The remaining GCM models that were analyzed in this study showed a decreasing
trend of mean annual precipitation in the two future periods under both RCPs. The winter
mean precipitation had a lower decreasing trend than that of the summer and fall seasons.
The summer mean precipitation exhibited a greater decreasing tendency than the other sea-
sons in the two future periods. Similarly, in the Yellow and Xin River Basins in China [80],
in the Middle East [71], and in the westerly dominated region of South Asia, a decreasing
trend of summer precipitation was indicated [81]. The increasing or decreasing propensity
of winter precipitation varies from model to model. Two GCMs showing a rising trend of
winter precipitation and resembling this analysis were reported by Luo et al. [82] for the
Heihe River Basin and by Omani et al. [83] for the Pamir-Alay Mountains in Central Asia.
However, the patterns of seasonal variations in precipitation for three GCMs presented in
the Kunhar River Basin are contrary to those in reported for the Hunza River Basin of the
Karakoram Mountains [84] and the Jhelum River Basin of the Himalayan Mountains [74].
Pendergrass et al. [85] reported that the global winter precipitation increased over the
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second half of the 20th century, and they attributed this to the role of increasing moisture
counteracted by weakening circulation. Li et al. [86] pointed out that in Central Asia, at
the end of 20th century, there was a persistent decreasing trend of annual precipitation,
and Meng et al. [87] confirmed that precipitation might increase in the middle of the 21st
century in the south of the Tian Shan Mountains. The multimodel ensemble result pro-
jected a decrease in average annual precipitation during the 2038–2058 and 2059–2079 time
periods under both RCPs in the Kunhar River basin. The interannual and seasonal scale
analyses of the mean precipitation changes presented large uncertainties among the GCMs,
as evidenced by both increasing and decreasing tendencies under RCP 4.1 and RCP 8.8
in various future time periods. In the Asian region, these contradictions in our findings
may be associated with the rising concentration of anthropogenic absorbing aerosols and
the westerlies system [73,74]. The analysis of the simulated Kunhar River flows mostly
described an increasing trend of the mean annual streamflow during the 2059–2079 time
period under RCP 4.1 and RCP 8.8, as well as a decreasing trend during the 2038–2058
time period under RCP 4.1. Mostly, the increase and a lesser decrease of annual future
flow may be attributed to the similar projection of the different GCM models for the total
annual precipitation. Similarly, a decreasing/increasing tendency for the different future
periods of annual river flow was indicated in an arid alpine catchment in Karakoram [81].
In addition, it is expected that the average monthly peak discharge may shift to earlier in
the summer season, from July to June, for the two future time periods under both RCP 4.1
and RCP 8.8 for almost all GCMs, which is mainly due to the slight rise in precipitation
in the spring and winter seasons, as well as because of an earlier snowmelt caused by
global warming. Similarly, due to earlier snowmelt, Sorg et al. [88] projected the impacts of
climate changes on flow seasonality and concluded that less water will be available in the
summer months in the Syr Darya River Basin in Central Asia. Olsson et al. [89] confirmed,
from trend analysis, this shift in seasonality of flow and predicted a possible decreasing
trend of annual flow in the Zarafshan River Basin in Central Asia. A similar shift in the
discharge peak (July to June) was pointed out by Liu et al. [90] for the Yarkant River Basin
in Central Asia; in contrast, Babur et al. [91] reported that the discharge peak could be
delayed (July to August) in the Jhelum River Basin. These discrepancies in detections
might be related to various projected climate models for winter and summer seasonal
precipitation in Central Asia. We found that the average monthly peak discharge in the
Kunhar River Basin indicated a significant decreasing tendency in August and September
for the 2038–2058 and 2059–2079 time periods under RCP 4.1 and RCP 8.8 for all five of the
GCMs. In this study, most of the GCM model outputs along with the multimodel ensemble
results showed that the summer water flow in the Kunhar River is expected to increase
at the end of the 21st century under the two studied greenhouse gas emissions scenarios.
Increases in summer water flow in the Kunhar River can be ascribed to the rapidly melting
snow and ice caused by the continuously increasing air temperature. Meanwhile, it could
lead to uncertainty in the predictions due to fluctuations in the reduction of sea ice and the
gradual increase in the snow lining. Furthermore, these conditions are predictable if the
temperature in all GCMs increases significantly.

5. Conclusions

This study is the first to refer to the role of temperature in extreme events based on
regulations in the Kunhar River Basin. The temperature verification in the Kunhar River
Basin shows that RCP scenarios can be representative as ground temperature measurement
stations in meteorological and hydrological studies. Temperature events, such as very
cold, damaging cold, strong sun, and scorching hot events, affect the rainfall distribution
and the inputs to the flow simulations. Moreover, the proposed study is suitable for
humid climate conditions in the tropics, such as the climatic conditions in the study area,
and can be reliably used in other basins with similar conditions. After incorporating all
of the appropriate hydrometeorological data, an HBV model was developed on a daily
time scale. First, the model was calibrated and validated using parameters from 2000
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to 2016. The predicted flow variation in the Kunhar River Basin was calculated using
statistically decreased high-resolution GCM performance as an input for hydrological HBV
models under different RCP emission scenarios. The level of maximum rainfall was almost
1650 mm in the wind-retrieval and fall months, with a maximum temperature of 23 ◦C
during the starting months of the rainy season.

The maximum evapotranspiration was almost 4 mm during the starting months of
the rainy season, and the highest discharge of flow was about 1032 m3/s along the basin;
these values show the yearly climatology of the hydrometeorological parameters. The
HBV model for stream flow projection included a snow melting and snow accumulation
module, ice module, efficient subcritical rainfall, evapotranspiration module, and an
application of runoff. This highly effective HBV model was used for calibration and
validation, with NSE values of 0.87 and 0.79, respectively. Postprocessing is expected to
significantly improve the predictions of liquid precipitation and consistency (winter) in
future precipitation slices. The temperature predictions of all of the simulations suggest that
the snow residence period is likely to decrease for the metamorphic cycle of glaciation due
to significant improvements in all of the basin’s emission scenarios. The results also show
that the summer streamflow over the basin is expected to significantly increase, as shown
by the analysis of the simulations’ performance. The advantages and disadvantages of
study suggest that local knowledge/information is also very useful in hydrometeorological
research to avoid excessive misunderstandings of gridded climate scenarios and can instead
be understood as an opportunity to explore the potential of reanalyzing data in terms
of their performances that are, as of yet, unproven due to limited, short duration, and
heterogeneous observational data. Our tentative studies will be further expanded with
other gridded climate scenarios already recognized in Pakistan, and the spatial variations in
water balance components and the effects of climate change on flow changes in the Kunhar
River Basin will be calculated. This study’s findings are essential because emission-based
hydrometeorological simulations of the Kunhar River Basin and the multi-GCM output
differences across the river’s watershed have been insufficiently studied.
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