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Abstract: Long-term streamflow simulations of the Land Surface Models (LSMs) are necessary for
the comprehensive evaluation of hydrological responses to climate change. The high complexity
and uncertainty in the LSM modelling require the model calibration to improve the simulation
performance and stability. Objective functions are commonly used in the calibration process, and the
choice of objective functions plays a crucial role in model performance identification. The Kling and
Gupta Efficiency (KGE) has been widely used in the hydrological model calibration by the measure
of the three components (variability, bias, and correlation) decomposed from the Nash and Sutcliffe
Efficiency (NSE). However, there is a clear tendency of systematic errors in the peak flow and/or
water balance of streamflow time series optimized by the KGE calibration when the correlation
between simulations and observations is relatively low. For a more balanced optimal solution of the
KGE, this study has proposed the adjusted KGE (aKGE) by substituting the normalized correlation
score in the KGE. The proposed aKGE was assessed by long-term daily streamflow simulation results
from the Common Land Model (CoLM) for the calibration (2000–2009) and validation (2010–2019)
periods in the Nakdong River Watershed, Korea. The case study demonstrated that the aKGE
calibration can improve the simulation performance of high flow and annual average flow with a
slightly inferior correlation of flows compared with the KGE and NSE criteria.

Keywords: model calibration; objective function; Kling and Gupta efficiency; Nash and Sutcliffe
efficiency; multiple criteria; land surface model; long-term streamflow

1. Introduction

Runoff is one of the key components in the dynamic responses of land surface pro-
cesses related to the terrestrial water and energy fluxes at large-scale river basins. Stream-
flow, the surface and subsurface runoff confined in the stream channels from upstream
of a river basin, is influenced mainly by both meteorological and topographical features.
For scientific and societal studies of water-related extremes and hazards, it is important to
understand the changes and anomalies in streamflow time series among the land surface
hydrologic components. Methods for monitoring and modelling streamflow have long
been important topics in terms of sustainable and resilient responses to extreme events and
water resource management [1], as shown in some example literature [2–4]. Streamflow
can be monitored directly at hydrological stream gauge stations, and one of the global
streamflow data sets can be archived at the Global Runoff Data Centre (GRDC) [5]. How-
ever, the available streamflow records are often limited in spatial and temporal resolutions
for many regions of interest [6,7], notwithstanding that higher spatial and temporal resolu-
tions play a significant role in hydrological modelling leading to the improved streamflow
simulation [8,9]. Hence, the proper methodology for long-term streamflow simulations
is an essential part of mitigation and adaptation strategies to an increasing number of
water-related hazards, such as more severe floods and droughts caused by climate change.
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For analysis of climate-induced streamflow extremes and water balance changes, it is
necessary to simulate the spatial and temporal variability in the surface and subsurface
runoff using the distributed hydrological modelling that can reflect topographic features as
well as respond to meteorological forcings from the coupled or uncoupled climate applica-
tion system. As for the context of the perspectives and advances in the Land Surface Models
(LSMs) [10,11], the LSMs can be a useful tool to simulate the partitioning of precipitation
into evapotranspiration and runoff by integrating meteorological factors and the physical
geology of the land [12–15]. As the LSMs coupled to global or regional climate models sim-
ulate the water and energy exchanges between the land surface and the atmosphere, robust
LSMs are required to provide a comprehensive assessment of hydrological responses to
climate change at both regional and global scales [16,17]. In the continuous improvements
to the terrestrial hydrologic representation for the LSMs, some current LSMs have recently
incorporated the streamflow processes to simulate the lateral water movement induced
by topographic characteristics [18–23]. The Common Land Model (CoLM), one of the
state-of-the-art LSMs [24] has been developed and updated for the terrestrial hydrologic
schemes focusing on runoff predictions [21,22,25–28]. The applicability and performance of
the CoLM incorporating a set of topographically controlled runoff schemes were examined
for the streamflow simulation of one year in a standalone mode at the 30-km resolution
targeted for mesoscale climate applications [22].

Most current LSMs underpinning the sophisticated mathematical processes are bound
to include high complexity and uncertainty that originate in complex parameterizations,
underlying assumptions, input data, initial and boundary conditions, and so on. The model
calibration is therefore one of the essential processes for the LSM simulations to improve
the model performance and stability. The model parameter estimation or calibration often
uses performance metrics to identify the optimal parameter set that can produce the best
goodness of fit between simulated and observed data. The performance metrics to be
optimized are usually defined as a mathematical multi-objective function for the measure
of overall model performance. One of the most popular objective functions is the Nash and
Sutcliffe Efficiency (NSE) [29] based on the mean square error, which can be decomposed
into three components consisting of variability error, mean error, and correlation between
observations and simulations [30–32]. Gupta et al. (2009) demonstrated that the variability
and/or bias terms tend to be underestimated in the model outcomes optimized by the
NSE where the three constituent components are mathematically interrelated, and then
proposed the Kling and Gupta Efficiency (KGE) reformulated by the Euclidian distance
of the three components decomposed from the NSE [32]. Although the use of the KGE
on log-transformed flows may lead to some numerical issues related to the biased model
performance [33], the KGE has been frequently used for the model calibration in recent
studies of hydrologic simulations that showed an improved measure of the variability
performance in the model streamflow compared with the NSE calibration outcomes [32–36].

The KGE is implicitly based on an equally-weighted three-component (variability ratio,
bias ratio, and correlation coefficient between simulations and observations) formula for
selecting a point from the three-dimensional Pareto front. In most hydrological modelling
studies, it is unachievable to obtain the ideal value of unity for the correlation measure
while the other two components can be close to their ideal values at unity. As a result,
the KGE is equivalent to a weighted objective function with a higher weight applied to
the correlation measure rather than the other two components. Accordingly, the model
streamflow optimized by the KGE still has a strong tendency to underestimate high flows,
albeit less severe than in the optimal results by the NSE [32,34]. For a more balanced optimal
solution for the multiple-criteria framework of the KGE, this study has therefore proposed
the adjusted KGE (aKGE) through the use of an adjusted correlation term normalized by the
maximum correlation score (to be capable to reach its ideal value), instead of the correlation
coefficient used in the KGE. To evaluate a new objective function, the aKGE proposed in
this study, long-term daily streamflow simulations from the CoLM incorporating the lateral
flow scheme [22] have been calibrated from 2000 to 2009, and then validated from 2010 to
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2019 for the three basins of the Nakdong River Watershed in the Republic of Korea under
study. The realistic surface boundary conditions (SBCs) and long-term meteorological
forcing data have been also constructed for long-term offline simulations from the CoLM
over the study watershed domain. The model performance evaluation is targeted for the
surface and subsurface runoff from the CoLM at a regional mesoscale to be compared to the
daily streamflow discharges observed at the three-stream gauge stations in the Nakdong
River Watershed. The aKGE proposed for the balanced trade-offs among the correlation,
bias, and variability measures in streamflow time series was assessed by comparison with
the performance results of other popular objective functions, KGE and NSE. This paper is
organized as follows. Section 2 describes the model, data, and calibration strategy adopted
in this study. Section 3 evaluates the performance of model streamflow optimized by the
choice of objective functions. Section 4 addresses the advantages of the proposed method
and the limitations of this study.

2. Materials and Methods
2.1. Brief Description of the CoLM

The baseline CoLM [24] can simulate terrestrial water and energy circulations, which
has been already coupled to the mesoscale Climate Weather Research and Forecasting
model [37]. The CoLM has been modified and updated to improve land surface pro-
cesses for a land surface albedo parameterization [25], a volume-averaged soil moisture
transport parameterization [26], a surface-subsurface interaction parameterization [27], a
topographically controlled baseflow scheme [28], and a conjunctive surface-subsurface
flow scheme [21]. Also, another version of the CoLM has recently incorporated a set of
topographically controlled surface and subsurface flow schemes into the baseline soil
moisture transport formulation for the streamflow simulation [22]. Hence, the CoLM can
generate the model grid-based streamflow by combining a routed surface flow scheme
based on the 1-D diffusion wave equation with an unrouted baseflow scheme based on the
Topography-based hydrological model (TOPMODEL) [38]. Lee and Choi (2017) elaborated
on the streamflow generation scheme at a model grid-based mesoscale, and examined the
sensitivity of the CoLM for the two calibration parameters, the hydraulic conductivity
decay factor ƒ and the hydraulic conductivity anisotropic ratio ζ, against one-year daily
streamflow time series [22]. This study implemented the CoLM incorporating the lateral
flow scheme for long-term daily streamflow simulations during the past two decades from
2000 to 2019 to investigate the model performance by the use of different objective func-
tions.

2.2. Model Implementation
2.2.1. Study Area

As shown in Figure 1, this study selected the Nakdong River Watershed with distinct
variations in spatial terrain and seasonal precipitation features as a study site. The Nakdong
River Watershed is located in the south-eastern part of the Korean Peninsula, covering
longitudes from 127◦29′ E to 129◦18′ E and latitudes from 35◦03′ N to 37◦13′ N. The
study watershed is the second largest one (23,384 km2) in the Republic of Korea, and the
main channel is the nation’s longest river (506 km) that flows from the north (Taebaek
Mountains) to the south (Korean Strait). In the Nakdong River Watershed affected by
the East Asian monsoon climate, the summer monsoon rainfall is concentrated from June
to September. According to the past meteorological data from 2000 to 2019, the study
watershed has an average annual rainfall of 1300.1 mm and an average summer rainfall of
833.9 mm [39]. For the calibration and validation of long-term daily streamflow simulations
against observations, this study selected the three hydrologic stream gauge stations located
at each dam reservoir inflow site, such as Andong Dam (AD), Hapcheon Dam (HD), and
Nam River Dam (ND), as denoted in Figure 1 and Table 1. They can provide persistent
long-term observations that are not affected by either flow regulations of river facilities
or estuarine environments of tidal fluctuations. The dam reservoir inflow data are openly
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available at the Water Resources Management Information System (WAMIS) [40] managed
by the Ministry of Environment.
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Figure 1. The location map of the three-stream gauge stations (red triangular points) upstream of the
Nakdong River (blue lines) selected in the Nakdong River Watershed (black lines) under study, along
with the 43 meteorological stations (black dots) used for constructing the meteorological forcing data
in the CoLM computational domain (outer frame).

Table 1. Information on the three-stream gauge stations at each dam reservoir inflow site selected in
the Nakdong River Watershed under study.

Station Symbol Station Name Latitude
(◦N)

Longitude
(◦E)

Upstream Area 1

(km2)

AD Andong Dam 36.72 128.84 2474
HD Hapcheon Dam 35.53 128.03 1254
ND Nam River Dam 35.16 128.03 3151

1 measured on the computational map projection.

2.2.2. Surface Boundary Conditions

The CoLM incorporating the lateral surface and subsurface flow schemes requires the
SBCs in the two categories representing the vegetation and terrain features. The realistic
SBCs based on the raw data of the high quality and finer resolution were constructed for the
30-km resolution grids of the CoLM computational domain under study, as provided in Lee
and Choi (2017) [22]. The vegetative SBCs consist of land cover category, albedo, fractional
vegetation cover, and leaf area index. The terrain SBCs include surface elevation, soil
sand/clay fraction profiles, bedrock depth, and flow direction/accumulation information.
Table 2 summarizes characteristics of some SBCs at 30 km grids for the three study basins,



Water 2021, 13, 1709 5 of 16

AD, HD, and ND. More detailed information on the SBCs for the Nakdong River Watershed
is available in Lee and Choi (2017) [22].

Table 2. Information on several SBCs constructed at the 30-km grids for the three study basins, AD,
HD, and ND in the Nakdong River Watershed under study.

SBCs AD HD ND

Land Cover Category Savanna,
Mixed Forest

Savanna,
Mixed Forest

Savanna,
Mixed Forest

Albedo 0.13–0.20 0.13–0.20 0.13–0.20
Fractional Vegetation Cover (%) 100 99 100

Leaf Area Index (m2/m2) 0.5–4.6 0.7–4.1 0.6–4.3
Surface Elevation (EL.m) 284.7–887.1 379.0–573.3 130.5–726.2

Sand/Clay Fraction Profile (%) 62.3/20.6 65.0/20.0 61.3/21.0
Bedrock Depth (m) 80.0–95.8 80.0 80.0–98.2

2.2.3. Meteorological Forcing Data

The long-term meteorological forcing data set from 1990–2019 is based on meteo-
rological observations from the Automated Synoptic Observing System (ASOS) in the
43 meteorological stations (see Figure 1) managed by the Korea Meteorological Administra-
tion (KMA) [39]. The meteorological forcing data to drive the CoLM standalone simulations
comprises precipitation (mm), snow (cm), air pressure (hPa), temperature (◦C), specific
humidity (%), zonal/meridional wind speeds (m/s), and downward long/short wave ra-
diation (MJ/m2). The meteorological point data were spatially interpolated by the Inverse
Distance Weight (IDW) method and then constructed onto the 30 km computational grids
for the study domain covering the Nakdong River Watershed. These construction processes
are automated by the scripts in the Python programming language code developed in
this study.

2.2.4. Initialization

The CoLM simulations were designed for the past 30 years from 1990–2019 in the
computational study domain including the Nakdong River Watershed. The simulations
from 1990–1999 were excluded to prevent any effect of the initial conditions for the state
variables on simulation outcomes, and then the former ten-year simulation results from
2000–2009 and the latter ten-year simulation results from 2010–2019 were used respectively
for the calibration and validation of the daily streamflow times series in the three study
basins, AD, HD, and ND of the Nakdong River Watershed.

2.3. Model Calibration Approach

The calibration scheme of hydrologic models usually selects the optimal parameter
set that can produce the best goodness of fit between observed data and simulated results
by the model calibration criteria of the performance objective function. As for the objective
function used in the hydrologic model calibration, it is desirable to include multiple metrics
that can measure different aspects of model performance [41–44] and to use an appropriate
objective function that can fit the performance of the model outcomes to be calibrated.
Therefore, this study conducted a comparative analysis on the calibration outcomes of
daily streamflow simulations from the CoLM to evaluate the model performance with
respect to the strategies and characteristics of different objective functions.

One of the most popular objective functions for the performance evaluation of hydro-
logical modelling is the NSE, as presented by Nash and Sutcliffe (1970) [29]:

NSE = 1− ∑(Oi − Si)
2

∑
(
Oi −O

)2 (1)
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where Oi and Si are the observation and simulation values at a time i respectively, and O is
the average value of the Oi.

The previous studies mathematically decomposed the NSE into individual constituent
components to understand relations and interactions between different metrics interrelated
in the NSE [30–32] as

NSE = 2αr− α2 − βn
2 (2)

where r is the linear correlation coefficient between Si and Oi, α = σs/σo is the rela-
tive variability measured by the standard deviation values σs of Si and σo of Oi, and
βn = (µs − µo)/σo is the bias where the difference between mean values µs of Si and µo of
Oi are normalized by the standard deviation value σo of Oi.

Gupta et al. (2009) addressed that the bias normalized by the standard deviation of
the observations in the NSE will reduce the relative importance of the bias term when
the variability is high in the observations. Gupta et al. (2009) also demonstrated that
the calibration result by maximizing the NSE tends to select an underestimation of the
variability in the simulations. It is due to the fact that the maximum NSE is likely to be
achieved when the variability ratio α is theoretically equal to the correlation coefficient
r always smaller than its ideal value of unity. Thus, Gupta et al. (2009) proposed a new
objective function, the KGE that aggregates the three components (variability, mean, and
correlation of flows) decomposed and modified from the NSE by the Euclidian distance
from the ideal point in the 3-D Pareto front of the constituent components as

KGE = 1−
√
(α− 1)2 + (β− 1)2 + (r− 1)2 (3)

where β = µs/µo is the ratio of the means between the simulated and observed data.
Although the KGE improves the variability in calibration results to some extent,

compared with the use of NSE [32], the KGE still has a statistical tendency to underestimate
the variability in the optimal simulation flows [32,34]. The KGE formulation is implicitly
based on the equal weight for the three squared error metrics in Equation (3), which will be
indeed equivalent to have larger weights to metric terms with larger error values, and that
is the correlation error term in general or at least for our experiments. For a more balanced
optimal performance on trade-offs among the three metric components in the KGE, this
study has proposed the aKGE by replacing the correlation component with the adjusted
correlation term normalized by the maximum correlation score (to be capable to reach its
ideal value) as

aKGE = 1−
√
(α− 1)2 + (β− 1)2 + (ra − 1)2 (4)

where ra = r/rmax is a normalized correlation component by the maximum value rmax of r
in an ensemble of simulation experiments.

3. Results and Discussion
3.1. Calibration and Validation

The calibration against the daily streamflow time series from the CoLM was carried
out for the model parameter set, the decay factor ƒ and the anisotropic ratio ζ of the
hydraulic conductivity, as used in the previous studies [21,22,27,45,46]. An ensemble of
CoLM streamflow simulations was first generated for the calibration period from 2000–2009
by a change in values of the calibration parameter sets within the feasible ranges from 2
to 9 for the decay factor ƒ and from 10 to 100,000 for the anisotropic ratio ζ. The optimal
model parameters were selected by maximizing each of the three objective functions, NSE,
KGE, and aKGE. The optimal parameter set achieved by each objective function was then
used to simulate daily streamflow time series for the validation period from 2010–2019.
Since there are differences between the real basin area and the model grid area in the three
study basins, the observed and simulated streamflow values were compared by using a
basin-specific runoff (streamflow per unit basin area). The daily streamflow observations



Water 2021, 13, 1709 7 of 16

from 2000–2019 were also obtained directly from the WAMIS website [40] for the three
study basins, AD, HD, and ND in the Nakdong River Watershed.

Table 3 summarizes the model calibration results to compare the absolute differences
from unity for the three metric components, |α− 1|, |β− 1|, and |r− 1| corresponding to
the optimal parameter sets achieved by each objective function, NSE, KGE, and aKGE in the
calibration (2000–2009) and validation (2010–2019) periods, respectively. The aKGE optimal
parameter values of the decay factor ƒ and the anisotropic ratio ζ indicate a relatively
smaller change over the three study basins than those by the KGE and NSE optimizations.
It means the aKGE calibration can be more feasible for the model parameter regionalization
in the Nakdong River Watershed. As demonstrated in Gupta et al. (2009) [32], the KGE
optimal parameter sets for the three study basins can produce fewer errors in the variability
α and the bias β components than in the NSE optimization. In the optimization with
the aKGE where the relative contribution of the correlation r can become smaller by the
normalization than the KGE, the error values in the variability α and the bias β tend to
be much lower while the correlation r errors somewhat increase, compared with the both
KGE and NSE calibrations in the three study basins. In particular, the aKGE improved the
performance of all the three components α, β, and r for the validation period (2010–2019)
at the AD basin.

Table 3. Comparison of the optimal model parameter sets and the absolute differences from unity
for the three metric components, |α− 1|, |β− 1|, and |r− 1| by each objective function, NSE, KGE,
and aKGE for daily streamflow simulated from the CoLM in calibration (2000–2009) and validation
(2010–2019) periods for the three study basins, AD, HD, and ND.

Station Objective
Function

Optimal Parameter Calibration Period Validation Period

ƒ ζ |α−1| |β−1| |r−1| |α−1| |β−1| |r−1|

AD
NSE 4 40,000 0.194 0.214 0.225 0.201 0.137 0.329
KGE 8 8000 0.015 0.147 0.260 0.091 0.095 0.315

aKGE 9 7000 0.013 0.127 0.283 0.087 0.062 0.309

HD
NSE 5 20,000 0.032 0.073 0.196 0.067 0.033 0.249
KGE 6 20,000 0.022 0.062 0.200 0.011 0.012 0.251

aKGE 7 6000 0.003 0.041 0.215 0.006 0.010 0.258

ND
NSE 6 90,000 0.115 0.084 0.132 0.131 0.096 0.193
KGE 6 30,000 0.059 0.047 0.161 0.066 0.056 0.228

aKGE 7 6000 0.016 0.000 0.189 0.015 0.013 0.262

Figure 2 compares the optimal values of the three metric components, the variability
α, the bias β, and the correlation r obtained by each objective function, the NSE, KGE,
and aKGE over the three study basins, AD, HD, and ND in the calibration (2000–2009)
and validation (2010–2019) periods, respectively. Figure 2 demonstrated that during both
calibration and validation periods, the variability α and the bias β components tend to be
closer to the ideal value of unity in optimizing on the aKGE than in the KGE and NSE
optimizations, while the correlation r is much smaller than the ideal value of unity in all the
three objective functions. Although the KGE was formulated based on an equal weighting
of the three metric components, the possible optimal error value of the correlation r will be
much larger than those of the other two metric terms, thereby leading to the impact of the
variability α and the bias β being systematically limited on the KGE optimization outcomes.
Meanwhile, the aKGE proposed for more balanced trade-offs among the three metric
components in the KGE can substantially improve both variability α and bias β along with
a slightly inferior correlation r, compared with the KGE and NSE optimal results.
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3.2. Evaluation of Streamflow Performance by Objective Functions

For the performance evaluation of daily streamflow time series, the CoLM runoff
results optimized by the three objective functions, NSE, KGE, and aKGE were compared
with the observed data at the three study basins, AD, HD, and ND. In the graphical
comparison of the simulated and observed hydrographs, the original hydrograph is difficult
to visually indicate the behavior of long-term streamflow time series for the calibration
(2000–2009) and validation (2010–2019) periods. For better visualization of variations
and fluctuations in daily streamflow time series, this study employed the transformed
hydrograph by a power transformation method [47] as

QT =
(Q + 1)λ − 1

λ
(5)

where QT is the transformed basin-specific runoff, Q is the original basin-specific runoff,
and λ is the transformation parameter selected as 0.6 for this study.

The transformed daily time series of each basin-specific streamflow by Equation (5)
were graphically compared between the optimal simulation result from the CoLM on
each objective function (NSE, KGE, and aKGE) and the observed data obtained from the
WAMIS in Figure 3 for the calibration period (2000–2009) and in Figure 4 for the validation
period (2010–2019), respectively. Overall, in the simulation performance achieved by all the
three objective functions, the long-term simulation results from the CoLM can adequately
capture the interannual and seasonal variability in observed daily streamflow time series
over both calibration and validation periods at the three study basins.

In the aKGE optimization with a better variability performance than the KGE and
NSE, the optimal model parameter set has a clear tendency to increase the decay factor
ƒ and decrease the anisotropic ratio ζ to facilitate surface flow response to rainfall, as
denoted in Table 3. On the contrary, the selection of a smaller decay factor ƒ and a larger
anisotropic ratio ζ will enhance subsurface runoff including baseflow, leading to lower
peaks and thicker recession curves in the streamflow generation. Consequently, the aKGE
optimization can substantially improve the model performance in high flow estimates
compared with the optimization results by the KGE and NSE, as shown in Figures 3 and 4.
However, some peak flow events were not reproduced by all the three objective functions
used in this study. In addition, it is implied that the improved high flow performance in
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the aKGE calibration can affect a better bias performance, leading to fewer water balance
errors in the aKGE optimal result as well.
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function in Equation (5) for better visualization of variations and fluctuations in daily streamflow time series.
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from 2010 to 2019. All hydrographs are transformed from each basin-specific streamflow data by a power transformation
function in Equation (5) for better visualization of variations and fluctuations in daily streamflow time series.
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To statistically evaluate the model performance of the peak flow and very low flow
regimes in long-term simulation results optimized by each objective function (NSE, KGE,
and aKGE), the difference between observed and simulated flows was measured by the
root mean square error (RMSE) as

RMSE =

√
∑(Oi − Si)

2

n
(6)

where n is the number of extreme high flows or extreme low flows belonging to the flow
regime from 0 to 5% or 95 to 100%, respectively of the flow duration curve [48].

Table 4 summarizes the RMSE values for extreme high flows and extreme low flows
between the observed and simulated long-term daily streamflow time series over each ten-
year period for the calibration (2000–2009) and validation (2010–2019) periods, respectively.
In all the three study basins, the RMSE values for extreme high flows are lower in the
optimization results by the aKGE than in those by the KGE and NSE. This is because the
aKGE optimization tends to provide an improved measure of the variability performance
in streamflow simulations compared with the KGE and NSE optimal results, as shown in
Table 3 and Figure 2. Meanwhile, the RMSE results for extreme low flows obtained by the
aKGE were not better (higher or comparable) than the KGE and NSE results. The improved
variability performance is more likely to focus on the high flow regime rather than the
low flow regime because the variability metric is subject to much larger errors of high
flows in all the three objective functions (NSE, KGE, and aKGE) based on the mean square
error. The aKGE can improve the predictability of high flows by increasing the relative
contribution of the variability component to the overall model performance in the multiple
criteria objective function based on the trade-offs among the different metric components.

Table 4. Comparison of the root mean square error (RMSE) for extreme high flows and extreme low
flows between observations and simulations optimized by each objective function, NSE, KGE, and
aKGE for the calibration (2000–2009) and validation (2010–2019) periods.

Station Objective
Function

RMSE of Extreme High Flows RMSE of Extreme Low Flows
Calibration Validation Calibration Validation

AD
NSE 0.863 0.788 0.036 0.035
KGE 0.741 0.737 0.030 0.017

aKGE 0.738 0.724 0.059 0.035

HD
NSE 0.962 0.871 0.014 0.039
KGE 0.931 0.869 0.009 0.034

aKGE 0.908 0.864 0.011 0.035

ND
NSE 1.152 1.091 0.010 0.031
KGE 1.146 1.085 0.008 0.030

aKGE 1.136 1.079 0.012 0.031

While such a better performance of the peak flows obtained by the aKGE optimization
was also found in the daily streamflow time series in Figures 3 and 4, the water balance
performance is difficult to be interpreted directly from the graphical comparison of daily
streamflow hydrographs. For the comparative analysis of the bias performance by the
choice of the three objective functions (NSE, KGE, and aKGE), Figure 5 depicts the trends
and boxplots for the annual average of daily streamflow observations and simulations over
the whole simulation period for the calibration (2000–2009) and the validation (2010–2019).
In a boxplot graph, the box width represents the interquartile range between the first and
third quartiles, and the whiskers extend to the maximum and minimum values. Overall,
the annual average streamflow data obtained by the aKGE optimization showed better
agreements with the observation data than those optimized by the KGE and NSE over
both calibration and validation periods at the three study basins. In the boxplots for the
statistical distribution of annual average streamflow data over the total simulation period
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of the two decades (2000–2019), it was also found that the optimal simulation results by
the aKGE are more closely distributed to observations than those by the KGE and NSE
at all the three study basins. This is due to the fact that the bias performance tends to be
improved by an increased relative contribution of the bias measure to the overall model
performance (due to a decreased relative contribution of the normalized correlation metric)
when using the aKGE instead of the KGE and NSE for the model calibration.
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Figure 5. Comparison of annual average streamflow trends for the observations and the CoLM simulations optimized by the
three objective functions, NSE, KGE, and aKGE at the three study basins: (a) AD, (b) HD, and (c) ND for the total simulation
period from 2000 to 2019. The boxplot for annual average streamflow represents the 25th, 50th, and 75th percentile values
along with the mean value by the ‘x’ symbol, and the whisker plot extends to the maximum and minimum values from
the box.
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4. Summary and Conclusions

Long-term streamflow simulations are essential to cope with water-related hazards
and extreme events like severe floods and droughts caused by climate change. The Land
Surface Models (LSMs) can be a useful and effective tool to simulate streamflow variations
influenced by both meteorological and topographical features. The LSMs incorporating
complex terrestrial hydrologic schemes generally require the model calibration process
for local and empirical parameters in the streamflow generation as well. It is therefore
important to use the appropriate objective function that can properly measure the model
performance for the purposes of model applications (e.g., analysis of long-term water
balance and streamflow extremes). The Kling and Gupta Efficiency (KGE) was presented
for the balanced aggregation of equally-weighted three performance metrics consisting
of variability, bias, and correlation of flows, decomposed from the Nash and Sutcliffe
Efficiency (NSE) where the three components are mathematically interrelated. However,
indeed, the KGE optimization is still more influenced by the correlation component that is
inaccessible to the ideal value, unlike the bias and variability measures that are close to
their ideal values in general. There is an obvious tendency for substantial errors in flow
variability and/or average flow of streamflow simulations optimized by the use of the
KGE and NSE. As a result, the calibration process with the KGE and NSE is likely to be
problematic for peak flow and/or water balance analysis in long-term daily streamflow
simulations. For a more balanced calibration approach in the multiple-criteria framework of
the KGE, this study has therefore proposed the aKGE to improve the variability and/or bias
measures through substituting an adjusted correlation term normalized by the maximum
correlation score in the KGE.

To examine and evaluate the characteristics of the aKGE that differs from the KGE and
NSE, the popular objective functions used in the model calibration, this study compared
the performance of long-term daily streamflow simulations from an LSM, the Common
Land Model (CoLM), corresponding to the calibration parameters obtained by the three
objective functions, NSE, KGE, and aKGE. For the model grid-based streamflow generation
in an LSM, this study selected the latest version of the CoLM incorporating the lateral
flow scheme with a diffusion wave surface flow and a topographically controlled baseflow
model. This version of the CoLM has been already tested for a short-term streamflow
simulation over one year to evaluate the seasonal predictability at a 30-km mesoscale. This
study implemented long-term streamflow simulations from the CoLM on the 30-km grids
for the three study basins with the natural unregulated flows at each dam reservoir inflow
site, Andong Dam (AD), Hapcheon Dam (HD), and Nam River Dam (ND) of the Nakdong
River Watershed in the Republic of Korea. The long-term meteorological forcing data to
drive the CoLM standalone simulations were also constructed from the point data of the
43 meteorological stations for the 30-km resolution computational domain fully covering
the three study basins. This study developed a construction process for the long-term
model forcing data set that can be widely used for other distributed hydrologic model
studies as well.

In this study, the CoLM calibration was targeted for the decay factor ƒ and the
anisotropic ratio ζ of the hydraulic conductivity, known as the most influential parameters
for the streamflow generation in the CoLM. By the choice of the three objective functions,
NSE, KGE, and aKGE for the model calibration against streamflow observations at the
three study basins, an optimal set of the two parameters were obtained from ensemble
simulations of daily streamflow time series for the calibration period from 2000 to 2009
and then evaluated for the validation period from 2010 to 2019. Compared with the model
performance achieved by the KGE and NSE, the use of aKGE for the CoLM calibration
systematically improved both variability and bias measures with a slightly decreased corre-
lation score in this case study. The improved variability measure in the aKGE optimization
case resulted in a better agreement between simulations and observations in the extreme
high flow regime of the flow duration curve from each ten-year daily streamflow data
for the calibration (2000–2009) and validation (2010–2019) periods. The general tendency
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to decrease the bias error in the aKGE calibration also provided a better variation and
distribution of annual average streamflow that is much closer to the observation data. Such
improvements to the model performance achieved by the aKGE were consistently found in
all three study basins for both calibration (2000–2009) and validation (2010–2019) periods.
This case study attempted to identify the optimal parameters for long-term daily stream-
flow time series over a sufficient simulation period of ten years each for both calibration
and validation. However, the optimization outcomes in this study have not taken into
account either the sensitivity of the simulation data lengths or the uncertainty in optimal
parameter values to the model performance.

This study has proposed the aKGE that allows the balanced trade-offs among multiple
performance measures and demonstrated the performance improvement gained by the
aKGE in streamflow simulations from the CoLM at large-scale river basins targeted for
mesoscale climate applications. The observed interannual and seasonal variations were
successively reproduced in long-term daily streamflow simulations at the 30-km resolution
from the CoLM incorporating the surface and subsurface lateral flow scheme in a grid-based
LSM. Improvements to the LSM streamflow prediction will help understand the climate
change impact on not only the terrestrial hydrologic cycle but also the terrestrial biodiversity
and ecosystems. It is therefore expected that the streamflow modeling capability of the
CoLM by an appropriate calibration approach proposed in this study can provide the
basic and crucial information on the water resource management and water-related hazard
assessment to cope with climate change.

In future studies, the optimal parameter regionalization can be conducted by multi-
site calibration techniques because there are relatively small changes in the values of the
optimal parameters on the aKGE over the three study basins. Furthermore, to improve the
applicability of the CoLM to the streamflow prediction, more sensitivity analysis is required
for other parameters related to terrestrial hydrologic schemes as well as resolutions in both
hydrograph time series and computational grid spacing. Our modeling experiments in
the present case study can, to some extent, support the fact that the aKGE will mitigate
diagnostic errors in the peak flow and/or water balance of streamflow simulations rather
than the KGE and NSE. However, all the three objective functions, aKGE, KGE, and
NSE are not the best suited for capturing the low flow behavior because such objective
functions based on the mean square error are more likely to be influenced by larger errors
typically experienced in the high flow regime. It is therefore required in further research to
present more feasible objective functions associate with the multiple flow regime metrics
for providing the improved performance of low flows as well, which is also important for
environmental and sustainable water management purposes.
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