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Abstract: Flows originating from cold and mountainous watersheds are highly dependent on temper-
ature and precipitation patterns, and the resulting snow accumulation and melt conditions, affecting
the magnitude and timing of annual peak flows. This study applied a multiple linear regression
(MLR) modelling framework to investigate spatial variations and relative importance of hydrocli-
matic drivers of annual maximum flows (AMF) and mean spring flows (MAMJflow) in 25 river
basins across western Canada. The results show that basin average maximum snow water equivalent
(SWEmax), April 1st SWE and spring precipitation (MAMJprc) are the most important predictors of
both AMF and MAMJflow, with the proportion of explained variance averaging 51.7%, 44.0% and
33.5%, respectively. The MLR models’ abilities to project future changes in AMF and MAMJflow in
response to changes to the hydroclimatic controls are also examined using the Canadian Regional
Climate Model (CanRCM4) output for RCP 4.5 and RCP8.5 scenarios. The results show considerable
spatial variations depending on individual watershed characteristics with projected changes in AMF
ranging from −69% to +126% and those of MAMJflow ranging from −48% to +81% by the end of
this century. In general, the study demonstrates that the MLR framework is a useful approach for
assessing the spatial variation in hydroclimatic controls of annual maximum and mean spring flows
in the western Canadian river basins. However, there is a need to exercise caution in applying MLR
models for projecting changes in future flows, especially for regulated basins.

Keywords: peak flows; multiple linear regression; predictor; predictand; snow water equivalent;
annual maximum flow; climate change; western Canada

1. Introduction

Streamflows originating from cold and mountainous regions are significantly affected
by increasing air temperature and changes in precipitation patterns associated with global
warming. A warming climate results in a shift in precipitation from snow towards rain,
affecting the snowpack volume and snowmelt timing [1]. The magnitude and timing
of peak streamflow events are also affected, often exacerbating flood events and caus-
ing significant damages [2–4]. Western Canada consists of a diverse region spanning
mid- to high-latitudes with highly contrasting topography (Figure 1) and hydroclimatic
regimes [5,6]. Water availability over the majority of the region is largely controlled by
snowmelt, especially from alpine areas in the headwaters of many of the river basins [7].
Hence, the snowmelt-driven spring freshet is the dominant hydrological event for most
of the rivers [8]. While winter temperature and precipitation affect snowfall amount and
late-winter snowpack, spring temperatures affect the rate and timing of spring snowmelt,
directly influencing spring runoff volumes and peak flows [9]. Some cold-season high
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flows in coastal regions are also associated with long-duration rainfalls resulting from
persistent storms, while intense short-duration rainstorms are often responsible for high
flow events in relatively small drainage basins [10]. Peak flows generated by such intense
and/or excessive rainfall typically occur in late spring and summer, when atmospheric
convective precipitation is more common [11].
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Figure 1. The western Canadian study area including the relief map, the drainage basins and the location and regulation 
status of hydrometric stations. Red and blue points depict regulated and unregulated stations, respectively (source of the 
relief map: Natural Resources Canada). 
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tributaries of the Fraser basin and a large part of the Colombia River, are regulated for 
hydropower production. Similarly, most parts of the Saskatchewan and Okanagan rivers 
have a system of reservoirs and diversions for irrigation and hydroelectricity [7]. There-
fore, while data from 13 of the selected stations represent unregulated natural flows, the 
12 remaining stations are designated as regulated with major upstream structure(s) alter-
ing the natural flow regime. The level of flow alterations in the regulated stations varies, 
with the Fraser River at Hope having minor flow alteration, while stations in the Peace 
and Columbia basins are affected by major flow alterations from upstream dams [27]. 
Flows in the Saskatchewan and Okanagan basins are also affected by water withdrawal. 
Nonetheless, the effect of upstream regulation on hydrologic regime usually diminishes 

Figure 1. The western Canadian study area including the relief map, the drainage basins and the location and regulation
status of hydrometric stations. Red and blue points depict regulated and unregulated stations, respectively (source of the
relief map: Natural Resources Canada).

Several studies indicate that western Canadian snowpack is diminishing, especially
in the southern regions, reducing the amount of water stored over the winter months
and affecting the amount of runoff produced in the spring and summer [12–15]. Both
glacial retreat and shrinking snowpacks have been accompanied by changes in runoff
patterns and streamflow timing, two factors that can have substantial effects on aquatic
ecosystems and urban water systems [16–18]. Studies also suggested that the changes
in the timing and magnitude of hydrologic extremes may be one of the most significant
consequences of climate change in Canada [2,19]. Future projections over cold region
watersheds indicate continued changes in the different components of the hydrologic cycle,
such as temperature, precipitation, snow accumulation and melt, with the potential to
further impact local and regional hydrological regimes. In many cases, such projected
changes are also expected to cause changes in the magnitude and timing of the spring
freshet and peak flow events [15,20]. However, peak flow prediction is a challenging
endeavor due to the different mechanisms involved and the nonlinear, nonstationary
nature of the underlying hydrological processes.

Statistical modelling techniques such as multiple linear regression (MLR) have been
widely used in hydrology, e.g., for establishing predictor–predictand relationships and
identifying predictors’ relative importance such as in spring freshet and peak flow pre-
diction [21–24]. Such statistical predictions of hydrologic time series mostly depend on
historic observations and are based on the correlations between the predictand and predic-
tor variables that manifest the influence of large-scale climate on the hydrologic regime [21].
In this context, for snow-dominated regions like western Canada, where peak streamflow
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is highly dependent on snowpack [10], the inclusion of snow storage in the regression
model could provide a potential pathway for improving the linear regression model. If
acceptable levels of correlations are found, an MLR framework can be useful to build
models for predicting the spring freshet and peak flows. There may also be a possibility
to extend the MLR approach to projecting flows for future climate. However, this could
be challenging if projected changes in the temperature and precipitation distributions are
large, thus shifting the distribution of streamflow extremes beyond the range of historical
observations. Therefore, there is a need to evaluate carefully the ability of the MLR models
to simulate future streamflow changes. Such evaluations can provide insights that could
be useful for other snow-dominated regions of the world. Besides, there is also a need to
analyze the model’s predictive ability in basins affected by direct human impacts, such as
regulation and diversion that could significantly alter the streamflow regime and affect the
predictability of streamflow response.

Given the aforementioned knowledge gaps, the first objective of this study is an
application of the MLR modelling framework to assess the relative importance of different
climatic drivers on the spatial and temporal variation in annual maximum flow (AMF)
and mean spring flows (comprising March, April, May and June, hereafter MAMJflow).
The application is conducted over 25 western Canadian river basins where the relative
importance of a number of predictors, including the annual maximum snow water equiva-
lent (SWEmax) or April 1st SWE, mean spring precipitation (MAMJpcp) and temperature
(MAMJtemp), is analyzed over the 1980 to 2012 historical period. The second objective of
the study is to investigate the applicability of the MLR model to project changes in the AMF
and MAMJflow in the region, using CanRCM4 projected climatic drivers corresponding to
RCP4.5 and RCP 8.5 scenarios over the 21st century. The study also examines differences
in MLR model performances between regulated and unregulated basins.

2. Study Area and Data Sets

This study assesses all major river basins across western Canada with a total area of
around 2.5 million square kilometers (Figure 1). The region’s physiography is dominated by
the Western Cordillera mountains, which are the hydrologic apex of major western North
American rivers that drain to the Pacific and Arctic oceans [17]. The major watersheds
in the region include the Mackenzie, Yukon, Fraser, Colombia and Saskatchewan, and
the flow in each of these river systems is heavily dependent on from mountain snowpack
and glaciers [7]. Twenty-five Water Survey of Canada (WSC) hydrometric stations each
with drainage areas of more than 7500 square kilometers are utilized. The threshold
for the drainage area was chosen to ensure an ample number of grids for the predictor
variables described below. Most of the selected stations are located in British Columbia (10),
Alberta (6) and the Northwest Territories (7), with the remaining two in Manitoba (1) and
Saskatchewan (1). Daily streamflow data from the Water Survey of Canada (WSC) HYDAT
database over the 1980–2012 historical period were used to extract AMF and MAMJflow
at each of the 25 stations. Basin boundary delineation for each station was obtained from
the National Hydrometric Network basin polygons online database [25] and verified with
in-house delineations generated by the GRASS GIS tools [26].

Some of the rivers in the study region, such as the Peace River in the Mackenzie
basin, tributaries of the Fraser basin and a large part of the Colombia River, are regulated
for hydropower production. Similarly, most parts of the Saskatchewan and Okanagan
rivers have a system of reservoirs and diversions for irrigation and hydroelectricity [7].
Therefore, while data from 13 of the selected stations represent unregulated natural flows,
the 12 remaining stations are designated as regulated with major upstream structure(s)
altering the natural flow regime. The level of flow alterations in the regulated stations
varies, with the Fraser River at Hope having minor flow alteration, while stations in the
Peace and Columbia basins are affected by major flow alterations from upstream dams [27].
Flows in the Saskatchewan and Okanagan basins are also affected by water withdrawal.
Nonetheless, the effect of upstream regulation on hydrologic regime usually diminishes
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with distance downstream of the regulation location. Therefore, regulated stations were
included in the study to explore whether the annual peak flows in these locations are
influenced by antecedent climatic conditions and if the MLR can still capture the prevailing
relationship between the climatic drivers and mean spring and annual peak flows in such
basins. Since major regulations in each of those 12 basins started before 1980, the study
employed the 1980–2012 historical streamflow data for better consistency. The 25 stations
and their drainage areas and geographic coordinates are provided in Table 1.

Table 1. Hydrometric stations across western Canada used for annual maximum and mean spring flow analysis and
MLR modelling.

Number Station Name Area (km2) Lat Lon Regulation

10LC014 Mackenzie River at Arctic Red River 1,680,000 67.4560 −133.7533 Yes
10KA001 Mackenzie River at Norman Wells 1,590,000 65.2720 −126.8500 Yes
10GC001 Mackenzie River at Fort Simpson 1,300,000 61.8684 −121.3589 Yes
05KJ001 Saskatchewan River at the Pas 389,000 53.8381 −101.2087 Yes
07KC001 Peace River at Peace Point 293,000 59.1181 −112.4369 Yes
10ED002 Liard River near the Mouth 275,000 61.7427 −121.2280 No
08MF005 Fraser River at Hope 217,000 49.3860 −121.4542 Yes
08NE058 Columbia River at International Boundary 156,000 49.0008 −117.6283 Yes
07DA001 Athabasca River below Fort McMurray 133,000 56.7804 −111.4022 No
05GG001 North Saskatchewan River at Prince Albert 131,000 53.2034 −105.7721 Yes
10BE001 Liard River at lower Crossing 104,000 59.4125 −126.0972 No
07FD002 Peace River near Taylor 101,000 56.1394 −120.6724 Yes
10MC002 Peel River above Fort McPherson 70,600 67.2589 −134.8888 No
05AJ001 South Saskatchewan River at Medicine Hat 56,368 50.0421 −110.6775 Yes
07OB001 Hay River near Hay River 51,700 60.7430 −115.8596 No
07GJ001 Smoky River at Watino 50,300 55.7146 −117.6231 No
05CK004 Red Deer River near Bindloss 47,849 50.9027 −110.2995 Yes
08EF001 Skeena River at Usk 42,300 54.6319 −128.4306 No
08CE001 Stikine River at Telegraph Creek 29,000 57.9003 −131.1597 No
10CD001 Muskwa River near Fort Nelson 20,300 58.7881 −122.6616 No
08DB001 Nass River above Shumal Creek 18,400 55.2623 −129.0850 No
08BB005 Taku River near Juneau 16,700 58.5386 −133.7000 No
07AD002 Athabasca River at Hinton 9760 53.4243 −117.5694 No
08CG001 Iskut River below Johnson River 9500 56.7344 −131.6690 No
08NM085 Okanagan River near Oliver 7540 49.1146 −119.5667 Yes

Daily precipitation and daily maximum and minimum air temperature data were
obtained from the Pacific Climate Impacts Consortium’s Pacific North-Western North
America meteorological (PNWNAmet) dataset [28]. PNWNAmet is a temporally consis-
tent high-resolution gridded daily meteorological dataset at 1/16◦ spatial resolution for
northwestern North America interpolated from temporally consistent long-term homog-
enized daily station data covering 1945 through 2012. Additionally, historical gridded
SWE data were obtained from the NASA Global Modeling and Assimilation Office’s
(GMAO) Modern-Era Retrospective Analysis for Research and Applications, Version 2
(MERRA-2) [29]. MERRA-2 provides atmospheric and surface reanalysis data at 50 km
spatial resolution from 1980 to the present. As MERRA-2 uses observation-based precip-
itation data to drive the land surface water budget, its SWE product has lower bias and
correlates better against reference data from the Canadian Meteorological Centre than other
reanalysis products [30]. For each of the 25 stations, gridded precipitation, temperature
and SWE data were extracted and then averaged over the contributing drainage basins.
The 1980–2012 time window for the historical period was chosen based on an overlapping
time frame between the MERRA-2 data, which starts in 1980, and the PNWNAmet data,
which ends in 2012.
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3. Application Methods
3.1. Multiple Linear Regression (MLR)

MLR is an extension of ordinary least square regression that can model the linear
relationship between several explanatory (predictor) variables and a response (predictand)
variable as shown in Equation (1), where i is the index of each observation, yi is the response
variable, xi represents the explanatory variables, β0 is the y-intercept, βp represents slope
coefficients and ε is the residual. MLR provides a computationally easy and simple to
interpret method of predicting streamflow. The main assumptions are that there is a linear
relationship between the predictor and predictand variables and that the predictors are not
too highly correlated with each other.

yi = β0 + β1xi1 + β2xi2 + . . . + βpxip + ε (1)

While hydrologic processes have nonlinear characteristics, a number of previous
studies have shown that MLR between selected predictors and predictand variables can
explain most of the variance in catchment responses [21–24]. In most of the cases, predictors
were selected based on an understanding of the physical processes, relevant literature
and initial exploratory data analysis. The MLR is also a relatively simple approach for
identifying the relative importance of the different potential predictors and the level
of significance in the linear relationship established between the predictor and response
variables. In this study, the MLR models relate the AMF or MAMJflow (predictands) at each
of the 25 hydrometric stations over western Canada with the corresponding basin average
values of selected hydroclimatic drivers (predictors). Seven predictors were selected
based on the underlying physical processes, relevant literature and initial exploratory
data analysis [8,21,24]. As the SWEmax and April 1st SWE are highly correlated, the
MLR uses either the magnitude and timing of SWEmax or April 1st SWE, but not both,
to avoid multicollinearity. Average spring temperature and precipitation are calculated
over the months from March to June (hence MAMJtemp and MAMJpcp respectively). The
monthly rates of change in spring temperature (spring warming rate) and precipitation
(the spring rate of increasing/decreasing in precipitation) are also calculated as the slope
of each variable between March and June (hence MAMJtemp-slope and MAMJpcp-slope,
respectively). The nonparametric Spearman’s rank correlation between each predictor
and predictand measures the strength and direction of monotonic association between
two variables and is estimated using Equation (2), where Di is the difference in ranks
between the ith pair of predictor and predictand and n is the number of data pairs (see
Table 2) [31]. The correlation coefficient, rs, takes values from +1 to −1, and the strength
of the rank correlations was analyzed in terms of statistical significance tests at the 5%
significance level.

rs = 1 −
6 ∑n

i=1 D2
i

n(n2 − 1)
(2)

Table 2. Hydroclimatic predictors used in the MLR models to predict AMF and MAMJflow at each of the hydrometric stations.

Predictor Name Abbreviation Units Data Source

Annual maximum snow water equivalent SWEmax mm MERRA-2
Date of annual maximum snow water equivalent SWEmax-date Date number MERRA-2

April 1st snow water equivalent SWEapril 1st mm MERRA-2
Average spring temperature MAMJtemp °C PNWNAmet

Rate of change in spring temperature MAMJtemp-slope °C/month PNWNAmet
Total spring precipitation MAMJpcp mm PNWNAmet

Rate of change in spring precipitation MAMJpcp-slope mm/month PNWNAmet
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MLR models are fitted to the predictor/predictand data at each station over the 1980
to 2012 historical period, with MAMJpcp, MAMJpcp-slope, MAMJtemp, MAMJtemp-
slope as common predictors and either April 1st SWE or SWEmax and its timing as
additional predictors and either AMF or MAMJflow as predictand. First, a best subsets
regression approach, as implemented in the R leaps package version 3.0, was employed
to fit MLR models to all possible combinations of the predictor variables and each of
the two predictands. Then, the best fitting MLR model from the pool of all possible
combinations with one to five predictor variables (when using April 1st SWE) or one to
six predictor variables (when using SWEmax and its timing) were chosen based on the
sum-of-squares of residuals [32]. This approach involved an exhaustive comparison of
models from each predictor size group and ended in the selection of models with the lowest
Akaike information criterion (AIC) [32].

These five or six models each selected from a predictor size group were then compared
in terms of their predictive power by repeated k-fold cross-validation, with k = 5 [33]. The
k-fold cross-validation procedure divides the limited dataset into k nonoverlapping folds.
Each of the k folds is given an opportunity to be used as a held-back test set, whilst all other
folds collectively are used as a training dataset. A total of k models were fit and evaluated
on the k hold-out test sets and the mean performance was reported. The model with the
lowest root-mean-square error (RMSE) from k-fold cross-validation was selected as the
final model if it was statistically significant at a p-value of 0.05. All selected models were
also tested for their fulfillment of the regression assumptions by computing their variance
inflation factors (VIF) with the intention of removing highly correlated predictors with VIF
above the most common acceptable threshold of 5 [33,34].

3.2. Predictors’ Relative Importance

Predictor relative importance refers to the quantification of an individual predictor’s
contribution to a multiple regression model. To identify which predictors are the most
influential in explaining variation in AMF and MAMJflow, the total explained variance,
R2, of each selected model for a station was decomposed into the proportion explained
by each individual predictor using the Lindemann, Merenda and Gold (LMG) method
as implemented in the R package relimpo [35]. In addition to the variance explained by
each predictor, the percentage of the total variance (explained by the model, R2) that is
contributed by each predictor variable provides a measure of the relative importance of
each variable. Analysis of these metrics included the frequency of dominant predictors
among all station models, where a dominant predictor is defined as the predictor in a model
with the highest relative importance. The spatial distribution of dominant predictors was
also mapped as it may be a good indicator of the effect of watershed features on predictor–
predictand relationships.

3.3. Future Projection of Annual Peak and Spring Flows

To evaluate the applicability of the selected MLR models for estimating future mag-
nitudes of AMF and MAMJflow, climatic predictors derived from the Canadian Regional
Climate Model (CanRCM4; Scinocca et al., 2016) [36] under RCP4.5 and RCP8.5 future
scenarios were used. The CanRCM4 output used in this study is from the CORDEX Experi-
ments for North America (NAM-22), which is at 0.22◦ or approximately 25 km resolution
and driven by the CanESM2 GCM [36]. Recognizing that RCM outputs usually have
systematic biases [37], this study employed the “delta change method”, to account for
the biases in future predictor values. Mean projected changes in each of the predictor
variables between the 1976–2005 baseline and the two future periods (2041–2070 and
2071–2100) were computed from the CanRCM4 data and then averaged over the basin
area contributing to each of the 25 hydrometric stations. The future predictor values for
each hydrometric station were computed by applying the CanRCM4 delta changes on the
observed values derived from MERRA-2 and PNWNAmet over the historical period as
shown in Equation (3) below:
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{
∆m = CanRCM4 f uture − CanRCM4baseline or ∆m = CanRCM4 f uture/CanRCM4baseline
Scenario f uture = Observedhistorical + ∆m or Scenario f uture = Observedhistorical ∗ ∆m

(3)

Changes between the baseline and future periods were calculated in terms of ratios for
SWEmax, SWEapril 1st, MAMJpcp, MAMJpcp-slope and MAMJtemp-slope or differences
for MAMJtemp and SWEmax-date and applied to the historical observations to obtain
the corresponding future projections (Equation (3)). The MLR model for each station was
then forced with the adjusted hydroclimatic predictors to compute AMF and MAMJflow
corresponding to the different RCP scenarios and future periods.

4. Results and Discussion
4.1. Spearman’s Rank Correlation

The Spearman correlations between the selected predictors and predictands at each
of the 25 hydrometric stations are presented in Figure 2. The correlation coefficients (as
expressed by rs) indicate that both the AMF and MAMJflow at most of the stations are
positively correlated with SWEmax, April 1st SWE and spring precipitation (MAMJpcp)
and negatively correlated with mean spring temperature (MAMJtemp), though the corre-
lation strength varies. However, there are some smaller watershed stations in the Pacific
coastal region (e.g., 08CG001 and 08DB001) and some regulated stations (e.g., 05AJ001)
that show weaker correlations with these predictors. This is mainly because peak flows
in those coastal watersheds are less controlled by snowmelt and more by rainfall, and in
regulated stations, they are affected by regulations. The correlations with SWEmax timing
(SWEmax-date) and mean spring precipitation and temperature slopes (MAMJtemp-slope
and MAMJpcp-slope, respectively) are generally weaker, although they are significant at
some specific stations. While there are some differences in the correlation matrix between
regulated and unregulated stations, the results do not indicate one group as being more
correlated than the other.

4.2. MLR Model Performances

The MLR models fitted to each of the 25 stations and four combinations (with either
AMF or MAMJflow as predictand and either SWEmax and its timing or April 1st SWE
as predictors) over the 1980 to 2012 period resulted in a total of 100 optimized models.
None of the selected models were found to have problematic multicollinearity, with VIF
less than 5 indicating no significant correlation between predictor variables [31]. This
may be explained in part by the careful initial variable selection which included the
decision to build models with either SWEmax or April 1st SWE but not both variables.
However, 12 models (9 for AMF and 3 for MAMJflow, out of the 100) that are not statistically
significant (p-value > 0.05) were removed, resulting in the final selection of 88 MLR models.
Some of the stations where the MLR models are not statistically significant are located
in the Pacific coastal region (e.g., 08CG001, 08DB001), while others are in the interior of
the Mackenzie basin with relatively large drainage areas that are affected by the Peace
River regulations (e.g., 10KA001, 10LC014). Nonetheless, MLR models also show good
performances in most other regulated basins comparable to those of the nonregulated
ones. The list of all selected models corresponding to each hydrometric station along with
models’ R2 and p-values is provided in Supplementary Materials.

The MLR performances are presented in Figure 3, which summarizes the mean per-
centage differences between model-predicted and observed AMF and MAMJflow over
the 1980–2012 historical period for those models with p-value < 0.05 along with error
bars indicating the 95% confidence interval. The results generally indicate a good model
performance with the historical period mean prediction error at most stations being within
±10% of the observed values. However, few stations have prediction errors in some years
in the order of ±20%. It is also not surprising that most of the stations with relatively
higher prediction error are located in highly regulated watersheds (e.g., 08NM085 and
05AJ001 have water withdrawals, and 07KC001 is affected by reservoir regulation). Other



Water 2021, 13, 1617 8 of 17

factors including the size and hypsometry of the contributing watershed may also affect
the performance of the MLR models. However, since the effects of the different factors are
overlapping, it is hard to clearly identify the specific reason for some of the unsatisfactory
performances. The error in predicting AMF is relatively larger than that in predicting
MAMJflow. This is also expected because MAMJflow is averaged flow over four months
where the daily variations are smoothened out while AMF is a peak of daily flows occur-
ring at any time during the spring or summer high flow seasons. For the majority of the
stations, the MLR models with either SWEmax or April 1st SWE as predictor show similar
performances, except in a few stations where using April 1st SWE resulted in a relatively
smaller prediction error.
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performances. The error in predicting AMF is relatively larger than that in predicting 
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Figure 2. Spearman correlation of AMF (left panel) and MAMJflow (right panel) with area-averaged predictors corre-
sponding to each of the 25 hydrometric stations. Top panels represent stations not affected by regulation while the bottom
panels represent regulated basins. Bold entries correspond to Spearman correlations with p < 0.05.
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4.3. Predictors’ Relative Importance

Figure 4 shows the relative importance of each climatic predictor in the MLR models
in explaining the variances of the predictands at each hydrometric station. Top and bottom
panels correspond to AMF and MAMJflow while left and right sides display SWEmax
and April 1st SWE, respectively. For the majority of stations, April 1st SWE or SWEmax
contributed the highest proportion of explained variance, indicating the relatively higher
importance of snow accumulation in predicting AMF and MAMJflow. For most stations,
MAMJPrc has the second-highest predictor importance. The proportion of explained
variance in predicting both AMF and MAMJflow averaged across all stations is in the
order of 44% for April 1st SWE and 51.7% for SWEmax. This is followed by MAMJprc
with the proportion of explained variance ranging between 29.4% and 37.6% under the
different categories. However, for some regulated stations (e.g., 08NM085, 05CK004,
05AJ001, 05KJ001), the predictor importance of MAMJprc is higher than that of SWE.
MAMJprc-slope contributed more to the explained variance of AMF while MAMJtemp
and MAMJtemp-slope contributed more to the explained variance of MAMJflow at about
half of the stations. While MAMJprc-slope contributes to around 10% of the explained
variance in predicting AMF, its contribution to predicting MAMJflow is almost nonexistent
(<0.3%). The results also show that the contribution of MAMJtemp and MAMJtemp-slope
to the explained variance is relatively small and with higher contribution to predicting
MAMJflow (5–13%) than to AMF (2–5%).
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Figure 4. Relative importance of each predictor variable presented in terms of fraction of the explained variance in predicting
annual maximum flow (AMF) and mean spring flow (MAMJflow) at each hydrometric station.

Similarly, Figure 5 presents the spatial distribution of predictors’ relative importance
for the AMF and MAMJflows at each of the 25 stations over western Canada. Once again the
figure shows SWEmax as the most important predictor at most stations (21/25 for AMF and
24/25 for MAMJflow), followed by MAMJprc, which is also an important predictor (20/25
for AMF and 19/25 for MAMJflow). MAMJtemp and MAMJtemp-slope are important
predictors of MAMJflow for about one-third of the stations, mostly located in the middle
part of the study region, while their contribution to predicting AMF is limited to a couple
of stations. MAMJprc-slope is important in predicting AMF in the southern and Pacific
coast regions but not that important in predicting MAMJflow in most parts of the study
region. The contribution of SWEmax timing in predicting both AMF and MAMJflows is
limited only to a few stations. The generally smaller importance of spring temperature and
its rate of increase in predicting AMF is an indication that spring peak flows in most basins
are affected more by accumulated snow and spring precipitation than temperature. The
predictability of MAMJflow is also mostly dependent on more variables than that of AMF,
a possible reason for the MAMJflow models being more robust with relatively smaller
prediction errors. While the importance of SWEmax in predicting flow is higher towards
the northern part of the study region, the importance of MAMJprc is higher towards the
south, possibly resulting from the effect of temperature on partitioning precipitation into
rain and snow. In general, the results presented in Figure 5 show that predictors’ relative
importance is spatially variable and cannot be generalized for the whole region.
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Figure 5. Spatial distribution of predictors’ relative importance in predicting annual maximum flow (AMF) and mean
spring flow (MAMJflow) at each station over western Canada expressed as the proportion of the total explained variance
(R2) contributed by each predictor.

4.4. Projected Changes in Hydroclimatic Variables

Figure 6 shows mean CanRCM4 projected changes in each of the predictor variables
between the 1976–2005 baseline and the two future periods (2041–2070 and 2071–2100)
for the two scenarios (RCP4.5 and RCP8.5). The results indicate that both MAMJpcp and
MAMJtemp are projected to increase from 10% to 50% for the former and from 2 to 7 ◦C
for the latter depending on the RCP scenarios and the future time windows considered.
As expected, the biggest increases for both precipitation and temperature occur under
RCP8.5 and far future (2071–2100) period while the smaller increases correspond to RCP4.5
and the near future (2041–2070) period. While there are some regional variations in the
projected changes in spring precipitation and temperature with slightly higher increases in
the northern than the southern basins, the differences are relatively small.
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Figure 6. Projected changes in catchment-averaged predictor variables between each of the two future periods
(2041–2070 and 2071–2100) and the baseline period (1976–2005) based on the CanRCM4 model projection over the study
area corresponding to the RCP4.5 and RCP8.5 scenarios.

SWEmax and April 1st SWE are both projected to decrease in the majority of the
basins under both scenarios and time periods with values ranging from −80% to +5%. The
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greatest decreases are mostly in the Fraser, Colombia, and Pacific coast basins, while the
smallest decreases or even slight increases correspond to the most northern basins, as was
also found in previous studies [15,38]. At the same time, SWEmax timing is projected to
advance by about 5 to 25 days in all river basins. MAMJpcp-slope increases in almost all
basins (except two), indicating more increase in precipitation in the later part rather than
the earlier part of spring. In contrast, MAMJtemp-slope show decreases for most basins,
indicating higher increases in early spring than late spring, except for a few southern
stations where the reverse is true. In general, while the overall direction of projected
changes in the predictor variables over most parts of the study region is similar, there are
some north-to-south variations in the magnitude of those changes.

4.5. Projected Changes in AMF and MAMJflow

Future projections of AMF and MAMJflow were computed using the MLR models de-
veloped for the historical period, with delta changes from the CanRCM4 projections under
the two RCP scenarios applied on the observed predictor values (Equation (3)). The results
indicate overall projected increases in both the AMF and MAMJflow for most of the stations,
with a few stations showing no change or some decreases (Figure 7). For RCP8.5 and the far
future period, the average increase in AMF (12%, ranging from −69% to +126%) has more
spatial variability than that of MAMJflow (28%, ranging from −48% to +81%) (Figure 8).
The largest percent increases in both are located in Saskatchewan (05AJ001, 05CK004),
although large increases in MAMJflow are also projected in the Athabasca (07AD002) and
other northwestern rivers. The largest decreases in both AMF and MAMJflow are located at
the Peace River at Taylor (07FD002) and Peace Point (07KC001), respectively. Most northern
stations are projected to have relatively smaller percentage changes in AMF compared to
the south, although the absolute magnitude of these changes can be larger for those with
relatively larger flow magnitudes, such as in the Mackenzie River mainstem stations.
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Projected increases in AMF are mostly located in the interior of western Canada, while
increases in MAMJflow are found throughout the region. However, the projected AMF
in the coastal basins could be subject to large uncertainties since peak flow events in the
region are sometimes influenced by atmospheric rivers, which is not taken into account in
the MLR model [39]. No clear pattern was found differentiating the results from regulated
and unregulated stations since some regulated stations (e.g., in Peace, Fraser and Colombia
rivers) show projected decreases in AMF and MAMJflow while other regulated stations
(e.g., South Saskatchewan and Liard rivers) show increases. The wide variation in the
direction and magnitude of projected changes in AMF among the river basins could partly
be due to changes in the synchrony of mainstem and tributary streamflow during high-flow
periods at the mainstem–tributary confluence [40]. Decreasing synchrony may dampen
the forced increases in AMFs along mainstem stations, but its relative effects may vary in
space and time, as well as in future climate scenarios.

A comparison of the projected changes in flows using the MLR models and future
climate projections (applying delta change method) with those of other previous studies
using process-based hydrological models driven by statistically downscaled GCMs shows
both agreement and disagreement depending on basin characteristics. For example, the
directions of MLR-projected changes, such as increases in AMF and MAMJflow for the
unregulated Liard (10BE001, 10ED001) and Athabasca (07DA001) basins, are consistent
with previous studies in the two basins using process-based hydrologic models [15,41].
Similarly, for the mildly regulated station in the Fraser basin (08MF005), the MLR model
projections of decreases in AMF and no change in MAMJflow are comparable with the
projections of decreases in AMF and some increases in MAMJflow of Shrestha et al. [27].
However, the MLR model projections for the Peace basin (07KC001, 07FD002) are not
consistent with the results of Schnorbus et al. [42], which showed projected increases in
both AMF and MAMJflow. Likewise, the MLR projected decreases in AMF and MAMJflow
at another regulated station in the Columbia River (08NE058), in contrast to the projected
increases for the same basin reported by Werner et al. [43]. The discrepancies could be
partly explained by the fact that both the Peace and Columbia rivers are highly regulated
by large hydroelectric dams/reservoirs. Schnorbus et al. [42] and Werner et al. [43] also
used naturalized flows, while the MLR models are based on the regulated flows. Besides,
the lack of representation of physical processes in the MLR model is one of its limitations in
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extrapolating beyond the range of historical observation affecting flow projections for some
basins. Therefore, the overall ability of the MLR model to project AMF and MAMJflow
may be limited, especially when applied to regulated basins.

5. Summary and Conclusions

Flows originating from cold and mountainous watersheds are highly dependent
on their snow regimes that are determined by temperature and precipitation patterns
over the region. Climatic variations generally affect the mean seasonal flows and the
magnitude and timing of peak streamflow events with implications on infrastructures
and ecosystem services. This study applied the MLR approach for assessing the climatic
controls of AMF and MAMJflow in 25 western Canadian river basins using multiple
station-specific hydroclimatic predictors. The analysis indicated that the basin-integrated
SWEmax or April 1st SWE and mean spring precipitation (MAMJPr) are the most prominent
predictors of AMF and MAMJflow throughout the region, together explaining over 80% of
the predictand’s variance. The proportion of explained variance is in the order of 44% for
April 1st SWE and 51.7% for SWEmax, followed by MAMJprc explaining between 29.4%
and 37.6% of the predictand’s variance. However, predictors’ relative importance was
spatially variable and could not be generalized for the whole region. While the relative
importance of SWEmax in predicting flow is higher towards the north and that of MAMJprc
is higher towards the south, the relative importance of MAMJtemp is mostly higher in the
middle part of the study region. The best-fitting MLR models were statistically significant
at a p-value of 0.05 at the majority (88%) of the stations, and mean prediction errors over the
historical period were below ±10% at most stations (although a few stations had prediction
errors ranging in the order of ±20%).

The results of this study are highly relevant to other regions of the world where
runoff processes are dominated by mountain snowpack. The main lesson is that while
winter snow accumulation and spring precipitation are the major drivers of mean spring
and annual peak flows in cold mountainous watersheds, their relative contribution to
predictability largely depends on the location and other physiographic characteristics of
the watersheds. Other studies have also shown that the transformation from snow accu-
mulation to runoff generation in cold regions is dominated by snowmelt and infiltration
processes that are highly heterogeneous [44]. In particular, direct human impacts, such as
regulation and diversion in the basin, can alter its flow regime and affect the dependency
between those predictor and response variables. Therefore, there is a need to carefully con-
sider physiographic characteristics as well as human impacts in using regression models
for streamflow simulation.

A warming climate will bring a shift in precipitation from snow towards rain, affecting
the snowpack volume and snowmelt timing. Therefore, by adjusting the snowpack together
with precipitation and temperature based on CanRCM4 projections, the MLR models were
tested to see if they can be applied to predict future changes in AMF and MAMJflow.
CanRCM4 outputs show a general increase in mean spring temperature (2 to 7 ◦C) and
precipitation (10% to 55%) and an overall decrease in SWEmax and April 1st SWE for all
but two river basins (+5% to −95%) by the end of this century. Application of the MLR
models with adjusted hydroclimatic predictors revealed considerable spatial variations,
with the projected increase in spring precipitation mostly compensating the opposite effect
of increasing spring temperature and decrease in SWE and resulting in AMF changes
ranging from −69% to +126% and MAMJflow changes ranging from −48% to +81%.
Projected changes are mostly higher for the RCP8.5 and end-of-century scenarios. Projected
changes in MAMJflow across the region are more consistent than those of AMF. Other
things being equal, change in phase of precipitation from snow towards rain (because of
increasing temperature) usually decreases the mean streamflow [1]. However, the current
study indicated that the projected increase in precipitation can sometimes compensate for
the effect of the decreasing fraction of snowfall and may result in an increase in spring flow.
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Comparisons of the MLR model projections with some previous studies using process-
based hydrological models driven by statistically downscaled GCMs show good agreement
in the direction of change for most of the unregulated rivers, while there are substantial
disagreements for the regulated river basins. This is in part due to the lack of physical rep-
resentation in these models, as well as limitations in extrapolating future flow magnitudes
beyond the range of historical observation. Therefore, there is a need to exercise caution
in the use of such statistical models for projecting future changes, especially in regulated
basins. More research is needed to better understand the extent of the limitation and ways
of incorporating relevant information in the modelling process to reduce those limitations.
Future research may also look at possible improvements by applying nonlinear methods
such as artificial neural networks (ANNs) and other machine learning techniques.
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