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Abstract: Accurate real-time water quality prediction is of great significance for local environmental
managers to deal with upcoming events and emergencies to develop best management practices. In
this study, the performances in real-time water quality forecasting based on different deep learning
(DL) models with different input data pre-processing methods were compared. There were three
popular DL models concerned, including the convolutional neural network (CNN), long short-
term memory neural network (LSTM), and hybrid CNN–LSTM. Two types of input data were
applied, including the original one-dimensional time series and the two-dimensional grey image
based on the complete ensemble empirical mode decomposition algorithm with adaptive noise
(CEEMDAN) decomposition. Each type of input data was used in each DL model to forecast the
real-time monitoring water quality parameters of dissolved oxygen (DO) and total nitrogen (TN).
The results showed that (1) the performances of CNN–LSTM were superior to the standalone model
CNN and LSTM; (2) the models used CEEMDAN-based input data performed much better than
the models used the original input data, while the improvements for non-periodic parameter TN
were much greater than that for periodic parameter DO; and (3) the model accuracies gradually
decreased with the increase of prediction steps, while the original input data decayed faster than the
CEEMDAN-based input data and the non-periodic parameter TN decayed faster than the periodic
parameter DO. Overall, the input data preprocessed by the CEEMDAN method could effectively
improve the forecasting performances of deep learning models, and this improvement was especially
significant for non-periodic parameters of TN.

Keywords: convolutional neural network (CNN); long short-term memory neural network (LSTM);
complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN);
real-time monitoring; water quality parameters

1. Introduction

As the most important water source for human life and industry production, sur-
face water is extremely vulnerable to being polluted. By quantifying different types of
parameters, water quality monitoring can help us to develop best management practices to
protect water source safety and improve aquatic habitats [1]. With the development of the
social economy, many regions of China are facing severe water pressure due to increasing
water demand and decreasing available water resources as the result of surface water pollu-
tion [2]. Therefore, precisely and timely monitoring and prediction of surface water quality
is particularly critical to local environmental managers for designing pollution reduction
strategies and responding to environmental emergencies. In recent years, many studies
have estimated water quality parameters through different methods based on artificial
intelligence tools. For example, Fijani et al. designed a hybrid two-layer decomposition
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using the complete ensemble empirical mode decomposition algorithm with adaptive noise
(CEEMDAN) and the variational mode decomposition (VMD) algorithm coupled with
extreme learning machines (ELM) to predict chlorophyll-a (Chl-a) and dissolved oxygen
(DO) in a reservoir [3]. Chen et al. compared the water quality prediction performances of
several machine learning methods using monitoring data from the major rivers and lakes
in China from 2012 to 2018 [4]. Lu et al. designed two hybrid decision tree-based models to
predict the water quality for the most polluted river Tualatin River in Oregon, USA [5].

Artificial intelligence (AI) techniques have been popular data-based methods in recent
years and have been successfully developed to predict nonlinear and non-stationary time
series in many fields. For example, the neuro-fuzzy expert systems have been used to mon-
itor the corrosion phenomena in a pulp and paper plant [6]. The artificial neural networks,
support vector machine, and adaptive neuro-fuzzy inference systems (ANFIS) were applied
to model complex hydrologic systems [7,8]. The fuzzy logic and ANFIS were applied for
flood prediction [9]. However, compared to these “shallow” modelling methods, the deep
learning (DL) models have been developed as a reliable estimation and prediction tool in
many fields, such as image classification [10], speech recognition [11], COVID-19 diagnostic
and prognostic analysis [12], rainfall-runoff modeling [12], and streamflow prediction [13].
Among the multiple DL models, long short-term memory (LSTM) and convolutional neural
networks (CNN) are the two most commonly used models. Barzegar et al. used standalone
LSTM and CNN and hybrid CNN–LSTM models to predict DO and Chl-a in the Small
Prespa Lake in Greece, and found that the hybrid model was superior to the standalone
models [14]. Hao et al. applied singular spectrum analysis and ensemble empirical mode
decomposition to preprocess the data at first, and found that the performances of LSTM
model were better than using the raw data directly [15]. Wang et al. used wavelet-based
LSTM, CNN–LSTM, and LSTM for monthly streamflow and rainfall forecasting, and found
that LSTM was applicable for time series prediction, but the two hybrid models were supe-
rior alternatives [16]. The previous studies have shown that the hybrid models are superior
to the standalone models, and the preprocessing method could improve the performances
of the DL models. However, after analyzing these studies, we think that some issues should
be noted and considered. First, different parameters represent different substances, so the
time series of these parameters have different fluctuation characteristics. For example, DO
is greatly affected by temperature, so it has obvious seasonal variations [17]. The excess
total nitrogen (TN) and total phosphorus (TP) entering the surface water mainly comes
from human activities, and the seasonal variations are not significant [18]. We wonder
whether the DL models have satisfactory prediction performances for different parameters
and whether the hybrid models always perform better. Second, the pre-processing method
is a data-dependent method, so the model framework gradually becomes unreliable as the
data is updated. Evaluating the changes in model performances as time steps increase may
help to reduce computational costs. Finally, previous studies generally decomposed the
data series first, then predicted each component separately, and then added these predic-
tion results to obtain the reconstructed time series. We think that the calculation process is
complicated, and wonder if there is a simplified method to achieve accurate prediction.

In this study, the DL models CNN, LSTM, and CNN–LSTM were used to forecast the
real-time monitoring water quality parameters. A dataset that recorded data every four
hours from 2015 to 2020 was used for the study, which was collected from Xin’anjiang
River, China. The DO and TN were selected as target parameters, and the original time
series were used to train and test the standalone and hybrid models. Additionally, the
CEEMDAN model was used to decompose the input data, and the decomposition matrices
were used as two-dimensional gray images input data as a comparison. The main objectives
of this study were to (1) compare the results based on the original input data and the two-
dimensional input data and analyze the impact of different input data on the performances
of the models; (2) compare the results of standalone and hybrid models with different
parameters and analyze the influence of parameter fluctuation characteristics on model



Water 2021, 13, 1547 3 of 20

performances; and (3) compare the results of different prediction steps and analyze the
impact of prediction steps on different parameters and different models.

2. Materials and Methods
2.1. Study Area and Data Description

The case study area in this paper is Xin’anjiang River, which is a transboundary river
that crosses Anhui Province and Zhejiang Province. The Xin’anjiang River originated in
Huangshan City, Anhui Province, and flows into Thousand Island Lake through Chun’an
County, Zhejiang Province (Figure 1). As the most important water source flowing into the
Thousand Island Lake, the water quality of Xin’anjiang River is concerned with the health
of 115.91 million people in both Anhui and Zhejiang provinces [19]. The Jiekou monitoring
station is located at the junction of these two provinces, which is mainly used to monitor
the water quality of Xin’anjiang River (Figure 1). Jiekou station automatically analyzes
water samples and records data every 4 h to realize real-time monitoring of water quality.
We collected water quality data including dissolved oxygen (DO) and total nitrogen (TN)
from 0:00 on 6 May 2015 to 20:00 on 20 January 2020. The DO and TN datasets both had
10,326 records, which were used to conduct the predictive models. To perform the model
development and evaluation, the full dataset was split into training, validating, and testing
subsets. The data division criterion in this study was shown in Figure 2. The training,
validating, and testing sub-sets included 6609 records (nearly 64% of the dataset, from 0:00
on 6 May 2015 to 8:00 on 11 May 2018), 1652 records (nearly 16% of the dataset, from 12:00
on 11 May 2018 to 20:00 on 10 February 2019), and 2065 records (nearly 20% of the dataset,
from 0:00 on 11 February 2019 to 20:00 on 20 January 2020), respectively. The descriptive
statistics of the training set, validating set, and testing set for these two parameters were
summarized in Table 1.

Figure 1. Location of the Jiekou monitoring station.
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Figure 2. The data division criteria in this study.

Table 1. Descriptive statistics of training, validating, and testing datasets for DO and TN.

Descriptive Statistics Unit
DO TN

T 1 V 2 T 3 T 1 V 2 T 3

Min. mg/L 4.12 5.7 3.95 0.18 0.08 0.16
Mean mg/L 9.13 8.5 8.18 1.4 1.24 1.24

Median mg/L 8.87 8.39 8.15 1.38 1.15 1.26
Max. mg/L 18.85 14.14 12.42 2.82 3.9 4.24

Standard deviation mg/L 1.79 1.69 1.91 0.37 0.42 0.37
Skewness dimensionless 0.41 0.49 −0.2 0.2 0.478 0.85
Kurtosis dimensionless 0.27 −0.25 −0.8 0.12 0.61 0.36

1 Training datasets. 2 Validating datasets. 3 Testing datasets.

2.2. Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise

CEEMDAN is an improved adaptive signal time–frequency analysis method [20],
which is developed following the empirical mode decomposition (EMD) [21] and ensemble
empirical mode decomposition (EEMD) [22]. EMD could decompose complex signal into
intrinsic mode functions (IMFs) and a residue, so as to better understand the linear and
nonlinear characteristics of the signal. However, since either a single IMF is composed of
very different scales, or similar scales reside in different IMF components, the original EMD
has the disadvantage of mode mixing [3]. The EEMD method is proposed to solve the prob-
lem of mode mixing by adding white noise [22]. However, the added white noise could not
be completely eliminated during the decomposition process, so the interaction between the
signal and the noise may produce different modes [23]. The CEEMD algorithm completely
eliminates the residual white noise by adding positive and negative auxiliary white noise
pairs to the original signal, and further improves the performance of the decomposition
algorithm [24]. By introducing the adaptive noise component, the CEEMDAN algorithm
not only maintains the ability to eliminate mode mixing and residual noise, but also has
fewer iterations and higher convergence performance [20]. In this study, CEEMDAN was
used to decompose the original DO and TN data series to reduce their complexities.

2.3. Convolutional Neural Network

The convolutional neural network (CNN) is a multi-layer feedforward neural network
that can be used to process data of multiple dimensions, such as time series data (which
can be considered as a 1-D grid sampled at regular intervals) and image data (which can
be considered as pixel 2-D grid) [25]. With the application of CNNs, many variants of
convolutional network structure have appeared. However, the basic structures of most
networks are similar, including input layer, convolution layer, pooling layer, fully connected
layer, and output layer [16,26]. The input data needs to enter the convolutional neural
network through the input layer. According to the observed data and study objectives,
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the input layer has a variety of formats, including 1-D, 2-D, and even n-D, and these data
usually contain 1 to n channels. In this study, the original time series could be viewed as 1-D
grid data to build a 1-D convolutional network. Moreover, the original data preprocessed
by CEEMDAN were decomposed into multi-frequency IMFs, and all of them were put into
CNN as input data in the form of image. These images had only one channel, and the CNN
built based on them could be considered a 2-D model.

Through a series of comparative experiments, the basic structure of the CNN models
used in this study was determined. After the input layer, the second layer was a convo-
lutional layer with a number of learnable convolution kernels. The application of these
kernels was to obtain multiple feature maps by learning different features of the input
data. The third layer was the activation layer that used rectified linear unit (ReLU) as
the activation function. The fourth layer was a pooling layer using the average function.
The pooling layer reduced the dimensionality and processing time by sub-sampling the
feature maps extracted from the convolutional layer. The fully connected layer, which
was the last part before the output layer, connected the output of the pooling layer to a
one-dimensional row vector. Finally, for the regression problem of this study, the regression
output layer was used as the last layer of CNN. In addition to these basic structures, in
order to reduce the problem of overfitting, dropout and batch-normalization methods were
used in this study [27]. Dropout randomly set the input elements to zero with a given
probability in each training case, so that a large number of different networks could be
trained in a reasonable time to effectively reduce the problem of overfitting [28]. Batch
normalization can mitigate the internal covariate shift and the dependence of the gradient
on the parameter or its initial value, so as to achieve the purpose of accelerating training
and producing more reliable models [29].

2.4. Long Short-Term Memory Neural Network

The long short-term memory (LSTM) network is a special variant of the recurrent
neural network (RNN). In traditional feedforward neural networks, information can only
flow from the input layer to the hidden layer and finally to the output layer in one direction.
The biggest difference between RNN and the feedforward neural network is that RNN has
a recurrent hidden unit to implicitly maintain historical states about all past elements in
the sequence [30,31]. That is to say, in RNN, the final output is based on the feedback of
the input layer and the historical states of all hidden units. However, when the RNN is
trained using the gradient descent method, the gradient may show an exponential increase
or decay, which will cause the gradient to explode or disappear [31,32]. LSTM introduces
the concept of input and output gates to improve RNN. LSTM applies memory cells, which
could filter and process historical states and information instead of the recurrent hidden
units of the RNN, and the basic structure of three consecutive memory cells is shown in
Figure 3. Each memory cell contains an input gate (it), a forget gate (ft), and an output gate
(Ot) to control the flow of information. The input gate (it) is used to determine how much
input data at the current moment (t) needs to be stored in the cell state, and an intermediate
value C̃t is used to update the state in this process.

it = σ(Wi·[ht−1, xt] + bi) (1)

C̃t = tanh(WC·[ht−1, xt] + bC) (2)
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Figure 3. The architecture of long short-term memory (LSTM) neural network.

The forget gate (ft) determines how much of the cell state from the previous moment
(t−1) needs to be retained to the current moment.

ft = σ
(

W f ·[ht−1, xt] + b f

)
(3)

By deleting part of the old information and adding the filtered intermediate value, the
cell state is updated from Ct−1 to Ct.

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

The output gate controls how much of the current cell state needs to be output to the
new hidden state.

ot = σ(Wo·[ht−1, xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

In the above formula, W∗ and b∗, respectively, represent the relevant weight matrices
and bias vectors, while σ(·) and tanh(·) are the sigmoid function and hyperbolic tangent
function. The basic structure of LSTM models used in this study included the input layer,
LSTM layer, fully connected layer, and regression output layer. To prevent overfitting, the
dropout layer was inserted before the fully connected layer.

All of the algorithms were performed by programming codes in MATLAB R2020b, and
a function developed by Torres et al. [20] was used to design the CEEMDAN model. The
Deep Learning Toolbox including the basic framework of multiple deep neural networks
was applied to design the CNN, LSTM, and CNN–LSTM models.

2.5. The Hybrid Forecasting Models Development

Before constructing the forecasting models, the Lyapunov exponents were calculated
first to determine whether there were nonlinear and dynamic characteristics in the DO
and TN data series. When the maximum Lyapunov exponent is positive, it is a powerful
indicator of the chaotic features of the data series. The values of the Lyapunov exponent for
DO and TN were 0.36 and 0.44, respectively, indicating that the monitoring data of these
two parameters were both chaotic time series. For chaotic nonlinear dynamic systems, the
data may be corrupted by noise or their internal features may be completely unknown, so
deep learning methods are very suitable for prediction and feature extraction of such data.
In this study, we investigated the potential uses of single models and hybrid models for
multi-step ahead forecasting of DO and TN. The procedures of the water quality prediction
models based on CNN and LSTM are described as follows.
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Step 1: The explanatory variables and target variable were decided. Although some
commonly used analysis methods (such as autocorrelation function and partial autocorre-
lation function) have been tried to determine the input variables, no significant number of
lags has been found. Taking into account the monitoring frequency and effectiveness of
the data, twelve records in two days were selected as input variables, and six records in
the following day were used as output variables. Taking DO as an example, the input and
output variables are shown in Table 2.

Table 2. Input matrix for the DO forecasting models.

Target Input1 Input2 Input3 . . . Input 11 Input 12

DOt DOt−1 DOt−2 DOt−3 . . . DOt−11 DOt−12

DOt+1 DOt−1 DOt−2 DOt−3 . . . DOt−11 DOt−12

DOt+2 DOt−1 DOt−2 DOt−3 . . . DOt−11 DOt−12

DOt+3 DOt−1 DOt−2 DOt−3 . . . DOt−11 DOt−12

DOt+4 DOt−1 DOt−2 DOt−3 . . . DOt−11 DOt−12

DOt+5 DOt−1 DOt−2 DOt−3 . . . DOt−11 DOt−12

Step 2: DO and TN data series were decomposed into several different IMFs and
a residual component. These components can provide detailed information from high
frequency to low frequency contained in the input data series. Previous studies indicated
that the added noise level and the number of realizations in the CEEMDAN modeling
process can be adjusted according to the application [33]. According to some empirical
algorithms in the previous studies (for example, the recommended white noise amplitude
is about 20% of the standard deviation, etc.) and the results of trial and error, a noise level
of 0.1, a realization of 100, and a maximum of 2000 sifting iterations were set [3,22,34].

Step 3: The data series were divided into training, validating, and testing sets, respec-
tively. It is worth noting that although the testing subset is completely independent of
the training process and is used to compare the forecasting performances of the models,
the decomposition process of CEEMDAN needs to be applied to the entire dataset. If
the training subset and the testing subset are decomposed separately, the obtained IMFs
and residual component are inconsistent and the trained model becomes invalid for the
testing data.

Step 4: The training subset was used to train each model for multi-step ahead forecast.
This study contained two types of input data: the original one-dimensional time series and
the two-dimensional gray-scale image based on CEEMDAN decomposition. The original
one-dimensional input was a set of 12 × 1 data sequences, while the CEEMDAN-based
input was a set of 12 × n two-dimensional images (the value of n was decided by the
results of decomposition process). The one-dimensional and two-dimensional images are
shown in Figure 4, respectively. Each type of data was used to train three deep neural
networks: CNN, LSTM, and CNN–LSTM.

Step 5: The testing subset was used to obtain multi-step ahead forecasting results and
compare the performances of different models. Since the testing data were not involved in
the training process at all, the forecasting results of testing data set could well reflect the
generalization ability of the models. At the same time, the results of different ahead steps
can be used to evaluate the effective forecasting duration of the models.
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Figure 4. The two types of input data used in this study.

2.6. Evaluation Criteria

To quantitatively evaluate the performances of the aforementioned models, three
statistical evaluation criteria were selected for comparison, including the coefficient of
efficiency (CE), root mean square error (RMSE), and mean absolute percentage error
(MAPE). The CE was also known as the Nash–Sutcliffe coefficient and defined as follows:

CE = 1 − ∑n
i=1(Oi − Pi)

2

∑n
i=1
(
Oi − O

)2 (7)

The RMSE was calculated as:

RMSE =

√
∑n

i=1(Oi − Pi)
2

n
(8)

The MAPE was defined as:

MAPE =
∑n

i=1

∣∣∣ Pi−Oi
Oi

∣∣∣
n

× 100% (9)

where n was the number of input samples, Oi and Pi were observed and predicted value of
sample i, respectively. O was the mean value of observed data. Generally, the larger the
CE value and the smaller the RMSE and MAPE values, the smaller the difference between
the predicted value and the actual value, that is, the higher the prediction accuracy of
the model.

3. Results and Discussion
3.1. Results of DO Data Series

Based on the CEEMDAN preprocessing method, the time series of the DO data set
were decomposed into 13 IMFs and one residual term, shown in Figure 5. These IMFs
reflected the oscillating modes of DO in different periods, and the residual term indicated
the trend of the data. In this study, the input data had two forms, one is the original time
series, and the other is the gray image based on the CEEMDAN results (Figure 4). The
original input was a set of 12 × 1 data sequences, while the CEEMDAN-based input was a
set of 12 × 14 two-dimensional images. Obviously, compared to a single time series, the
CEEMDAN-based input data could reflect more information. Moreover, increasing the
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dimensionality of the input data was beneficial to the deep learning neural networks to
extract data features, thereby improving the prediction accuracy.

Figure 5. The original DO time series, and IMFs and the residual components decomposed by the
CEEMDAN method.

The CE, RMSE, and MAPE statistics of single and hybrid deep learning neural net-
works in the testing period for the DO dataset are shown in Table 3. For targets with
different ahead steps, the best error measures were highlighted in red. According to the
results, it can be found that the CEEMDAN–CNN–LSTM model had the best prediction
accuracy for all targets. Whether for the separate CNN and LSTM model or the CNN–
LSTM hybrid model, the prediction accuracies of CEEMDAN-based input data were better
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than the original input data. As the forecasting step increased, the accuracy difference be-
tween these two sets of input data gradually increased. For example, the differences of CE,
RMSE, and MAPE between DOt and DOt+5 for CNN–LSTM and CEEMDAN–CNN–LSTM
were 0.09 (|0.97–0.88|), 0.30 (|0.35–0.65|), and 2.61 (|3.06–5.67|) and 0.04 (|0.98–0.94|),
0.22 (|0.26–0.48|), and 2.01 (|2.55–4.56|), respectively. In other words, as the forecasting
step increased, the decrease of the prediction accuracy of CEEMDAN-based input data
was slower than the original input data.

Table 3. The performance statistics of CNN, LSTM, CNN–LSTM, CEEMDAN–CNN, CEEMDAN–
LSTM, and CEEMDAN–CNN–LSTM in the testing period for the DO dataset.

Target Models CE RMSE MAPE

DOt CNN 0.95 0.41 4.17
LSTM 0.95 0.43 4.29

CNN–LSTM 0.97 0.35 3.06
CEEMDAN–CNN 0.97 0.34 4.02
CEEMDAN–LSTM 0.97 0.33 3.23

CEEMDAN–CNN–LSTM 0.98 0.26 2.55
DOt+1 CNN 0.93 0.50 4.68

LSTM 0.92 0.54 5.13
CNN–LSTM 0.94 0.46 4.06

CEEMDAN–CNN 0.96 0.40 4.92
CEEMDAN–LSTM 0.95 0.42 4.32

CEEMDAN–CNN–LSTM 0.98 0.28 2.79
DOt+2 CNN 0.90 0.59 6.03

LSTM 0.90 0.60 5.68
CNN–LSTM 0.92 0.53 4.65

CEEMDAN–CNN 0.95 0.44 5.37
CEEMDAN–LSTM 0.95 0.44 4.62

CEEMDAN–CNN–LSTM 0.97 0.31 3.00
DOt+3 CNN 0.90 0.62 6.21

LSTM 0.89 0.63 5.87
CNN–LSTM 0.91 0.58 5.14

CEEMDAN–CNN 0.92 0.54 6.66
CEEMDAN–LSTM 0.93 0.51 5.24

CEEMDAN–CNN–LSTM 0.97 0.34 3.30
DOt+4 CNN 0.89 0.64 6.34

LSTM 0.88 0.65 5.94
CNN–LSTM 0.90 0.62 5.42

CEEMDAN–CNN 0.91 0.57 7.02
CEEMDAN–LSTM 0.92 0.54 5.76

CEEMDAN–CNN–LSTM 0.96 0.39 3.65
DOt+5 CNN 0.87 0.70 6.96

LSTM 0.87 0.68 5.96
CNN–LSTM 0.88 0.65 5.67

CEEMDAN–CNN 0.88 0.67 8.38
CEEMDAN–LSTM 0.91 0.57 6.24

CEEMDAN–CNN–LSTM 0.94 0.48 4.56

The six models, especially the CEEMDAN–CNN–LSTM model, could capture the
general trend of the testing data series across different forecasting steps. However, it
was necessary to evaluate the model accuracy based on the forecasts of the peak and
lowest values. In this study, the MAPE between observations and predictions of the 10%
lowest and 10% highest values of the testing data was analyzed. Figure 6a,c showed the
MAPE of lowest values from Step 1 to 6 based on original and CEEMDAN-based input.
The MAPEs of the six models increased as the forecasting step became longer, and the
MAPEs based on the original input data were larger than the CEEMDAN-based input.
The MAPEs of the CNN models were the largest, LSTM models were the second, and
CNN–LSTM models were the smallest, which indicated that the CNN–LSTM model was
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superior to the separate models in forecasting the lowest values. For the prediction of peak
values (Figure 6b,d), the MAPEs of CEEMDAN-based inputs were smaller than the original
inputs, and the MAPEs increased as the forecasting step became longer. Being different
from the lowest values prediction, LSTM was the model with the largest MAPEs for the
peak values prediction, followed by the CNN model, and CNN–LSTM was the smallest.
Therefore, the CEEMDAN–CNN–LSTM was the best forecasting model for both the lowest
and highest values.

Figure 6. The MAPE between observations and predictions of the 10% lowest and 10% highest values
of the DO testing data: (a) the MAPE of lowest values from step 1 to 6 based on original input data,
(b) the MAPE of peak values from step 1 to 6 based on original input data, (c) the MAPE of lowest
values from step 1 to 6 based on CEEMDAN input data, and (d) the MAPE of peaks values from step
1 to 6 based on CEEMDAN input data.

3.2. Results of TN Data Series

The decomposition results of the TN data series using the CEEMDAN method are
shown in Figure 7. The TN data set was also decomposed into 13 IMFs and one residual
term. The CE, RMSE, and MAPE statistics of single and hybrid deep learning neural
networks in the testing period for the TN dataset are shown in Table 4. The results indi-
cated that the CEEMDAN–CNN–LSTM model had the best performances across different
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forecasting steps. However, for the prediction of TN, the differences between the results
obtained from the original input and the CEEMDAN-based input were very significant.
Especially with the increase of the time steps, the performance of the original input de-
teriorated rapidly, while the CEEMDAN-based input showed much better stability for
TN forecasting. For CNN, LSTM, and CNN–LSTM models, the CEs of TNn+3, TNn+4,
and TNn+5 were all less than 0.5, which was not within the range of satisfactory model
simulations [35]. In other words, when the time step exceeded 3, no model could reliably
predict the TN concentration based on the time series data alone.

Table 4. The performance statistics of CNN, LSTM, CNN–LSTM, CEEMDAN–CNN, CEEMDAN–
LSTM, and CEEMDAN–CNN–LSTM in the testing period for the TN dataset.

Target Models CE RMSE MAPE

TNt CNN 0.72 0.19 10.79
LSTM 0.74 0.19 11.21

CNN–LSTM 0.76 0.18 10.06
CEEMDAN–CNN 0.91 0.11 6.68
CEEMDAN–LSTM 0.91 0.11 7.41

CEEMDAN–CNN–LSTM 0.92 0.10 6.63
TNt+1 CNN 0.63 0.23 12.71

LSTM 0.65 0.22 12.86
CNN–LSTM 0.66 0.22 11.86

CEEMDAN–CNN 0.87 0.13 7.95
CEEMDAN–LSTM 0.88 0.13 8.64

CEEMDAN–CNN–LSTM 0.90 0.12 7.71
TNt+2 CNN 0.55 0.25 13.48

LSTM 0.56 0.24 14.01
CNN–LSTM 0.57 0.24 13.07

CEEMDAN–CNN 0.83 0.15 10.27
CEEMDAN–LSTM 0.85 0.14 9.65

CEEMDAN–CNN–LSTM 0.87 0.13 8.71
TNt+3 CNN 0.47 0.27 14.37

LSTM 0.50 0.26 15.18
CNN–LSTM 0.50 0.26 13.75

CEEMDAN–CNN 0.81 0.16 10.88
CEEMDAN–LSTM 0.82 0.16 10.03

CEEMDAN–CNN–LSTM 0.84 0.15 9.12
TNt+4 CNN 0.41 0.28 15.24

LSTM 0.43 0.28 15.95
CNN–LSTM 0.44 0.28 14.61

CEEMDAN–CNN 0.79 0.17 10.68
CEEMDAN–LSTM 0.79 0.17 10.66

CEEMDAN–CNN–LSTM 0.81 0.16 9.37
TNt+5 CNN 0.34 0.30 15.86

LSTM 0.38 0.29 16.60
CNN–LSTM 0.39 0.29 15.41

CEEMDAN–CNN 0.78 0.17 10.55
CEEMDAN–LSTM 0.78 0.17 11.13

CEEMDAN–CNN–LSTM 0.79 0.17 9.91
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Figure 7. The original TN time series, and IMFs and the residual components decomposed by the
CEEMDAN method.

The MAPEs of different models for the 10% peak values and 10% lowest values of the
TN testing data set are shown in Figure 8. The prediction of the lowest values showed that
the CNN–LSTM was better than the CNN, while the LSTM performed the worst among the
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three models (Figure 8a,c). For the original input and CEEMDAN-based input, the average
MAPEs of the three models across different time steps were 39.20, 41.71, and 51.72 and
26.07, 28.12, and 31.30, respectively. Obviously, the prediction of the lowest values based on
the original input data had a greater deviation from the observed values. According to the
prediction results of the peak values, LSTM was the worst performing model, followed by
the CNN model, and the CNN–LSTM model performed best (Figure 8b,d). In addition, as
the time step increased, the MAPEs gradually became larger, that is, the deviation between
the predicted values and the observed values became larger. The change curves of MAPE
were nearly the same; however, the MAPEs obtained from the original input were about
twice the MAPEs obtained from the CEEMDAN-based input. In general, CEEMDAN–
CNN–LSTM was the best model for forecasting TN extreme values, while LSTM was the
least accurate model for extreme values prediction.

Figure 8. The MAPE between observations and predictions of the 10% lowest and 10% highest values
of the TN testing data: (a) the MAPE of lowest values from Step 1 to 6 based on original input data,
(b) the MAPE of peak values from Step 1 to 6 based on original input data, (c) the MAPE of lowest
values from Step 1 to 6 based on CEEMDAN input data, (d) the MAPE of peaks values from Step 1 to
6 based on CEEMDAN input data.
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4. Discussion

Numerous studies have applied single and hybrid deep learning models to predict
hydrological and water quality data [15,16,36]. Among them, the most commonly used
method was to decompose the data series at first, then make predictions for each IMF
separately, and finally add the results to get the reconstructed time series. However, data
decomposition was a data-dependent method, so it needed to be repeated as the data was
updated. Generally, huge calculation cost was accompanied by long calculation time, so
the commonly used method was too time-consuming for real-time data prediction. In
this study, we tried to input the decomposed data series as two-dimensional images for
multi-step water quality prediction. The results indicated that compared with the original
one-dimensional time series input data, the two-dimensional input data decomposed by
the CEEMDAN method could improve the prediction accuracies. However, for water
quality parameters with different fluctuation characteristics, the two-dimensional input
data improved the prediction accuracies differently. It can be found from Figure 4 that
the DO data had very obvious seasonal changes. The DO concentrations in spring and
summer were higher than those in autumn and winter. Due to the strong periodicity
of DO data, the standalone model and hybrid model with two types of input data had
satisfactory performances. However, the performances of the hybrid models were slightly
better than that of the standalone models, so the results were compared and discussed
based on the hybrid models. For DOt, the CE, RMSE, and MAPE of CNN–LSTM and
CEEMDAN–CNN–LSTM were 0.97 vs. 0.98, 0.35 vs. 0.26, and 3.06 vs. 2.55, respectively.
The performance of the CEEMDAN–CNN–LSTM model was better, but the CNN–LSTM
model could also capture the fluctuation characteristics of the data and make accurate
predictions. Figure 7 showed that the TN data, which was mainly affected by human
activities, had no periodic fluctuation characteristics. The results based on the CEEMDAN
input data were significantly better than the results based on the original input data.
For TNt, the CE, RMSE, and MAPE of CNN–LSTM and CEEMDAN–CNN–LSTM were
0.76 vs. 0.92, 0.18 vs. 0.10, and 10.06 vs. 6.63, respectively. The CEEMDAN–CNN–
LSTM model performed significantly better than the CNN–LSTM, which indicated that
decomposing the input data was more beneficial to improve the prediction accuracy of
non-periodic time series. The CEEMDAN method added adaptive white noise in each
decomposition to smooth the impulse interference, so that the decomposition of the data
was very complete [37]. For non-periodic parameters, the complete decomposition could
better separate the noise component and periodic components of the data. Among them,
the periodic components could be much better predicted, so the prediction accuracies of
the data series were also improved.

Increasing the forecasting steps of each round of prediction may help to reduce
computational consumption, while relevant previous studies rarely discussed the impact
of the increase in forecasting steps on model performances [14,15]. In this study, all of the
models were tested for one-step-ahead (4 h) to six-step-ahead (1 day) forecasting, which
were aimed to analyze the impact of the forecasting steps on the performances of the
models. As shown in Figures 9 and 10, with the increase of prediction steps, the CE of all
models decreased, while the RMSE and MAPE gradually increased. Some previous studies
on hydrological data prediction have also obtained similar results on a monthly scale. For
example, in a wavelet analysis–ANN-model-based multi-scale monthly groundwater level
prediction study, the prediction results of 2 and 3 months ahead were worse than the results
of 1 month ahead [38]. In the study using a two-phase hybrid model to predict the runoff
in Yingluoxia watershed, the model’s accuracy for shorter lead times (1 month) were better
than the 3- and 6-month horizon [34]. However, in addition to the conclusion that the
prediction accuracy would decrease with the increase of prediction steps, we found that the
accuracies’ attenuation rates of different water quality parameters were different. Taking
the indicator CE as an example, the CE attenuation rates of the DO models were much
lower than those of the TN models as the prediction steps increased. Based on the CE
at time t (i.e., one-step-ahead), the CE attenuation rates of CNN–LSTM and CEEMDAN–
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CNN–LSTM models at time t+1, t+2, t+3, t+4, and t+5 were calculated, and the results are
shown in Figure 11. For DO, the attenuation rates of CNN–LSTM models and CEEMDAN–
CNN–LSTM models were 3.09~9.28 and 0~4.08, respectively. For TN, the attenuation
rates of CNN–LSTM models and CEEMDAN–CNN–LSTM models were 13.16~48.68 and
2.17~14.13, respectively. Obviously, the attenuation rates of the periodic parameter DO
were lower than those of the non-periodic parameter TN, and the attenuation rates based
on two-dimensional input data were lower than those of one-dimensional input data. It
was interesting to note that the prediction accuracy decreased as the number of prediction
steps increased. With the continuous flow of the river, the waters that have experienced
different influences gradually flowed through the monitoring station. As the time interval
became longer, the differences of water quality became greater. Therefore, the prediction
accuracies based on the same set of input data gradually decreased. Moreover, the TN
concentrations were mainly affected by human activities. The TN emission sources were
always changing, as the prediction steps increased, the sources may appear or disappear.
Therefore, the attenuation rates of TN were faster than DO.

Figure 9. The variations of different models’ performances for DO with the increase of prediction
steps: (a) CE, (b) RMSE.
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Figure 10. The variations of different models’ performances for TN with the increase of prediction
steps: (a) CE, (b) RMSE.

Figure 11. The CE attenuation rates of CNN–LSTM and CEEMDAN–CNN–LSTM models from Step 1 to 6 for DO and TN.
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5. Conclusions

In this study, the performances of the deep neural networks CNN, LSTM, and CNN–
LSTM with and without the preprocessing method CEEMDAN were compared for the
water quality parameters’ forecasting. A real-time water quality monitoring dataset with
10,326 records from 2015 to 2020 was collected as the input data. According to the com-
pleteness of the data and the fluctuation characteristics of the parameters, DO and TN
were selected as prediction targets. The DO and TN data series were decomposed by the
CEEMDAN method at first, and two decomposed datasets with 13 IMFs and one residual
term were obtained. Taking into account the monitoring frequency (every 4 h) of the
data, twelve records in two days were selected as input variables, and six records in the
following day were used as output variables. Then, a set of 12 × 1 data sequences was
prepared as the original input data, while the CEEMDAN-based input data were a set of
12 × 14 two-dimensional grey images. The two types of input data were used to train and
test CNN, LSTM, and CNN–LSTM models, respectively. The results indicated that the
performances of hybrid model CNN–LSTM were superior to the standalone model CNN
and LSTM. The models used CEEMDAN-based two-dimensional input data performed
much better than the models used the original input data. Moreover, the improvements of
CEEMDAN-based data for non-periodic parameter TN were much greater than that for
periodic parameter DO. In addition, the impacts of the prediction steps on the forecasting
accuracies of the models were analyzed in this study. The results showed that the model
forecasting accuracies gradually decreased with the increase of prediction steps. The at-
tenuation rates presented the features that the original input data decayed faster than the
CEEMDAN-based input data and the non-periodic parameter TN decayed faster than the
periodic parameter DO. In general, the input data preprocessed by the CEEMDAN method
could effectively improve the forecasting performances of deep neural networks, and this
improvement was especially obvious for non-periodic parameter. Overall, compared with
a separate monitoring system, the incorporated monitoring and modeling framework may
provide better knowledge, which could help decision-making departments respond to
upcoming events and outbreaks.
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