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Abstract: This study explores the quality of data produced by Global Precipitation Measurement
(GPM) and the potential of GPM for real-time short-term nowcasting using MATLAB and the Short-
Term Ensemble Prediction System (STEPS). Precipitation data obtained by rain gauges during the
period 2015 to 2017 were used in this comparative analysis. The results show that the quality of
GPM precipitation has different degrees efficacies at the national scale, which were revealed at the
performance analysis stage of the study. After data quality checking, five representative precipitation
events were selected for nowcasting evaluation. The GPM estimated precipitation compared to
a 30 min forecast using STEPS precipitation nowcast results, showing that the GPM precipitation
data performed well in nowcasting between 0 to 120 min. However, the accuracy and quality of
nowcasting precipitation significantly reduced with increased lead time. A major finding from the
study is that the quality of precipitation data can be improved through blending processes such as
kriging with external drift and the double-kernel smoothing method, which enhances the quality of
nowcast over longer lead times.

Keywords: rainfall; satellite precipitation; GPM; hydroclimatic changes; nowcasting; STEPS; Mexico

1. Introduction

Precipitation is regarded as an essential component of global energy and water cycles,
and it plays a significant role in the interactions between atmosphere, biosphere and hy-
drosphere [1]. The measurement of precipitation not only provides essential information
to weather forecasters and climate scientists but also to a wide range of decision-makers,
including agriculturalists, hydrologists, industrialists and emergency managers [2]. There-
fore, accurate estimation and prediction of precipitation is important for a wide range
of applications, such as agricultural crop forecasting, monitoring freshwater resources
and numerical weather prediction. In the last three decades, satellite measurement of
precipitation has grown to be an uninterrupted, reliable and cost-effective source over large
data-void areas [3]. In 1997, NASA sent the first dedicated meteorological precipitation
satellite—the Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation
Analysis (TMPA)—with the National Space Development Agency (NASDA) to measure
energy and precipitation exchange across tropical and subtropical areas of the world for
17 years (1997–2014) [4,5]. Motivated by the splendid success of the TRMM satellite, on
27 February 2014, its successor, the GPM Core Observatory (GPMCO) was launched by
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Japan Aerospace Exploration Agency (JAXA) and NASA to continue and improve satellite-
based precipitation observations on a global scale [6]. Thanks to the other satellites, the
Core satellite is possible to guarantee a covering region between 65◦ N and 65◦ S.

The GPM mission includes a constellation of nine satellites unified by the GPMCO as
a reference standard for the other partner satellites [7]. The GPMCO contains an advanced
13-channel passive microwave radiometer, and a GPM Microwave Imager (GMI) combined
with a Ka/Ku-band Dual-frequency Precipitation Radar (DPR). Since this radar has two
frequencies that provides more accurate corrections for microwave rain attenuation, it
unifies precipitation estimates as a benchmark [8]. Compared to the TRMM Precipitation
Radar (PR), the DPR Ka-band is more sensitive for high-latitude snowfall and light rainfall
(sensitivity of PR and Ka-band is 0.5 mm/h and 0.2 mm/h, respectively) [9]. Therefore,
GPM DPR can more accurately detect extreme precipitation and estimate its impact on
global climate models, which is essential for exploring and understanding the global
water cycle [10].

In late 2014, precipitation from Integrated Multi-satellite Retrievals for GPM (IMERG)
were released to the public; this especially high-resolution precipitation product is now
available at the 30 min and 0.1◦ resolution in early mode (with a 4 h latency), late mode
(with a 12 h latency) and final mode (with a 2.5 months latency), which run based on
accuracy and latency [11]. The early and late products are multi-satellite data. The final
run is, instead, obtained taking advantage of a combination of information acquired from
satellite and monthly rain gauges data. Huffman et al. [12] suggested that this product
can be regarded as the next generation of multi-sensor precipitation data and utilized for
near real-time flood risk monitoring applications. Currently, some studies have utilized the
IMERG products to estimate snowfall [11,13]. The potential of data from IMERG for real-
time short-term rainfall nowcasting and forecasting are less unexplored due to the lack of
reliable ground rain gauge observations. Therefore, the rainfall nowcasting and forecasting
by IMERG data should be investigated with a view to improving the forecasting of extreme
rainfall events and assessing the potential of feeding this information into hydrological
models, especially in regions where high-resolution precipitation data is not available.
Gilewski and Nawalany [14] suggested that precipitation nowcasting is the generation
of short-term (0–3 h) future precipitation distributions from a sequence of radar images,
while Xinjian et al. [15] claimed that the goal of precipitation nowcasting is to predict the
future rainfall intensity in a local region over a short period of time. Nowcasting models
are based on the extrapolation of radar rainfall scans to track the motion of precipitation
cells with a forecasting lead time of a few hours. Quantitative precipitation estimation and
precipitation nowcasting will help reduce or manage precipitation-related disasters such as
flash-flooding [16], seasonal flooding [17], storms [18] and landslides [19]. Therefore, both
precipitation measuring and predicting are significant for hydrology applications.

Using rain gauge data available from the Mexico Meteorological Services, this study
applied a nowcasting model to compare the efficacy and reliability of precipitation data
generated by GPM IMERG with ground data. The results provide valuable information, not
only for improving the processes of satellite precipitation retrieval but also for operators in
many relevant applications, from hydrological modelling and hazard research to climatic
change-based simulations such as for flash flood forecasting in urban areas. The aim
of this study was to investigate whether real-time short-term (0–6 h) satellite rainfall
measurements can be applied effectively for nowcasting and forecasting of precipitation
(rainfall) in developing countries. The research objectives are in three-folds: (1) to determine
the efficacy and reliability of GPM precipitation compared to rain gauge data; (2) to
assess the ability of nowcasting to forecast rainfall events with GPM rainfall; and (3) to
gather evidence to show that GPM precipitation data can be used for real-time short-
term forecasting.

To achieve the objectives, the STEPS (Short Term Ensemble Prediction System) now-
casting model was used to investigate the potential of GPM IMERG precipitation data and
predict short-term real-time precipitation (0–3 h). The short duration analysis is justified
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due to the fact that the resolution of weather radar is typically 1 km by 1 km, which is the
most commonly used in nowcasting modelling. It was therefore necessary to use MATLAB
projection for the GPM data in order to improve the accuracy of nowcasting results; the
code developed by Liguori and Rico-Ramirez [20] was used for this purpose. After data
projection, the resolution of the GPM data was corrected from 10 km by 10 km to 5 km
by 5 km, which is the least resolution for GPM data without reducing the accuracy of the
data. Several representative precipitation events (i.e., heavy rainfall for a day) in Mexico
were then selected to simulate and nowcast precipitation. Finally, the performance of
precipitation nowcasting was evaluated by calculating the errors between the observed
precipitation and the nowcast results.

2. Latest Developments

Several studies have assessed the quality of the rainfall products of GPM missions
when estimating global precipitation and the performance of precipitation nowcasting. At
present, point measurements using a rain gauge and disdrometer [21,22], ground-based
weather radar [23] and satellite-based sensors [24] are the most widely used techniques
to measure and estimate precipitation. In most regions, tipping bucket rain gauges are
frequently utilized to measure precipitation. Several studies demonstrated that tipping
bucket rain gauge measurements are the most reliable technique in terms of point ground
measurements [25–27]. However, they cannot measure quantities of precipitation less than
0.1 or 0.2 mm, depending on the size of the bucket [28]. Thus, depending on the intensity
of rainfall measured, the tipping bucket rain gauges perform a temporal integration over
a more or less long period. By contrast, ground weather radars have a large volume
sample but present an indirect observation [23]. In terms of radar observations (also known
as a remote sensing instrument), the reflectivity of precipitation at a given altitude is
measured to estimate precipitation. The ground weather radar is able to supply rainfall
rate data with a fine spatiotemporal resolution, but it is hindered by several limitations.
For instance, the poor data management and archiving, difficult image data processing
and usage is limited for weather forecasting [29]. Although ground weather radar can
provide sound spatial resolutions to relatively large precipitation areas, the accuracy of
radar precipitation estimates is affected by several sources of uncertainties and errors. For
example, the radar signal attenuation and stability of radar calibration can affect the radar
reflectivity measurement because of contamination of heavy precipitation by range effects
or non-meteorological echoes (e.g., ground clutter) [30].

For satellite precipitation estimates, sensors onboard low-orbiting satellites are the only
instruments able to retrieve global and homogeneous measurements of precipitation [31].
After the satellite measurement of radiances, the approaches applied to derive precipitation
from radiances have advanced from Infrared (IR)- and Visible (VIS)-based methods to active
and passive Microwave (MW) techniques and merged MW and IR methods [31]. In terms
of active microwave sensors, Ku-band TRMM Precipitation Radar (PR) was the first space-
borne precipitation radar and has operated since 1997 [32]. The goal of TRMM satellite
was to measure moderate to heavy precipitation to give a better understanding of the
precipitation distribution on Earth and conduct near-real-time precipitation products. Since
then, many methods such as [33–35] have built upon the success of the TRMM, culminating
in the GPM mission. The Integrated Multi-Satellite Retrievals for GPM (IMERG) is the multi-
satellite precipitation algorithm for GPM, which merges sparse precipitation estimates from
IR-based geosynchronous satellites, all constellation microwave sensors and monthly gauge
precipitation data [29]. NASA Goddard Earth Sciences (GES) Data and Information Services
Center (DISC) produced the latest GPM IMERG version 5 (IMERG V5) precipitation dataset,
which was employed in this study.

Compared to TRMM, GPM has improved temporal and spatial resolution, as well as a
more efficient minimum latency time [31,36–38]. For example, Prakash et al. [36] compared
both the TRMM TMPA (V7) and GPM IMERG (V03) with the rain gauge measurements
over India. Their findings demonstrates that GPM provide more accurate information
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about extreme rainfall events compared to TRMM. The IMERG data also presented a
notable improvement over TMPA during the comparison with the rain gauge data in
mountainous areas. Arshad et al. [37] compared both the GPM IMERG V05 data and the
TRMM 3B42 V7 data with the rain gauge measurements over Pakistan. This work revealed
that the performance of the IMERG final product showed the best results in the areas of
higher annual average rainfall in terms of statistical indices (i.e., FAR, POD and CSI).

From Table 1 it can be obtained that the GPM satellite born precipitation data are
available as near-real-time data available with a 4-h latency from acquisition and post-real-
time research data, which are processed within 2.5 months.

Table 1. The key characteristics of GPM and TRMM.

Satellite
Mission

Spatial
Resolution

Temporal
Resolution Coverage Minimum

Latency Period Algorithm

GPM ‘Early’

0.1◦ 0.5 h 65◦ S–65◦ N

4 h

2015-present IMERGGPM ‘Late’ 12 h

GPM ‘Final’ 2.5 months

TRMM 0.25◦ 3 h 50◦ S–50◦ N 9 h 1997–2015 Probability
Matching

3. Methodology and Study Area

To evaluate the GPM IMERG, several steps were carried out, which are presented in
Figure 1 below. The process started with the preparation of the rain gauge precipitation
measurement data and the GPM data processing and preparation. The following step
consisted of data comparison, which involved four major steps carried out by MATLAB
processing [39], the last step of which was precipitation nowcasting of the observed GPM
data by using the STEPS model. The STEPS nowcasting model is an available advanced
Quantitative Precipitation Forecast (QPF) system, which was developed in the cooperation
of the Australian Bureau of Meteorology and the UK MetOffice. A detailed mathematical
description of the STEPS model can be found in [40,41]. The model generates ensembles of
rainfall nowcasts by employing both the extrapolation of radar images and the downscaled
rainfall output of Numerical Weather Prediction (NWP) models. The basis behind STEPS
is to represent the uncertainty caused by the unpredictable rainfall growth and decay
processes by adding stochastic perturbations to the deterministic extrapolation of radar
images. The stochastic perturbations are designed to account for the unpredictable rainfall
growth and decay processes and to reproduce the dynamic scaling of rainfall fields. Some
studies have proved this model is reliable in several applications, such as prediction of
flows in the sewer system [42] and hydrological forecasting in catchment [43].

The study area of this project is the whole of mainland Mexico, which is located at
23.626◦ N and 102.538◦ W in the southern portion of North America and covers a land
surface area of 1964 million square kilometers [44]. The climate in Mexico is determined
by different factors, such as latitude, elevation and ocean currents. As a result of its
geographical location, the northern part of the country is located in a temperate area,
while the southern part is in the inter-tropical area of the globe. Nearly two-thirds of the
territory is considered semi-arid or arid, with annual precipitation lower than 500 mm,
whereas one third is regarded as humid (the southeast), with precipitation of over 2000 mm
per year [44]. Figure 2 shows the precipitation distribution in Mexico from 2010 to 2015
observed by ground weather radar, with more precipitation in the south of Mexico and
less in the north during this period. The west coast of Mexico has a relatively low intense
rainfall, while the east coast of Mexico has a relatively high intense rainfall, the details
can be referred from [45]. This graph was used in this study as a reference for the GPM
rainfall observations comparison. In most parts of Mexico, precipitation is more intense in
the summertime when there is often torrential rain. Figure 3 presents the monthly average
rainfall and temperature in the period of 1943 to 2018 over Mexico.
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Figure 3. The monthly average rainfall and temperature in Mexico (1943–2018) (source: National Water Commission
(CONAGUA)).

Rain gauge data was applied to provide a ground-based precipitation reference for
GPM satellite data in this study. All rain gauge data in Mexico was collected through
the online database provided by the Mexico National Meteorological Service website
(https://smn.conagua.gob.mx/es/) accessed on 18 July 2019, which supply meteorological
information and provides a quality-controlled dataset. The dataset consists of 2829 tipping
bucket rain gauges, each with a temporal resolution of 24 h (UTC-6). From Figure 4 it can
be observed that the distribution of rain gauges is uneven, which shows that the stations
are accumulated densely in the south and spatially in the north. The reason for this is
that the arrangement of rain gauges is based on the levels of precipitation density, so that
there are more rain gauge stations in dense precipitation areas. This therefore reflects that
southern Mexico receives more rainfall than the north. However, due to the frequency
of measurement errors, traditional ground-based rain gauge measurements are not often
regarded as a representative over large and high precipitation intensity areas, particularly
at fine temporal resolutions. By contrast, satellite-based precipitation measurement has the
potential to improve the understanding and forecasting of hydrological systems.

In this study, the GPM-IMERG V5 near-real-time (NRT) run product at 0.1◦ spatial
resolution (around 10 km but varies from the equator to the poles) and 30 min tempo-
ral resolution were used. The data were available in an RT-H5 file format (RT indicates
real-time and H5 represents an HDF5 file, respectively) and downloaded from the NASA
Precipitation Measurement Program website (http://www.pmm.nasa.gov) accessed on
24 July 2019. In addition, the dataset was translated to the daily time period as to corre-
spond with the rain gauge data set as only daily gauge precipitation data were available.
Therefore, a daily period between 8 am to 8 pm local time (UTC-6) was created within
the dataset by the MATLAB package. The data period collection of rain gauges and GPM
IMERG is shown in Table 2 below.

https://smn.conagua.gob.mx/es/
http://www.pmm.nasa.gov
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Figure 4. Distribution of rain gauge stations in Mexico (source: National Water Commission (CONAGUA)).

Table 2. Data period of rain gauges and GPM.

Observations Start End Time Period

Rain gauges 1 June 1957 1 March 2018 24 h
GPM 1 June 2014 1 July 2018 24 h

From the table, it can be seen that the same period of data collection of rain gauges and
GPM is from 1 June 2014 to 1 March 2018 and the full-year data for both of them are from
2015 to 2017. Therefore, the precipitation data from this period of three years (2015–2017)
was used in this analysis. Since the collected data is unstructured from the website, the
processing the raw data into structured data takes considerable time for post processing.

The distribution of mean annual precipitation in Mexico from 2010 to 2015 according
to the National Water Commission (Figure 2), which was estimated by weather radar. In
order to give a broad understanding of the quality of the GPM product for measuring
precipitation over Mexico, Figure 5 was plotted by MATLAB to present the distribution of
the mean annual precipitation estimated using GPM data over a three-year period from
2015 to 2017. By comparing these two graphs, it can be observed that the precipitation
distribution estimated by GPM is quite close to the radar precipitation estimation, and the
GPM is proven to be able to duplicate the spatial precipitation patterns while showing only
slight overestimates in coastal areas. The preliminary analysis indicates that the quality of
the GPM data performs well at the national scale.

After evaluating the quality of GPM data at the annual and national scales, it was
found that the GPM presented a relatively high agreement with rain gauges. It needs to be
noted that the rain gauge data with zero was ignored in this study. The next stage of the
study investigated the quality of GPM data at the daily scale by using single and multiple
gauges. For single gauges, three single rain gauge stations were chosen with different
elevations above sea level based on two criteria: (a) the elevation is typical over Mexico, and
(b) it has continuous data throughout the three-year period 2015–2017. Figure 6 presents
the location of the selected three rain gauges, which are gauge 1084 at 2032 m elevation,
gauge 25074 at 1472 m elevation and gauge 7038 at 226 m elevation. In addition, the
climate around gauge 1084 has a dry winter, pleasantly warm during the day and a very
hot summer. For gauge 25074, the climate is hot all year round, but the dry season, from
November to May, is sunny and it almost never rains. For gauge 7038, the least rainy
period runs from February to April, and the driest month is April.
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Figure 5. Map showing the distribution of mean annual precipitation in mm measured by GPM
(2015–2017).
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4. Data Processing

In order to detect and evaluate the quality and performance of GPM data, the rain
gauge data was applied as a reference for comparison. Several conventional statistical
performance metrics were selected, which were the Correlation Coefficient (CC) in Equation
(1), the Mean Absolute Error (MAE) in Equation (5) [46], the Root Mean Square Error
(RMSE) in Equation (4) [47,48] and the Relative Bias (BIAS) in Equation (6). Firstly, the
CC described the agreement between satellite estimates and rain gauge observations, and
secondly, the MAE, RMSE and BIAS was applied to describe the error and bias of satellite
estimates compared with rain gauge observations [49]. The relevant equations are as
follows [50,51]:

Pearson Correlation Coefficient (CC) was calculated as Equation (1):

CC =
1
n ∑n

i=1 (P(i)
S − PS)(P(i)

G − PG)

σSσG
(1)
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σS =

√
1
n

n

∑
i=1

(P(i)
S − PS) (2)

σG =

√
1
n

n

∑
i=1

(P(i)
G − PG) (3)

The Root Mean Square Error (RMSE) was obtained by Equation (4) as:

RMSE =

√√√√∑n
i=1 (P(i)

S − P(i)
G )

2

n
(4)

The Mean Absolute Error (MAE) was obtained by Equation (5) as:

MAE =
∑n

i=1

∣∣∣P(i)
S − P(i)

G

∣∣∣
n

(5)

The GPM product overestimates precipitation amounts if MAE value higher than 1,
otherwise, the satellite product underestimates the precipitation.

The Relative Bias (BIAS) was obtained by Equation (6) as:

BIAS =
∑n

i=1 (P(i)
S − P(i)

G )

∑n
i=1 (P(i)

G )
× 100% (6)

where PG and PS represent the actual precipitation value provided by rain gauges and
precipitation estimation provided by the satellite product, respectively. n is regarded as the
number of observations. σS and σG are standard deviations of GPM satellite precipitation
and standard deviations of rain gauge precipitation, respectively.

In addition, in terms of probabilistic statistical indices, the probability of detection
(POD), the critical success index (CSI) and the false alarm ratio (FAR) was applied to
describe the eventuality of GPM satellite precipitation estimates. POD provides the fraction
of precipitation events that the satellite distinguishes among all the actual precipitation
events, and FAR provides the fraction of unreal events among all the events GPM satellites
detect [49]. The CSI was essentially obtained by a function of POD and FAR. These
equations were as follows [6,52]:

The Probability of Detection (POD) as Equation (7) as:

POD =
n11

n11 + n01
(7)

The False Alarm Ration (FAR):

FAR =
n10

n11 + n10
(8)

The Critical Success Index (CSI):

CSI =
n11

n11 + n01 + n10
(9)

where n11 represents precipitation observed by the rain gauge and GPM satellite simulta-
neously. n10 is precipitation observed by the GPM satellite but not observed by the rain
gauge, and n01 is converse to n10. The perfect values of the evaluation metrics are presented
in Table 3 below [38,49]. Moreover, since the expression for precipitation intensity in this
study is the collecting of precipitation over a consistent time period, the unit of precipitation
is ‘mm’ instead of ‘mm/h’.
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Table 3. The range and perfect values of statistical performance measures.

Statistical Metrics Unit Perfect Value

Correlation Coefficient (CC) N/A 1
Root Mean Square Error (RMSE) mm 0

Mean Absolute Error (MAE) mm 0
Relative Bias (BIAS) N/A 1

Probability of Detection (POD) N/A 1
False Alarm Ration (FAR) N/A 0

Critical Success Index (CSI) N/A 1

5. Results and Discussion
5.1. Annual Precipitation

To explore the quality of GPM precipitation data, a comparison between the estimates
from rain gauges and GPM was carried out based on data collected from 2015 to 2017.
Figures 7 and 8 show the scatterplots of GPM IMERG satellite precipitation versus rain
gauge data at annual scales over Mexico from 2015 to 2017.

Figure 7. Comparison of the precipitation between GPM satellite and rain gauges in (a) 2015; (b) 2016; and (c) 2017 at
annual scale.
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As can be observed, the conventional evaluation metrics are also indicated in these
figures, and all the evaluation results are presented in Table 4. As mentioned before, the
scale of the GPM data was projected into 5 km by 5 km since the STEPS model can process
the data in the range from 5 km by 5 km to 1 km by 1 km. In theory, each graph should have
2829 points (one point for each station). As expected, GPM showed a relatively high degree
of agreement with rain gauges at annual scales, because the values of CC are close to 1 (0.91,
0.88 and 0.90), which meets the finds by Libertino et al. [53] Similar study obtained the
close CC results. However, there are significant gaps in the data points of 2017, as shown
in Figure 7c, because the precipitation data for rain gauges in 2017 were missing for some
gauge stations (perhaps due to maintenance). The RMSE for 2017 is therefore significantly
lower than for the previous two years. The values of RMSE are 416.29 mm and 406.79 mm
in 2015 and 2016, respectively. Furthermore, the GPM shows a slight underestimation
of precipitation according to the BIAS value, which means that GPM generated negative
errors (bias < 0); the greater the BIAS value is from 1, the more biased the data is. Thus, the
BIAS is shown to have decreased from −4.01% to −8.63% between 2015 and 2017, which
indicates the data for 2017 is more biased, and GPM is underestimating more. This may
because the GPM is not sensitive to light precipitation. In addition, the values of MAE
fluctuated from 0.29 to 0.33 for the three years, with the lowest value in 2016 and the highest
in 2017. In terms of probabilistic statistical evaluation metrics, the POD (0.73 to 0.86), FAR
(0.19 to 0.25) and CSI (0.55 to 0.73) are very satisfying, indicating that GPM IMERG can
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capture most precipitation events over Mexico. Due to the missing data for rain gauges in
2017, the POD, FAR and CSI are relatively bad. Overall, the results are acceptable and the
GPM IMERG product is able to reproduce a mostly consistent distribution of precipitation
at the annual scale.

Table 4. Summary of evaluation metrics for GPM IMERG product, which was calculated based on
mean regional and national scale precipitation.

Scale Year CC RMSE (mm) MAE BIAS (%) POD FAR CSI

Regional
2015 0.91 416.29 0.31 −4.01 0.86 0.19 0.73
2016 0.88 406.79 0.29 −7.97 0.82 0.22 0.62
2017 0.90 183.91 0.33 −8.63 0.73 0.25 0.55

National 2015–2017 0.90 298.94 0.30 −6.87 0.79 0.21 0.70

In order to evaluate the performance of the GPM versus rain gauges at the national
scale, Figure 9 presents the mean annual precipitation for the three-year period from 2015
to 2017, and the results of the evaluation metrics for GPM for the period 2015–2017 are
shown in Table 4. From both, it can be seen that GPM present an underestimation of mean
annual precipitation over Mexico, especially for the southern low altitude regions where
observations of GPM can improve. Moreover, the value of CC of GPM IMERG was 0.90,
which is in high agreement with the rain gauges, indicating that GPM can also capture
temporal variations at the national scale. In addition, since POD (0.79), FAR (0.21) and CSI
(0.70) were consistent, the GPM captured most precipitation events correctly.

Figure 9. Mean annual precipitation measured by (a) rain gauges and (b) GPM (2015–2017).

To summarize, the performance of the GPM IMERG precipitation product is satisfac-
tory at both annual and national scales but shows a slight underestimation due to most
precipitation having happened in low-altitude sites or mistaken precipitation measure-
ments by rain gauges.



Water 2021, 13, 1422 14 of 22

5.2. Daily Precipitation

Figure 8a–i show the daily precipitation distributions for the chosen gauge stations
for 2015–2017, respectively. Plots for each gauge should have 365 points in theory (one
for each day of the year). However, some plots have fewer points than this because
of the disproportionate temporal precipitation patterns in Mexico. Additionally, due to
most precipitation falling in the summertime, there are many low values of precipitation
throughout the rest of year, which is not easily visible on the graphs.

For gauge 1084 (Figure 8a,d,g), it can be observed that the values of CC (around 0.86)
are high, which indicates that the precipitation data of GPM IMERG and rain gauges were
in relatively high agreement compared to the other two single gauge stations. However,
the CC values of gauge 25074 (Figure 8c,f,i) are relatively low at around 0.65. This can
be explained by the fact that the precipitation intensity is high in that region, which can
cause the measurement errors of surrounding rain gauges and result in a low agreement
between GPM and gauge data. A similar study [52] was conducted in the Yangtze River
basin at a daily scale, presenting a low CC value (0.44) between IMERG and rain gauge
data. Furthermore, both of the values of RMSE and MAE for three gauges are acceptable in
Table 5, which are mean value of 8.2 mm and 1.12, respectively. In terms of the values of
BIAS, most of the values are positive, which indicate that the GPM precipitation product
overestimated the precipitation, especially for gauge 7038. Nevertheless, the results show
that the GPM precipitation measurements underestimated the precipitation at the national
and annual scales. The reason may because the precipitation intensity was relatively high
on that day and the wind flow may have impacted the measurement of precipitation by
rain gauges, a phenomenon revealed by the literature review. Thus, the precipitation
exceeded the capability of rain gauge measurement, which resulted in the instrument error.
For the probabilistic statistical indices (POD, FAR and CSI), the values varied by about
0.75–0.89, 0.21–0.31 and 0.68–0.73, respectively. Based on the results, it was found that
the performance of the GPM IMERG precipitation product is decent at the daily scale.
Moreover, in order to compare the precipitation data of GPM and rain gauges more clearly,
Figure 10 was plotted to show the mean daily precipitation between GPM and rain gauges
during the period of 2015–2017. Note that the red dash line indicates a year break. From
the plot, it is clearly seen that the GPM and rain gauge profiles are in good agreement. The
value of BIAS is −4.68%, so the GPM precipitation product shows a slight underestimation,
and the values of RMSE and MAE are good at 2.36 mm and 0.94, respectively. The data
quality of the GPM precipitation product is therefore high at the daily scale.

Table 5. Summary of evaluation metrics for GPM IMERG products at daily scale for single rain gauges.

Gauge ID Elevation (m) Time CC RMSE (mm) MAE BIAS (%) POD FAR CSI

1084 2032

2015 0.82 7.27 0.76 −13.3 0.89 0.21 0.74
2016 0.80 4.55 0.97 26.4 0.87 0.23 0.71
2017 0.94 4.82 0.78 4.9 0.91 0.20 0.77

Average 0.86 5.55 0.84 6.0 0.89 0.21 0.74

7038 226

2015 0.79 10.10 1.21 21.5 0.78 0.28 0.71
2016 0.57 11.18 1.21 10.7 0.85 0.24 0.76
2017 0.84 8.94 0.98 6.8 0.81 0.26 0.72

Average 0.73 10.07 1.13 13.0 0.81 0.26 0.73

25074 1472

2015 0.65 13.79 1.53 −19.6 0.74 0.31 0.69
2016 0.56 13.28 1.51 3.91 0.70 0.33 0.64
2017 0.74 6.17 0.97 −2.3 0.80 0.28 0.70

Average 0.65 11.08 1.34 −5.99 0.75 0.31 0.68
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Figure 10. Mean daily precipitation (all gauge stations) between GPM and rain gauges (2015–2017).

6. Application of Precipitation Nowcasting
6.1. Events Selection

Normal monthly precipitation from 1943 to 2018 over Mexico (see Figure 3), as col-
lected by the National Water Commission, was chosen as the representative precipitation
events. It can be seen that the intensity of precipitation is relatively high during the months
of June, July, August, September and October. Hence, based on the level of precipitation,
five precipitation events were used in the STEPS model for precipitation nowcasting be-
cause a large number of precipitation events are more predictable [41]. Each precipitation
event presented different characteristics in terms of date and type, as shown in Table 6.

Table 6. Dates and durations of selected rainfall events.

Event Date
Time Period

Start End

1 22 October 2015 01:00 24:00

2 17 June 2017 01:00 24:00

3 18 July 2017 01:00 24:00

4 1 August 2017 01:00 24:00

5 1 September 2017 01:00 24:00

After processing the GPM precipitation modified data by the STEPS model, the spatial
distribution of the nowcast precipitation was obtained as shown in Figure 11. Figure 11a,b
are the precipitation estimated by GPM and 30-min forecast precipitation from STEPS on
22 October 2015, respectively. They can be compared with each other to observe the actual
and simulated precipitation cloud movements. Eleven figures for precipitation nowcasting
from 1 h to 6 h are shown in Supplementary Materials. It can be clearly seen that the
nowcast accuracy decreases rapidly with lead time, which was also found by PC et al. [54].
Please check Figures in Supplementary Materials for precipitation on 22 October 2015 from
9:30 to 14:30, based on (a) GPM estimated precipitation and (b) 30-min forecast precipitation
from STEPS precipitation nowcast.
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Figure 11. Precipitation on 22 October 2015 at 9:00, based on (a) GPM estimated precipitation and (b) 30-min forecast
precipitation from STEPS precipitation nowcast.

6.2. Error Analysis

The RMSE, MAE, CC and BIAS were calculated between STEPS nowcast and GPM
precipitation data at different lead times for each event, the profiles of which are shown in
Figure 12a–d with their mean value lead times presented in Table 7. The average RMSE and
MAE values between STEPS nowcast and GPM for five events during the whole period
were obtained (7.1 mm and 4.2 mm, respectively), which indicate the errors related to the
estimation of GPM precipitation. The results demonstrate that the errors obtained from
the nowcast data are relatively small but increase with growing lead time, and that the
errors of RMSE and MAE increase as the lead time increases. For CC and BIAS, both of
them decreased with the increased lead time, and the accuracy of precipitation nowcasting
decreases as the lead time grows, which concurs with finding of a previous study [55].
Overall, the trend of nowcast precipitation decreases as the lead time increases.

Table 7. Summary of evaluation metrics for GPM IMERG versus nowcasts results along the
lead times.

Lead Times RMSE MAE CC BIAS

30 3.69 1.91 0.68 0.88
60 4.50 2.20 0.61 0.85
90 4.80 2.69 0.56 0.84

120 5.93 3.71 0.50 0.82
150 6.17 4.96 0.44 0.79
180 5.92 3.90 0.42 0.78
210 6.44 4.75 0.38 0.78
240 6.57 4.98 0.35 0.74
270 6.85 4.24 0.32 0.75
300 7.20 5.47 0.27 0.76
330 7.77 5.96 0.24 0.73
360 10.31 5.78 0.20 0.72

In order to investigate the variability of errors, box plots were produced as presented
in Figure 13a–d. Box plots of errors of the GPM IMERG product provide details of the
accuracy of nowcasting. The lower and upper edges of the central box are the third (75%)
and first (25%) quantiles that represent the Interquartile Range (IQR), as the central inside
band and cross sign represents the median and mean values, respectively [56].
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Each box plot presents four evaluation metrics. A similar pattern in the variations
of RMSE and MAE, CC and BIAS with lead time was observed in the five precipitation
events, although differing magnitudes are given. An asymptotic growth in MAE and an
asymptotic reduction in CC with higher lead time was found. For smaller lead times for
the four metrics, generally the spread box is larger. Plus, since the values of CC less than
0.5 after the lead time becomes 120 min, the quality of precipitation nowcasting by using
the GPM data is high before 120 min. When the lead time reaches 120 min, the errors of
nowcasts increase rapidly. So, the GPM IMERG precipitation data is satisfying for real-time
short-term nowcasting, particular for two hours ahead.

7. Conclusions and Summary

In conclusion, the quality of the GPM IMERG precipitation product at half-hour
and 0.1◦ resolution was evaluated, using daily precipitation observation data from over
2800 rain gauges across Mexico as reference. The STEPS model was applied to explore the
potential of the GPM IMERG precipitation product for real-time short-time precipitation
nowcasting (forecasting) in this analysis. The analysis was divided into two parts: the first
part used rain gauge data as a reference for data quality evaluation, while the second part
evaluated the GPM IMERG data. Five events were selected, and the data was applied in
the STEPS model to present the nowcasting performance over a relatively short lead time
period of 0–6 h. The main conclusions of this study are as follows.

(1) The quality of the GPM IMERG precipitation product at annual and national scales
was investigated. The performance of the data was represented by several evaluation
metrics, which were RMSE, CC, MAE, BIAS, POD, FAR and CSI. It was found that the
GPM IMERG precipitation product showed a slight underestimation over Mexico, with
small BIAS evaluations of −7.37% and −6.87% for the annual scale and national scale,
respectively, and that fluctuations between over and underestimating at the daily scale
were due to precipitation intensity and latitude. The quality of GPM IMERG data improved
at the national scale, with the lowest estimated error.

(2) The GPM IMERG product is able to reproduce a mostly consistent distribution
of precipitation at the annual scale. The overall results show the GPM precipitation data
in high agreement with the data from the rain gauges and provides better precipitation
observations in remote areas, with great CC and POD values.

(3) The nowcasting model was applied to explore the potential of GPM precipitation
data for precipitation real-time short-term nowcasting and forecasting. The performance of
precipitation nowcasting was examined by the RMSE, CC, BIAS and MAE metrics. The
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errors between the STEPS nowcasts and GPM observed precipitation were estimated and
plotted. Results from a comparison of each event showed qualitatively similar trends. The
accuracy and quality of precipitation nowcasting generally decreased as the lead time
increased, and the nowcasting quality reduced rapidly when the lead time reached 120 min
(CC < 0.5). Therefore, the precipitation nowcasting performance by using GPM data is
acceptable in Mexico beyond 2 h, after which the errors in the forecasts tend to increase
very rapidly.

8. Future Studies and Shortcomings

For future studies, the quality of IMERG should be improved to provide more precise
half-hourly precipitation estimates, especially for territories with dry climates, as well as
high latitudes and altitudes. Correspondingly, more studies are required to assess the
performance of GPM IMERG against other satellite and reanalysis products to find the
advantages and limitations of the GPM satellite. Furthermore, other precipitation specific
properties such as spatial and temporal heterogeneity, spatial and temporal intermittence,
extreme variability and multi-fractal comparisons is necessary to overcome substantial
uncertainties rainfall estimations [57–59]. Cristiano et al. [60] also depicted in their review
that the rainfall variability may need wider range of conditions and scenario based in
observational datasets for urban hydrological basins, which need proper analysis for
development of better hydrological response system with higher sensitivity.

For nowcasting, in order to obtain better precipitation nowcasting results, the precipi-
tation data of GPM IMERG product and rain gauge can be blended, such as kriging with
external drift and the double-kernel smoothing methods. The characteristics of uncertainty
and error of new generation of geosynchronous satellite products launched by the National
Aeronautics and Space Administration (NASA) as GPM IMERG and National Oceanic and
Atmospheric Administration (NOAA) will open new perspective for nowcasting and data
assimilation. Moreover, such products should be further explored to encourage the appli-
cation and development of products such as IMERG and geostationary lightning mapper
sensors, respectively, and their associative algorithms in the recent era. This forecasting
technique is extremely important especially for issuing flash flood warnings several hours
in advance. Heavy rainfall is especially frequent in the Yangtze River delta area of southern
China. In the future, more case studies can be conducted in this area in order to enhance
the accuracy of nowcasting and forecasting precipitation models.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w13101422/s1, Figure S1. Precipitation on 22 October 2015 at 9:30, based on (a) GPM estimated
precipitation and (b) 30-min forecast precipitation from STEPS precipitation nowcast, Figure S2.
Precipitation on 22 October 2015 at 10:00, based on (a) GPM estimated precipitation and (b) 30-min
forecast precipitation from STEPS precipitation nowcast, Figure S3. Precipitation on 22 October
2015 at 10:30, based on (a) GPM estimated precipitation and (b) 30-min forecast precipitation from
STEPS precipitation nowcast, Figure S4. Precipitation on 22 October 2015 at 11:00, based on (a)
GPM estimated precipitation and (b) 30-min forecast precipitation from STEPS precipitation nowcast,
Figure S5. Precipitation on 22 October 2015 at 11:30, based on (a) GPM estimated precipitation and
(b) 30-min forecast precipitation from STEPS precipitation nowcast, Figure S6. Precipitation on 22
October 2015 at 12:00, based on (a) GPM estimated precipitation and (b) 30-min forecast precipitation
from STEPS precipitation nowcast, Figure S7. Precipitation on 22 October 2015 at 12:30, based on (a)
GPM estimated precipitation and (b) 30-min forecast precipitation from STEPS precipitation nowcast,
Figure S8. Precipitation on 22 October 2015 at 13:00, based on (a) GPM estimated precipitation and
(b) 30-min forecast precipitation from STEPS precipitation nowcast, Figure S9. Precipitation on 22
October 2015 at 13:30, based on (a) GPM estimated precipitation and (b) 30-min forecast precipitation
from STEPS precipitation nowcast, Figure S10. Precipitation on 22 October 2015 at 14:00, based on (a)
GPM estimated precipitation and (b) 30-min forecast precipitation from STEPS precipitation nowcast,
Figure S11. Precipitation on 22 October 2015 at 14:30, based on (a) GPM estimated precipitation and
(b) 30-min forecast precipitation from STEPS precipitation nowcast.
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