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Abstract: Data-intelligent methods designed for forecasting the streamflow of the Fenhe River are
crucial for enhancing water resource management. Herein, the gated recurrent unit (GRU) is coupled
with the optimization algorithm improved grey wolf optimizer (IGWO) to design a hybrid model
(IGWO-GRU) to carry out streamflow forecasting. Two types of predictive structure-based models
(sequential IGWO-GRU and monthly IGWO-GRU) are compared with other models, such as the
single least-squares support vector machine (LSSVM) and single extreme learning machine (ELM)
models. These models incorporate the historical streamflow series as inputs of the model to forecast
the future streamflow with data from January 1956 to December 2016 at the Shangjingyou station and
from January 1958 to December 2016 at the Fenhe reservoir station. The IGWO-GRU model exhibited
a strong ability for mapping in streamflow series when the parameters were carefully tuned. The
monthly predictive structure can effectively extract the instinctive hydrological information that is
more easily learned by the predictive model than the traditional sequential predictive structure. The
monthly IGWO-GRU model was found to be a better forecasting tool, with an average qualification
rate of 91.66% in two stations. It also showed good performance in absolute error and peak flow
forecasting.

Keywords: gated recurrent unit; improved grey wolf optimizer; monthly streamflow forecasting;
data-driven modeling

1. Introduction

Accurate and reliable streamflow forecasting is of great significance for water resource
management [1] and optimal allocation [2], environmental protection [3], and flood con-
trol [4]. Thus, it is imperative to develop a robust and accurate streamflow forecasting
method for hydrologists. However, the hydrological process is controlled by chaotic hy-
drological behavior presenting the complex features of nonlinearity and nonstationarity.
Therefore, accurate and robust streamflow forecasting is expected to ensure the reliable
operation of practical engineering systems. For this reason, constructing a new predictive
model for streamflow series is essential.

To date, scholars have developed a number of forecasting models using data-driven
approaches, such as ANN (artificial neural network) and GEP (gene expression program-
ming), to emulate hydrological behavior because it requires the least information [5,6].
ANN is a widely used model with good performance in comparison to traditional regres-
sion models [7]. For example, the extreme learning machine (ELM), support vector machine
(SVM), and least square support vector machine (LSSVM) have shown potential for hy-
drological prediction [8–10]. The ELM, a novel machine learning method, requires fewer
iterations to adjust hidden neuron parameters in comparison with other single artificial
neural networks [11]. The LSSVM reduces the computational time of the SVM using the
least squares linear system as its loss function [10]. However, these traditional machine
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learning algorithms belong to the theory of shallow learning. The method of time-series
information mining refers to the time-embedding process to predict significant occurrences
in the near future [4]. Thus, to overcome this problem, a recurrent neural networks (RNN)
model has been proposed, and many studies have made use of this deep learning technique
in which the intrinsic nature of the time-series can be learned [12]. The gated recurrent unit
(GRU), as a special RNN that simplifies the structure of a long short-term memory model,
gives the network a long memory for taking significant information from previous data,
which can effectively model a complex and long time-series [13]. With the integration of
deep learning theories and time-series simulations, the GRU has been successfully applied
in many fields to solve prediction issues [14–16], such as miscellaneous electric loads, wind
speed, and short-term photovoltaic power. However, there is scant research on streamflow
forecasting.

To further enhance forecast accuracy, hybrid models are becoming popular alternatives
because they can outperform single models [17]. Combining methods can build hybrid
models with optimization algorithms, which can be used to identify the optimal parameter
combination and calibrate models to enhance their robustness. Many algorithms are
applied to improve single model forecasting abilities in hydrology, including the genetic
algorithm (GA) [18], Fruit fly Optimization Algorithm (FOA) [19], grey wolf optimizer
(GWO) [20], and particle swarm optimization (PSO) [21]. Based on the social hierarchy
and hunting behaviors of grey wolves, Mirjalili et al. [22] proposed the GWO algorithm,
one of the newest swarm intelligence algorithms. The GWO algorithm avoids several local
solutions and balances between exploration and exploitation efficiency [20]. Moreover, it
is simple, flexible, and has very few parameters [23]. Thus, the GWO algorithm is widely
used to solve different problems, including global optimization problems [24,25], optimal
reactive power dispatch problems [26], and route-planning problems [27]. Additionally, the
improved GWO (IGWO) algorithm finds a new objective function to avoid under-fitting
or over-fitting. Therefore, we exploited the IGWO method in this study to improve the
robustness of the hybrid model.

Generally, there are two types of data widely used in the time-series analysis (dynamic
and static variations), which inspired us to transform the streamflow time-series into two
types of predictive structure: a sequential structure and a monthly structure. Many articles
have investigated the prediction of time-series data with the traditional sequential series,
such as rainfall-runoff [3], monthly streamflow [28], and sediment yield [29]. However, the
streamflow series can be reconstructed into twelve groups of series for the same month,
from January to December. Each series as the input can be used to build twelve models in
streamflow forecasting, and each prediction results of each month can be used to construct
the final one year and monthly streamflow forecasts. Thus, based on this method, we
propose a new forecasting model to predict future streamflow from historical time-series
data on a monthly basis, which is the monthly predictive structure-based model. Here,
we used the integrated deep learning model IGWO-GRU and named the two types of
predictive structure-based models as the “monthly IGWO-GRU” and “sequential IGWO-
GRU”, which are investigated for their abilities in solving benchmark and real problems.
To the best of the authors’ knowledge, the application of a monthly predictive-structure
technique is yet to be explored in the forecasting of streamflow.

The purposes of this study are to (1) use structure-based models (sequential and
monthly streamflow series) to form two types of time-series as inputs for the predictive
method; (2) utilize the deep learning method GRU to learn the instinct relationship between
the input and output; (3) to balance the generation and optimization capability of the model,
using the IGWO method to tune the GRU model with suitable parameter combinations;
(4) compare the prediction with the proposed model to that of the other state-of-the-art
models that have been quantitatively analyzed. The results of the experiments of this
study in the Fenhe River have demonstrated the monthly IGWO-GRU model can provide
an effective modeling approach to capture the nonlinear characteristics of streamflow
series, thus providing the most accurate prediction results among the models considered.
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It must be declared that the application of GRU and its variants are very uncommon in
streamflow forecasting studies. In addition, no such studies with the monthly predictive
structure-based models have been performed so far, which is substantiated in this study.

The remainder of this paper is arranged as follows. Section 2 describes the methods
of the proposed hydrological model. Section 3 introduces the two data structure-based
models. Section 4 presents experiments and discusses the results of prediction in the case
study. Section 5 is the last section, which outlines the conclusions of this paper.

2. Methodology
2.1. GRU

The traditional ANN has a simple corresponding relationship between inputs and
outputs; however, RNN has an advanced structure that involves feedback connections that
take previous content into account throughout the process [30]. In other words, RNN has
the “memory” to retain information about the history of all steps of the series, as shown in
Figure 1. The mathematical formulation of the RNN algorithm is as follows:

Ht = f (W · Ht−1, W · xt) (1)

where Ht and Ht−1 denote the current state and the previous state, respectively; xt is the
inputs, and W represents the weights of calculations in the neuron. Every step of the
process shares the same weights and reinforces learning from previous time steps.

Figure 1. Structural schematic diagram of a recurrent neural network (RNN).

The RNN is considered an effective method to deal with problems of complex hydro-
logical series but defective in processing long-term memory because of gradient vanishing
and gradient explosion [13]. Long short-term memory (LSTM) and GRU are important
enhanced versions of RNN. LSTM consists of three gate units, namely, the input gate, forget
gate, and output gate. The input gate or output gate decides whether to store certain infor-
mation in each step. The forget gate controls whether to keep or override the information
from previous time steps [31].

Proposed by Cho et al. [32], the GRU method is a modern RNN and replaces the
ordinary neuron in the RNN with a memory neuron that solves the vanishing or exploding
gradient problem, thanks to the BPTT (back propagation through time) method. Figure 2
displays the structure of the neuron in the hidden layer of GRU. The neuron has two gates,
simplifying the structure of LSTM: an update gate and a reset gate, which modulate the
flow of information when the neural state is updated at each step. The update gate decides
how much information from the previous step flows to the neuron and the reset gate
controls whether to ignore the previous state and upset the current or not [17,32]. This
allows the neuron to drop irrelevant information, which is not useful for mapping the input
and output in the future and further helps the neuron remember long-term information by
reducing the memory burden [13].
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This is depicted in Figure 2, which shows the present step, t, the output of the previous
state, Ht−1, combined with the input of the current state; Xt is the input of the update gate,
Zt, and reset gate, Rt.

Zt = σ(WZ · [Ht−1, xt]) (2)

Rt = σ(WR · [Ht−1, xt]) (3)

where σ presents sigmoid function, WZ and WR are the weights of update gate and reset
gate, respectively.

Then, the new hidden state H̃t is calculated by the following:

H̃t = ϕ(W · [Rt · Ht−1, xt]) (4)

where ϕ presents the tanh function, W is the weight learned from the reset gate.
At last, the output of the present neuron is formulated as follows:

Ht = Zt · H̃t + (1− Zt) · Ht−1 (5)

Figure 2. The structure of the neuron in the gated recurrent unit (GRU).

2.2. IGWO

Generally, grey wolves mostly live in a pack and follow a strict social hierarchy. The
social positions are divided into four groups: alpha, beta, delta, and omega. Alphas
are the leaders, making decisions and commanding other wolves. Beta is the second
level in the hierarchy, and they help the alpha with pack activities. The lowest ranking
wolves are omegas, and they submit to all other wolves. The deltas are at the third level
of the hierarchy, between omegas and betas [22]. Mathematical models of their pack
hunting technique consider the alpha, beta, delta, and omega as the fittest solution (α), the
second-best solution (β), third-best solution (σ), and the remaining candidate solutions (Ω),
respectively.
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The hunting behaviors of grey wolves consists of two main phases: encircling the prey
and attacking prey. First, wolves encircle the prey reaching any positions. This behavior is
mathematically modeled, as shown below:

→
X(t + 1) =

→
Xp(t)−

→
A ·
→
D (6)

→
D =

∣∣∣∣→C ·→Xp(t)−
→
X(t)

∣∣∣∣ (7)

→
A = 2

→
a ·→r 1 −

→
a (8)

→
C = 2 ·→r 2 (9)

where t is the current iteration,
→
A and

→
C are coefficient vectors,

→
XP indicates the position of

the prey, and
→
X is the position of a grey wolf.

Second, Tt supposes that the alpha, beta, and delta have better knowledge about the
location of prey. The model saves the first three solutions and updates the positions of
other agents according to the estimation of the position of the alpha, beta, and delta. This
behavior is repeated until the best-fit solution is obtained. Figure 3 shows the process of
position updating in the GWO, which can explain the following equations:

→
Da =

∣∣∣∣→C1 ·
→
Xa −

→
X
∣∣∣∣,→Dβ =

∣∣∣∣→C2 ·
→
Xβ −

→
X
∣∣∣∣,→Dδ =

∣∣∣∣→C3 ·
→
Xδ −

→
X
∣∣∣∣ (10)

→
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→
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(→
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)
,
→
X2 =

→
Xβ −

→
A2 ·

(→
Dβ

)
,
→
X3 =

→
Xδ −

→
A3 ·

(→
Dδ

)
(11)

→
X(t + 1) =

1
3

(→
X1 +

→
X2 +

→
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)
(12)

where
→
Xa,

→
Xβ,

→
Xδ are the updated positions.

Figure 3. Updating positions in the grey wolf optimizer (GWO).
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2.3. Evaluation Indicators

This study evaluated model performance using the Nash–Sutcliffe efficiency coefficient
(nse), root mean squared error (RMSE), correlation coefficient (r), mean absolute percentage
error (MAPE), qualification rate (qr), absolute error (AE) between original streamflow
series, and the predicted series:

nse = 1−

n
∑

i=1
(xi − xi0)

2

n
∑

i=1
(xi0 − x)2

(13)

RMSE =

√
1
n

n

∑
i=1

(xi − xi0)
2 (14)

r =
∑N

i=1 (xi − xi)(xi0 − xi0)√
∑N

i=1(xi − xi)
2
√

∑N
i=1(xi0 − xi0)

2
(15)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ xi − xi0
xi

∣∣∣∣ (16)

qr =
k
l
× 100% (17)

AE = |xi − xi0| (18)

where xi and xi0 denote the original streamflow series and the predicted series, respectively;
x represents the mean of the original streamflow series; n is the number of streamflow
series; k denotes the number of the eligible prediction, which defined that the relative error
of the forecast was less than 20% of the maximum amplitude of the streamflow series; l
is the length of streamflow series at the validation period; AE is the difference between
the predicted and original streamflow, which ideally must be 0 [33]. nse = 1, RMSE = 0,
r = 1, MAPE = 0, qr = 100%, and AE = 0 are desirable for a perfect model in streamflow
forecasting. In practical applications, nse ≥ 0.5 and qr ≥ 60% are considered to represent a
satisfactory performance of the model [34].

3. Two Hybrid Forecasting Models

The procedures of the two structure-based predictive models for streamflow forecast-
ing are described as follows:

The first model was the sequential time-series structure-based predictive model
(namely, sequential IGWO-GRU). The streamflow series was divided into calibration,
test, and validation datasets. Then, the IGWO method was used to tune the hyperparame-
ters of the deep learning GRU model through the calibration and test period. Finally, the
model’s prediction for the two hydrological stations’ outputs was predicted. The detailed
steps of the sequential IGWO-GRU model were as follows:

(1) Let Yi, i = 1, 2, . . . , n, denote the streamflow time series.
(2) PACF (Partial Autocorrelation Function) was implemented to select four types of

input and five types of output to create twenty combinations of input and output.
(3) The ELM, LSSVM, and GRU methods modeled the relationship between inputs and

outputs.
(4) The dataset was divided into calibration, test, and validation datasets.
(5) IGWO was utilized to find the optimal combination of parameters for predictive

models.
(6) Obtain forecasting results for the ELM, LSSVM, and GRU models, defined as PredE,

PredL, and PredG, respectively.
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The second model was based on the streamflow series for each month, called the
monthly IGWO-GRU. The main difference between the first model and the second is that
the streamflow series was divided into twelve groups (one for each month) to reconstruct
the twelve predictions to the final forecasting results. First, the original streamflow series
was divided into twelve sets of streamflow series for months ranging from January to
December for the Shangjingyou station and the Fenhe reservoir station. Then, the GRU
was utilized to forecast each series, and the model was optimized by IGWO, which selects
the optimal parameter combination for modeling. After that, all of the predictions for each
month’s time-series composed the forecasting results. The steps of the monthly IGWO-GRU
model were similar to those of the sequential IGWO-GRU model:

(1) Let Yi, i = 1, 2, . . . , n, denote the streamflow time-series.
(2) The streamflow series for the same month. Streamflow for January was considered as

YJAN = Y1, Y13, . . . . Similarly, streamflow for February was YFEB = Y2, Y14, . . . , and
for December was YDEC = Y12, Y24, . . .

(3) Select the inputs and outputs for each of the monthly streamflow series through PACF.
(4) The dataset was divided into calibration, test, and validation datasets.
(5) IGWO was utilized to find the optimal combination of parameters for predictive

models.
(6) Obtain forecasting results through the predictions of the GRU model and the predic-

tions for each month, namely, PJAN, PFEB, . . . , PDEC.
(7) Reconstruct PJAN, PFEB, . . . , PDEC into the final forecasting results.

Figure 4 shows the flowcharts of ELM, LSSVM, and traditional sequential IGWO-GRU
models, and Figure 5 shows the monthly IGWO-GRU forecasting models.

Figure 4. Flowchart of the least-squares support vector machine (LSSVM), extreme learning machine
(ELM), and sequential IGWO-GRU model.
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Figure 5. Flowchart of the monthly IGWO-GRU model.

4. Case Study
4.1. Study Area and Dataset

Fenhe River, the native river of Shanxi province, is the second-largest tributary of the
Yellow River (Figure 6). It flows 716 km and has a total area of about 38,728 km2. The
basin contains the main industrial, urban residential, and agricultural areas of the Shanxi
Province [35]. In this study, the hydrological stations at the Shangjingyou station and
the Fenhe reservoir station are located in the upper reaches of the Fenhe River, which is
an important water source and the largest functional area of drinking water in Taiyuan
city. Therefore, developing a robust streamflow forecasting model with higher accuracy is
essential for water resource allocation and sustainable economic growth in the Fenhe River
upstream area.

There are 59 years of monthly streamflow data from the Fenhe reservoir station and
61 years for the Shangjingyou station available for the Fenhe River. Figure 7a,b shows the
monthly series and boxplots of streamflow series for the same month at the Shangjingyou
station, and Figure 7c,d shows the streamflow series from the Fenhe reservoir station. The
streamflow time-series data for the same month exhibit greatly stochastic and nonlinear
behavior, as shown in Figure 7b,d. In addition, the same month’s streamflow data vary
greatly from one month to another, demonstrating the difficulty of modeling it.
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Figure 6. The study area and location of the two hydrological stations.

Figure 7. Monthly streamflow data at the Shangjingyou station and the Fenhe station. (a) Monthly streamflow for
Shangjingyou station; (b) Boxplots of streamflow for Shangjingyou station; (c) Monthly streamflow for Fenhe reservoir
station; (d) Boxplots of streamflow for Fenhe reservoir station.
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There is variation in the ranges of the streamflow for each month, which reflects the
highly stochastic pattern of the streamflow. From Figure 7b,d, the range of outliers was
larger between July and October, which means the streamflow series in the wet season
exhibited greater stochasticity. The smaller distribution of streamflow between November
and June showed a more stable change. Furthermore, Figure 7 presents two types of
time-series data (sequential and monthly interval), which inspired us to build forecasting
models based on these two types of predictive structure.

To enhance the learning process of the model and prevent information from being
leaked from the calibration dataset, the streamflow records were split into three groups—
the calibration dataset, test dataset, and validation dataset [36]. The traditional single
ELM, LSSVM, and sequential IGWO-GRU models were used to predict future streamflow
based on the streamflow data from January 1956 to December 2013 at the Shangjingyou
station from January 1958 to December 2013 at the Fenhe reservoir station. The monthly
IGWO-GRU model was employed with twelve bunches of streamflow data.

4.2. Model Development

In this section, detailed information about model development is provided. Every
model used the same dataset structure and period division with the rolling learning-
prediction procedure.

(1) ELM and LSSVM model

In the single LSSVM model, the radial basis function was selected as the kernel func-
tion, and the grid search method was employed to identify the best parameter combination
by comparing the mean absolute error (MAE) during the calibration period. The sigmoid
function was chosen as the transfer function in the single ELM model, and the best number
of neurons was determined through trial-and-error with the MAE. In addition, there were
slight fluctuations in the ELM model. To ensure stability, each output was taken as the
arithmetic average of 10 executions of the model. The ELM model and LSSVM model
had 732 datasets from the Shangjingyou station and 708 datasets from the Fenhe reservoir
station.

(2) IGWO-GRU model

For the GRU method, if the learning rate of the deep learning model was large,
the model took a long time to converge or had difficulty in reaching the convergence
state in the end [37]. Moreover, the number of neurons in the hidden layer controls the
activation functions for the “memory-forget” work at gates. Therefore, the learning rate
and the number of hidden neurons in the GRU model were carefully tuned through several
experiments. Hence, to increase the efficiency of the optimization, the IGWO was employed
with GRU to optimize parameters. The initial parameters of the IGWO are listed in Table
1. Particularly, the objective function of the IGWO method is shown in Equation (13). To
prevent the models from overfitting and underfitting, the objective function for improved
GWO-GRU was to minimize the mean value of calibration loss and test loss when the
difference of two losses was found within 0.005.

Table 1. Initial parameters of improved grey wolf optimizer (IGWO).

Models Parameters Value

IGWO

Population size 5
Iterations number 10

Range partitions (γ) 1 (8, 200)
Range partitions (lr) 2 (0.0005, 0.1)

Loss MAE 3

1 γ means the number of neurons in the GRU hidden layer. 2 lr is the learning rate of the GRU model. 3 MAE is
the mean absolute error.
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In addition, the sequential IGWO-GRU model for five types of output (6, 12, 24, 36, and
72 streamflow values for output, respectively) forecasting with four types of inputs (Ma,
Mb, Mc, and Md) was determined by ACF and PACF [38], as shown in Table 2. The main
procedure of PACF and ACF are (1) Make PACF and ACF plot with 95% confidence bands.
(2) The variable will be selected as an input when the PACF value or the ACF value is out
of the confidence bands. (3) All the previous selected variables combine into different types
of inputs–outputs models, as shown in Table 2. The goodness-of-fit (RMSE) between the
predicted and original streamflow is displayed in the rose plots (Figure 8). It can be seen that
the Md model for the Shangjingyou station and Ma model for the Fenhe reservoir station
were the best types of input in terms of RMSE between predictions and original measured
streamflow data. For the different stations, using different inputs–outputs models have
different ranks of prediction accuracy—Ma model for the Shangjingyou station and Md
for the Fenhe reservoir station. In addition, the best inputs models for the two stations
achieved the highest accuracy whatever types of outputs, and considering the multi-step
outputs, the Md model had 36 steps of outputs for the Shangjingyou station, and the Ma
model had 12 steps of outputs for the Fenhe reservoir station; both had a good accuracy
compared to the other input and output combinations. Therefore, the Md and Ma were
selected as the input models for the sequential IGWO-GRU for the Shangjingyou station
and the Fenhe reservoir station, respectively. What is more, the sequential IGWO-GRU
model had 732 datasets in the Shangjingyou station and 708 datasets in the Fenhe reservoir
station. The monthly IGWO-GRU model has 61 datasets in the Shangjingyou station and
59 datasets in the Fenhe reservoir station for each month, and a total of 732 datasets in the
Shangjingyou station and 708 datasets in the Fenhe reservoir station in all.

Table 2. Different input combinations to forecast future streamflow.

Models Inputs Outputs

Ma Qt-1, Qt-2 2 Qt 1

Mb Qt-1, Qt-2, Qt-11, Qt-12 Qt
Mc Qt-1, Qt-2, Qt-11, Qt-12, Qt-13 Qt
Md Qt-1, Qt-2, Qt-12, Qt-13 Qt

1 Qt is the target output variable 2 Qt-i means the i antecedent variables of the target output variables.

Figure 8. Rose plots for different combinations of inputs and outputs in the two hydrological stations for the sequential
IGWO-GRU model. (a) Rose plots for Shangjingyou station; (b) Rose plots for Fenhe reservoir station.
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4.3. Results and Discussion

The two types of predictive structure-based model (monthly IGWO-GRU and sequen-
tial IGWO-GRU) were appraised in comparison with single ELM and single LSSVM, using
statistical metrics and error distributions between the predicted and original streamflow
series.

The precision of the monthly IGWO-GRU model was compared to the sequential
IGWO-GRU, single ELM and LSSVM models. The prediction results for each station are
shown on the basis of r, nse, and RMSE in Table 3. The monthly IGWO-GRU model
applied at the Shangjingyou station attained the highest r and nse and the smallest RMSE
compared to the sequential IGWO-GRU, single ELM, and LSSVM model (Table 3). Similarly,
considering the largest magnitudes of rand r and nse and the smallest magnitudes of RMSE
among all of the forecasting models, the performance of the monthly IGWO-GRU was
the best for the Fenhe reservoir station, followed by the sequential IGWO-GRU, single
ELM, and LSSVM model. This emphasizes the forecasting ability of the proposed model
for streamflow forecasting. The reason why the two station were so different is that the
streamflow values between the Shangjingyou station and the Fenhe reservoir station are
scaled. The Shangjingyou station is in the upper reaches of the Fenhe reservoir station, and
after many rivers’ confluence to the Fenhe River, the streamflow measured by the Fenhe
reservoir station was much higher than the Shangjingyou station. Therefore, there were
quite different evaluation indicators between the two stations.

Table 3 also presents MAPE and qr values of four types of models for two stations. It
can be seen that the ELM model had poor performance compared with the other models.
The LSSVM showed good performance, reducing the MAPE value by an average of 11.99%
for the two stations, compared with the ELM model. The sequential IGWO-GRU model
had a better performance and was superior to the ELM model, reducing the MAPE value
by an average of 36.38%, compared with the ELM model. The monthly IGWO-GRU model
showed the best performance among the four models and outperformed the ELM, LSSVM,
and sequential IGWO-GRU model, reducing the MAPE values by an average of 55.8%,
compared with the ELM model. Furthermore, the monthly IGWO-GRU model yielded a
qr value of 97.22% in the Fenhe reservoir station and 86.11% in the Shangjingyou station,
which falls in the “very good” and “good” grades, respectively [34]. This confirms the
practicability of the monthly structure-based deep learning predictive model IGWO-GRU
for forecasting streamflow series.

Table 3. Performance evaluation of the compared models applied in the forecasting of streamflow
series in the validation period based on three evaluation indexes.

Sites Performance
Metrics

Model

ELM LSSVM Sequential
IGWO-GRU

Monthly
IGWO-GRU

Shangjingyou

r 0.458 0.108 0.708 0.896
nse 0.135 0.261 0.421 0.675

RMSE 63.315 55.519 35.862 19.615
MAPE 0.168 0.153 0.109 0.060

qr 50.00% 50.00% 75.00% 97.22%

Fenhe
reservoir

r 0.727 0.850 0.792 0.971
nse 0.414 0.356 0.589 0.922

RMSE 361.564 346.713 361.999 147.666
MAPE 0.093 0.079 0.058 0.049

qr 66.67% 41.67% 66.67% 86.11%

Further analysis via boxplots (Figure 9) at each station was carried out to perform
comparisons with different forecasting skills through absolute error. In addition, Figure 9
also exhibits the normal curve and dot matrix of value distribution. The smaller distribution
of AE and a much smaller quartile range was acquired by the monthly IGWO-GRU model
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for the Shangjingyou station, followed by the sequential IGWO-GRU model, single ELM,
and LSSVM. Similarly, at the Fenhe reservoir station, AE distributions of the monthly
model also achieved higher accuracy in relation to the other models. In addition, the
results clearly indicated that the performance of models ranked from best to worst was the
monthly IGWO-GRU, sequential IGWO-GRU, LSSVM, and ELM. This further confirms the
suitability of the monthly IGWO-GRU model for forecasting streamflow values.

Figure 9. Boxplots of absolute error (AE) of models between forecasted and original streamflow for the Shangjingyou
station (a) and the Fenhe reservoir station (b).

Peak flows, which are the extreme values of a streamflow series, make it difficult to
model hydrological behaviors. The original and predicted peak flow during the validation
period are presented in Figure 10. One can see that all of the forecasting models can trace
the changes in peak flow, but the performance of the monthly IGWO-GRU model was
superior to the compared models. For the Fenhe reservoir station, the average absolute
relative error of the maximum peak flow of the monthly IGWO-GRU was about 7.34%,
which was less than the values of 16.68% for sequential IGWO-GRU, 98.81% for LSSVM,
and 69.67% for ELM. Again, for the Shangjingyou station, the estimation of monthly IGWO-
GRU (11.74%) was less than the values of 13.41% for sequential IGWO-GRU, 90.91% for
LSSVM, and 89.87% for ELM.

The relationship between historical streamflow and the future was learned by the
GRU model, which has “memory” of the long time sequence in streamflow series [32]. The
“memory” of GRU not only considers the current step but also the past connections between
inputs and outputs, leading to the deep learning of the hydrological time-series [13]. The
ELM model not only produces a fluctuating performance because of the empirical risk
minimization principle but also belongs to the shallow network and cannot remember past
cases [39]. In addition, the important hyperparameters in the GRU model are carefully
tuned by the IGWO method, which is highly efficient in optimization and effectively
reduces the influence of over-fitting or under-fitting [20,40]. Subsequently, the integration
of the GRU model with the IGWO method makes the hybrid IGWO-GRU model well-
suited for efficient streamflow forecasting and real-time applications. Therefore, the model
integrated GRU and IGWO is a promising alternative tool in terms of capturing the peak
flows of monthly streamflow at the two stations.
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Figure 10. Peak flows of different models for the Shangjingyou station (a), and the Fenhe reservoir station (b) during the
validation period.

From the comparison of streamflow predictions, it can be noted that the deep learning
models (IGWO-GRU) based on two types of structure were superior to shallow neural
network models (LSSVM and ELM). The deep learning models have shown better learning
skills regarding the relationship between historical and future streamflow, which contains
complex information about hydrological behavior. Through the detailed analysis of the
two types of structure-based models at two stations, the monthly IGWO-GRU model was
found to perform better than the sequential IGWO-GRU model. The streamflow in the
same month had familiar environmental conditions, which showed the law of mid- to long-
term interannual variation. Moreover, a good correlation allowed more information to be
generated between the historical and the future streamflow values, thereby capturing more
information that can be easily learned by deep learning models [41]. Thus, the monthly
structure-based IGWO-GRU model exhibited higher predictive accuracy compared to the
sequential structure-based predictive model.

Therefore, according to the results of Figures 6–10 and Tables 2 and 3, the integration
of the IGWO with the deep learning GRU based on the monthly structure of streamflow
time-series data enabled the new monthly IGWO-GRU model to emulate streamflow values
effectively. In the process of streamflow forecasting, the main reasons for this model achiev-
ing the best performance are as follows: (1) The deep learning GRU accurately describes the
complex behaviors of hydrological series and learns the connotative relationships between
inputs and outputs; (2) the optimizer method IGWO finds better parameter combinations
of the GRU model, reducing the computational burden and personal error effectively, and
improves the generalization ability of the GRU model; (3) the monthly structure-based
model reconstructs streamflow series and extracts the implied and useful hydrological
information which can be learned easily by the deep learning method.

Despite the enhanced performance of the new monthly IGWO-GRU model, some
limitations of the present undertaking could be explored in further studies. This study
used only historical streamflow values to predict the future, which utilized a single input
variable approach, but the hydrological process is highly complex and related to many
climate driving factors, such as rainfall, land utilization, and temperature. Future models
that include more factors in forecasting streamflow values will provide more information
on the future hydrological process.
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5. Conclusions

In this study, a monthly IGWO-GRU model was developed using historical streamflow
data as the predictors to forecast the future streamflow at the Fenhe reservoir station and
the Shangjingyou station. The hybrid monthly IGWO-GRU and sequential IGWO-GRU
achieved a high level of accuracy compared to the single LSSVM and ELM models. The
following results have been concluded:

(1) The optimizer IGWO can effectively find the best hyperparameters for the forecasting
models. The superior ability of GRU is its deep learning of relationships between
historical and future streamflow time-series compare to LSSVM and ELM models.

(2) The monthly structure-based model can effectively extract more information about the
hydrological process than the traditional sequential predicting structure. As shown
by its high accuracy, the performance of the monthly IGWO-GRU model was better
than the sequential structure-based predictive model.

This study provides a newly developed model to learn historical streamflow data
and predict future streamflow values. Forecasting streamflow at the mid- to long-term
horizons could help the government and stakeholders with strategic future hydrological
resource management. Moreover, the monthly structure-based predictive model can be
further explored in predicting other variables if the data sets are suitable. More attention
will be paid to the performances of multi-variable models in a more comprehensive study.
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