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Abstract: This study examines the (dis)similarity of two commonly used indices Standardized
Precipitation Index (SPI) computed over accumulation periods 1-month, 3-month, 6-month, and
12-month (hereafter SPI-1, SPI-3, SPI-6, and SPI-12, respectively) and Effective Drought Index (EDI).
The analysis is based on two drought monitoring indicators (derived from SPI and EDI), namely, the
Drought Duration (DD) and Drought Severity (DS) across the 93 South African Weather Service’s
delineated rainfall districts over South Africa from 1980 to 2019. In the study, the Pearson correlation
coefficient dissimilarity and periodogram dissimilarity estimates were used. The results indicate
a positive correlation for the Pearson correlation coefficient dissimilarity and a positive value for
periodogram of dissimilarity in both the DD and DS. With the Pearson correlation coefficient dissimi-
larity, the study demonstrates that the values of the SPI-1/EDI pair and the SPI-3/EDI pair exhibit
the highest similar values for DD, while the SPI-6/EDI pair shows the highest similar values for DS.
Moreover, dissimilarities are more obvious in SPI-12/EDI pair for DD and DS. When a periodogram
of dissimilarity is used, the values of the SPI-1/EDI pair and SPI-6/EDI pair exhibit the highest
similar values for DD, while SPI-1/EDI displayed the highest similar values for DS. Overall, the
two measures show that the highest similarity is obtained in the SPI-1/EDI pair for DS. The results
obtainable in this study contribute towards an in-depth knowledge of deviation between the EDI and
SPI values for South Africa, depicting that these two drought indices values are replaceable in some
rainfall districts of South Africa for drought monitoring and prediction, and this is a step towards the
selection of the appropriate drought indices.

Keywords: drought; comparison; Effective Drought Index (EDI); Standard Precipitation Index (SPI)

1. Introduction

South Africa’s water resources, food security, infrastructure, health, as well as its
ecosystem facilities, and biodiversity are threatened by climate change [1]. Two promi-
nent natural disasters, namely, drought and flood, occur in South Africa. Drought is an
unusually dry condition continuous over a long period [2]. Droughts, as well as floods,
are associated with strong and severe weather events. While the impacts of floods are
instantly noticeable, drought impacts are assessed over a period of time. The impacts are
spread across several sectors of the economy, such as agriculture, water, tourism, trans-
port, energy, and ecosystem [3]. These impacts are associated with the death of livestock,
rivers, and reservoirs drying up, crops wilt, and socio-economic loss [4]. Drought can be
categorized by its severity, duration, and areal extent. Several distressing drought events
have occurred in the past few decades. Among these is the severe drought that occurred
in 2009, and affected diverse parts of the world, but more people were affected in Africa
than in other places [5]. Recently (2016–2018), South Africa has experienced a lengthy
drought period [6,7] that has affected both water resources and agricultural production,
with the effects already propagated into the socio-economic systems. This drought event
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is regarded as one of the worst droughts in the country’s history, leading to the death of
many and millions forced into further hardship [7]. Natural drought events abound, but
with monitoring, prediction, and early warning, drought preparedness could be enhanced,
impacts can be reduced, and adaptive measures put in place.

According to Wilhite et al. [8,9], drought is categorized into four: (a) Meteorological,
(b) agricultural, (c) hydrological, and (d) socio-economic. Meteorological drought is trig-
gered by a prolonged shortage of precipitation from its long-term mean [8]. On the other
hand, agricultural drought is characterized by shortages of total soil moisture and results
primarily from the deficit of precipitation, whilst hydrological drought is associated with
the persistent scarcity or absence of water in water reservoirs, aquifers, or courses [8–14].
Furthermore, socio-economic drought conditions result from the negative effects of meteo-
rological, agricultural, and hydrological droughts on the socio-economic sectors. Drought
occurrence is a result of some environmental factors, among which are rainfall intensity,
duration and severity, temperature, relative humidity, and wind flow [15]. Recently, the
attention of several researchers has been drawn to drought studies because there has been
a significant increase in the incidence, intensity, and area affected by drought. This is
primarily instigated by the activities of humans, as well as the effect of climate change [16].
It is of utmost importance to understand drought characteristics at a regional level in a
quest to alleviate drought risk, moderate latent effects on innumerable socio-economic
sectors, and implement appropriate procedures and policies [17,18].

Drought indices are widely used for drought monitoring, such as Palmer Drought
Severity Index (PDSI; [19]), Rainfall Decile based Drought Index (RDDI; [20]), Crop Mois-
ture Index (CMI; [21]), Bhalme and Mooley Drought Index (BMDI; [22]), Surface Water
Supply Index (SWSI; [23]), Standardized Precipitation Index (SPI; [24]), Soil Moisture
Drought Index (SMDI; [25]), Effective Drought Index (EDI; [26]), China Z-Index (CZI; [27]),
Soil Moisture Deficit Index (SMDI; [13]), Reconnaissance Drought Index (RDI; [28]), Stan-
dardized Precipitation Evapotranspiration Index (SPEI; [29]) Agricultural Reference Index
for Drought (ARID; [30]), the Vegetation Health Index (VHI; [31]). The majority of these
indices are based on incessant functions of one or more of these hydro-meteorological vari-
ables like temperature, precipitation, potential evapotranspiration, soil water, groundwater,
run-off, streamflow (World Meteorological Organization (WMO) [32]).

Drought indices are usually region-specific, and they are limited in their applications
to diverse climatic conditions, given the intrinsic complexity of drought phenomena [10].
For instance, PDSI is broadly used in the United States, the RDDI is operational in Australia,
and the CZI is used by the National Metrological Center in China [33]. Although contrary
to Heim [10], Dai [34] reveals the global applicability of PDSI, in regions of extreme
elevation and high geographic latitudes. The SPI is one of the most popularly used in the
investigation of meteorological drought. There may be a disparity in the complexity of
drought, the existence of good quality data, and the efficacy of drought indices in depicting
historical drought events for different locations [33]. It is of paramount importance to
identify a suitable drought index for a particular region to quantify and prepare for drought-
related disasters. Several comparative studies of drought indices have been conducted in
several regions. For instance, Ref. [33] compared six drought indices to detect the most
suitable for drought monitoring in the Ken River basin, India, and specified that EDI is a
more appropriate drought index for the study basin. In Ref. [35], the suitability of seven
drought indices for drought monitoring in the basin was compared and suggested the
use of EDI and SPI. Their study also specified that the EDI was more receptive to drought
and performed better compared to the SPI. In Ref. [36], 14 drought indices in two areas
of the United States (US) were appraised and ranked and concluded that deciles and SPI
ranked best amid the appraised indices. The performance of three drought indices in the
Upper Niger basin was examined based on six verdict criteria [37]. They stated that the SPI
ranked first amongst meteorological drought indices.

EDI and SPI values are both standardized, this compares the drought severity at two
or more locations irrespective of their climatic differences [38]. The EDI has thresholds sig-
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nifying the range of wetness from extreme drought conditions to extremely wet conditions
like the SPI [39]. The computation of SPI encompasses an analysis of the monthly rainfall
deviation from its recorded monthly rainfall series whereas, EDI computation involves the
analysis of the daily rainfall deviation from its recorded daily series. Ref. [40] modified
the algorithm to permit the EDI application to accommodate monthly data. Furthermore,
the SPI is a drought index that has been used extensively in various parts of the world,
while the EDI is a fairly new drought index, and its applicability has not been tested exten-
sively [35]. Additionally, the WMO suggested using SPI as the core meteorological drought
index countries should employ in monitoring and tracking drought conditions [4,41] illus-
trated the robustness of EDI for the detection of early drought and its similarity with SPI as
against other indices.

The growth in the development of drought indices is remarkable. This could be due
to the need to adequately monitor and respond to the increasing occurrence of drought.
Consequently, there is a growing concern to investigate the sensitivity of drought indices
to drought characteristics, such as drought onset, cessation, duration, and severity. The
usefulness of such a study has been demonstrated in Ethiopia [39] and Serbia [4] over
river basins. Whilst previous studies have investigated drought in South Africa using
indices that include SPEI, SPI, and EDI [6,7]; however, as reported by ref. [42,43] there
is insufficient knowledge on the sensitivity of the drought monitoring indices across
the national landscape. Besides, there is growing interest among the drought research
community for operationalizing an integrated drought early warning system for South
Africa. Consequently, to ensure the effectiveness of the system, there is a need to understand
the advantages and disadvantages, the similarity and dissimilarity of the several drought
indices that have been used. Therefore, this study aimed at investigating the (dis)similarity
of two commonly used indices (SPI and EDI) based on DD and DS.

2. Materials and Methods
2.1. Study Area

The study area includes the nine provinces of South Africa, namely, Eastern Cape
(EC), Free State (FS), Gauteng (GT), KwaZulu-Natal (KZN), Limpopo (LP), Mpumalanga
(MP), Northern Cape (NC), North West (NW) and Western Cape (WC), see Figure 1. It
covers a total area of 1,221,037 km2 with about 58 million population. South Africa receives
an annual average total rainfall of about 450 mm and average maximum and minimum
temperatures of 27 ◦C and 18 ◦C, respectively. The FS, MP, and NW provinces fall within
regions that receive less than 600 mm of rainfall per year. The FS province is characterized
by chilly winters (ranging from a cold 1 ◦C to mild 17 ◦C), plenty of sunshine (15 ◦C to
32 ◦C), and summer rains at an average of 500 mm annually. In NW province, there is
almost year-round sunshine, with an average rainfall of 400 mm annually. The summer
temperature ranges from 22 ◦C to 34 ◦C. The NW province is characterized by dry, sunny
days and chilly nights during winter (2 ◦C to 20 ◦C). In KZN, summer is from December
to February with temperature ranging between 23 ◦C to 33 ◦C, and winter is from June to
August with temperature ranging between 16 ◦C to 25 ◦C. The province is characterized by
long, hot summers with average annual rainfall ranging between 800 mm. Furthermore,
the western part of MP province is much colder during winter and hotter during summer
than the other parts of the province. The average annual temperature is about 19 ◦C, and
rainfall is between 500 mm and 800 mm annually.
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Figure 1. Map of rainfall districts for South Africa (SAWB, 1972) with provincial borders showing annual total rainfall 
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rainfall coverage is reported elsewhere in Reference [2]. To calculate the statistics and in-
terpolation, the centroid of each rainfall district was derived using ArcGIS® software 10.5 
by Environmental Systems Research Institute, Inc., California, 2010 (ESRI). The time series 
of the two drought indices EDI and SPI accumulation periods of 1, 3, 6, and 12 months; 
were calculated for 93 meteorological stations across South Africa from 1980 to 2019 [24]. 
Drought duration and severity were calculated based on [44]. Thereafter, the Pearson’s 
correlation coefficient dissimilarity measure with p-value and periodogram dissimilarity 
measure was used to determine the similarity and dissimilarity. The methodological 
flowchart is shown in Figure 2. 

Figure 1. Map of rainfall districts for South Africa (SAWB, 1972) with provincial borders showing annual total rainfall
1980–2019.

2.2. Materials and Methods

The South African Weather Service (SAWS) monthly rainfall districts data was used
as the input data. Detailed information on the delineation of the districts to homogeneous
rainfall coverage is reported elsewhere in Reference [2]. To calculate the statistics and
interpolation, the centroid of each rainfall district was derived using ArcGIS® software 10.5
by Environmental Systems Research Institute, Inc., California, 2010 (ESRI). The time series
of the two drought indices EDI and SPI accumulation periods of 1, 3, 6, and 12 months;
were calculated for 93 meteorological stations across South Africa from 1980 to 2019 [24].
Drought duration and severity were calculated based on [6]. Thereafter, the Pearson’s
correlation coefficient dissimilarity measure with p-value and periodogram dissimilarity
measure was used to determine the similarity and dissimilarity. The methodological
flowchart is shown in Figure 2.

2.2.1. Computation of Effective Drought Index (EDI)

According to ref. [26], various existing indices used have limits in indicating the
precise start and end of the drought period and the duration of drought. This led to their
proposition of EDI, which is another rainfall-related measure, as a remedy for some of these
shortcomings. Contrasting to many other drought indices, the EDI in its original form is
computed from a daily time step. The EDI (Equation (1)) is a function of the PRN (One
day’s precipitation needed for a return to normal conditions, Equation (2)), this implies the
recovery from the accumulated deficit from the commencement of a drought.

EDIj =
PRNj

ST
(

PRNj
) (1)
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PRNj =
DEPj

∑
j
N=1(1/N)

(2)

DEP = EP − MEP (3)

where j is actual duration, ST(PRN) is the standard deviation of each day’s PRN, EP is
‘effective precipitation’, and MEP is the mean of each day’s EP. The EP (Equation (4)) is the
core new concept in the algorithm. The EP denotes to the addition of all daily precipitation
with a time decrease function. The EP for any day is a function of precipitation of the
present day, as well as of preceding days, but with lower weights. The calculation technique
of the EDI commences by applying a dummy water deficit period as a prerequisite for
defining the real period. The dummy duration can differ, for instance, it could be 365 days
representing the value of the total water resources stored or available for an extended
period, or it could be 15 days indicating a short period.

EPi =
i

∑
n=1

[(
n

∑
m=1

Pm

)
/n

]
(4)

where i is the duration of summation and Pm is the precipitation of m days before. For
more details, refer to ref. [26].
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2.2.2. Computation of Standardized Precipitation Index (SPI)

To compute the SPI for any location, the long-term precipitation record is required for
an anticipated period. The existing long-term rainfall data is fitted to a gamma probability
distribution, which further transforms it to a normal distribution to have the SPI mean
value at zero [24]. This transformed probability SPI values range from +2.0 to −2.0 (Table 1),
with 5% extremes outside this range [44,45]. SPI may be computed at multiple time steps,
such as 1, 3, 6, 9, 12, and 24 months; in this study, the 1, 3, 6, and 12-month accumulation
period is used. The SPI-n is computed by first fitting precipitation data for each calendar
month (or the n-month accumulation) to a theoretical distribution [24].
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Table 1. Different categories of SPI and EDI values for drought severity (Byun and Wilhite (1999)).

Category
Range of Drought Index Values

SPI EDI

Extremely Dry ≤−2.0 ≤−2.0
Severely Dry −1.5 to −1.99 −1.5 to −1.99

Moderately Dry −1.0 to −1.49 −1.0 to −1.49
Normal −0.99 to 0.99 −0.99 to 0.99

Moderately Wet 1.0 to 1.49 1.0 to 1.49
Severely Wet 1.5 to 1.99 1.5 to 1.99

Extremely Wet ≥2.0 ≥2.0

2.2.3. Methodology for Time Series Classification

A crucial problem in the classification of time series is the choice of an applicable met-
ric [4]. Pearson’s correlation coefficient alongside its p-value and periodogram dissimilarity
measures were used to determine the similarities or dissimilarities between the pair of time
series in the data set. The results of these measures were displayed in maps and graphs
(Figures 3–10).

2.3. Dissimilarity Measure Based on Pearson’s Correlation

Correlation is a method for investigating the relationship between two quantitative,
continuous variables. Pearson’s correlation coefficient is a measure that relates to the
strength and direction of a linear relationship. This metric is calculated for the vectors x
and y following Equation (6). Pearson’s correlation values range from −1 to +1.

CORR(x, y) =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(5)

Pearson’s correlation values range from −1 to +1. The larger the absolute value of the
coefficient, the stronger the relationship between the variables.

2.4. Periodogram Based Dissimilarity Measure

Periodogram based dissimilarity [46–48] this measure gives us the Euclidean distance
from two-time successions’ periodogram coefficients. Since the periodogram variance
emerges proportionately to the spectrum value at the equivalent frequencies, using the
logarithm of the normalized periodogram is more appropriate. In particular, ref. [48]
considers a distance measure concerning the cumulative versions of the periodograms,
such as the integrated periodograms. Casado de Lucas claims that the methods relate to
the integrated periodogram present quite a few advantages over the ones that related to the
periodogram. Particularly, the periodogram is an asymptotically neutral, but unpredictable
estimator of the spectral density—whereas, the integrated periodogram is a dependable
estimator of the spectral distribution. Theoretically, the spectral distribution constantly
occurs, but the spectral density occurs only under categorically continuous distributions.
The integrated periodogram wholly controls the stochastic process. The normalized type
exact added weight to the shape of the curves compare to the scale, which is precisely
what is required in the case of drought indices. Consequently, the normalized logarithm
periodogram is computed using Equation (6).

dLNP(x, y) =

√√√√[n/2]

∑
j=1

[
logNPx

(
wj
)
− log NPy

(
wj
)]2 (6)

where Px
(
wj
)

= (1/n)
∣∣∑n

t=1 xte−itωj
∣∣2 and Py

(
wj
)

= (1/n)
∣∣∑n

t=1 yte−itωj
∣∣2 is the peri-

odograms of the time series x and y, respectively, at frequency wj = 2π j/n, j = 1, . . . , [n/2]
in the range 0 to π (where [n/2] is the largest integer less than or equal to n/2).
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3. Results
3.1. Comparison of SPI and EDI Using the Pearson Correlation Coefficient and p-Value

The Pearson correlation coefficient estimate dissimilarity between SPI-1, SPI-3, SPI-
6, SPI-12, and EDI drought duration (DD) for the SAWS’ rainfall districts is portrayed in
Figure 3A–D and Figure 4A–D. A two-tailed T-test for the Pearson correlation coefficient is
calculated over individual rainfall districts, see Figure 3. From Figures 3A and 4A, strong
dissimilarity (but statistically insignificant) between SPI-1/EDI pair can be observed in 35%
of the rainfall districts in NC province. Furthermore, 73%, 70%, and 60% of SAWS’ rainfall
districts located in EC, WC, and NW provinces (respectively) exhibit moderate statistically
significant dissimilarity, respectively, among the SPI-1/EDI pair. The SPI-1/EDI pair has
similar statistically significant values in 90% of the rainfall districts in GT, MP, and KZN
provinces. As shown in Figures 3B and 4B, about 10% of the districts located in LP and NC
provinces exhibit strong statistically insignificant dissimilarity for the SPI-3/EDI pair values.
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There is moderate, yet statistically significant, dissimilarity measure for 85% of the
districts in the WC province for the SPI-3/EDI pair values. On the other hand, about
25% of the rainfall districts in the NC and FS provinces show weak statistically significant
dissimilarity measure for the SPI-3/EDI pair, while all the rainfall districts in GT and MP
provinces, as well as 70% in EC province, displays similar statistically significant values. As
observed in Figures 3C and 4C, the NC province displayed strong statistically significant
dissimilarity for the values of the SPI-6/EDI pair in about 55% of the province. Moderately
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statistically significant dissimilarity measure was determined in 60% of the rainfall districts
in NW province, and 45% of the rainfall districts for both FS and EC provinces.

Water 2021, 13, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 3. Pearson’s correlation coefficient estimates dissimilarity measure for drought duration in South Africa. (A) SPI-
1/EDI; (B) SPI-3/EDI; (C) SPI-6/EDI; and (D) SPI-12/EDI. 

 
Figure 4. Percentage of Pearson’s correlation coefficient estimate dissimilarity measure for drought duration in South Africa.
(A) SPI-1/EDI; (B) SPI-3/EDI; (C) SPI-6/EDI; and (D) SPI-12/EDI. Strong Dissimilarity (SD), Moderate Dissimilarity (MD),
Weak Dissimilarity (WD), Little or No Dissimilarity (LND).

Additionally, a statistically significant weak dissimilarity measures were determined
for the values of the SPI-6/EDI pair in about 75% of the rainfall districts in WC province,
60% of the rainfall districts in KZN province, about 35% of the rainfall districts in both
FS and EC provinces. Also, about 95%, 90%, and 60% of the districts in GT, MP, and LP
provinces, respectively, exhibited similar statistically significant values for the SPI-6/EDI
pair. As shown in Figures 3D and 4D, strong statistically insignificant dissimilarity measure
for the SPI-12/EDI duo values were observed in 40% of the rainfall districts across both
NC and WC provinces and 30% of the districts in the EC province. Moderate statistically
significant dissimilarity measure for the SPI-12/EDI pair is depicted in 80% of the rainfall
districts in KZN province, 75% of the rainfall districts in NW province and 45% of the rainfall
districts in EC province. In EC, WC, and NC provinces, respectively, 70%, 60%, and 50% of
the rainfall districts demonstrated weak, but statistically significant dissimilarity measures
for the SPI-12/EDI pair. Similar statistically significant values for the SPI-12/EDI pair were
found in all the rainfall districts across GT province, about 90% of the rainfall districts in
MP province and 60% in LP province. The values of the metrics (the Pearson correlation’s
coefficients and periodogram dissimilarity measures) used to qualify (dis)similarity as Strong
(SD), Moderate (MD), Weak (WD), and Little or No (LND) are given as strong if the value
lies between ±0 and ±0.25, moderate if the value lies between ±0.24 and ±0.49, weak if the
value lies between ±0.5 and ±0.74 and little or no if the value is between ±0.75 and ±1.

The comparison between SPI-1, SPI-3, SPI-6, SPI-12, and EDI for drought severity (DS)
across the study area is portrayed in Figures 5 and 6 using the Pearson correlation coefficient
estimate dissimilarity. According to Figures 5A and 6A, strong statistically insignificant
dissimilarity is observed in 60% of rainfall districts in KZN province. Additionally, moderate
statistically significant dissimilarity is detected in about 90% of GT province, 80% of both
LP and WC provinces, and 65% of both EC and NW provinces for the SPI-1/EDI pair.
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While, a weak statistically significant dissimilarity is observed in about 55%, 40%, and 40%
rainfaltr45sal districts of MP, KZN, and NC provinces, respectively, for the SPI-1/EDI pair.
Furthermore, the SPI-1/EDI pair shows that 50% and 20% of rainfall districts in FS and
LP provinces, respectively, depicts similar statistically significant values. Figures 5B and
6B illustrate the comparison between the SPI-3/EDI pair. The figures depict a moderate
statistically significant dissimilarity for the SPI-3/EDI pair is shown in 100% of the rainfall
districts in both NW and GT provinces, 90% and 80% in FS and LP provinces, respectively.
Whereas, a weak statistically significant dissimilarity is shown between the SPI-3/EDI in
about 35% and 30% of the rainfall districts in KZN and NC provinces, respectively.
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Figure 5. Pearson’s correlation coefficient estimates dissimilarity measure for drought severity in South Africa. (A) SPI-
1/EDI; (B) SPI-3/EDI; (C) SPI-6/EDI; and (D) SPI-12/EDI.

Moreover, the statistically significant similarity in 100% rainfall districts in EC province,
50% in WC, province, and 45% in MP province are also detected. In the comparison between
SPI-6/EDI pair is shown in Figures 5C and 6C. The figures depict a moderate statistically
significant dissimilarity is observed between the SPI-6/EDI pair, for 85%, 65%, and 53%
of the rainfall districts in KZN, WC, and NC provinces, respectively, while about 30%
of the rainfall districts in NC province exhibit weak statistically significant dissimilarity
measure. Similar statistically significant values for all the rainfall districts in both GT and
MP provinces, 95% in NW province, 65% in FS province, 62% in EC province, and 60%
in LP province. On the other hand, Figures 5D and 6D illustrate the comparison between
SPI-12/EDI pair. The figures show that a moderate statistically significant dissimilarity
is observed between the SPI-12/EDI in about 50% of the rainfall districts in EC province,
and 45% in FS province, a weak statistically significant dissimilarity is observed for about
75% of the rainfall districts in WC province, and about 40% in both EC and NC provinces.
While all the rainfall districts in both GT and MP provinces, 98% in LP province, and 95%
in KZN province depict statistically significant similarity measure.
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3.2. Comparison of SPI and EDI Using Periodogram Dissimilarity

The results obtained when the periodogram measure is used for the dissimilarity
analysis of DD are presented in Figures 7 and 8. The comparison for the SPI-1/EDI pair
values, as shown in Figures 7A and 8A, depict strong dissimilarity, observed in about
50%, 40%, and 30% of the rainfall districts in EC, WC, and NC provinces, respectively. A
moderate statistically significant dissimilarity in about 45%, 40%, and 35% of the rainfall
districts in FS, GT, and NC provinces, respectively. Furthermore, the results indicate that
about 60% of the rainfall districts in both MP and NW provinces and 55% in KZN province
has weak dissimilarity, while similar values were detected in 15% of these provinces; LP,
NC, FS, and NW. When SPI-3/EDI pair were compared, as shown in Figures 7B and 8B,
strong dissimilarity were observed in about 60% of the rainfall districts in MP province,
35% in NW province, and 30% in NC, FS, and WC provinces.

Furthermore, 45% of the rainfall districts in KZN province, 40% in GT province, 30%
in both LP and NC provinces exhibit moderate dissimilarity. Similarly, the SPI-3/EDI duo
values show that about 60% of rainfall districts in GT, FS, and WC provinces, and about 50%
of the rainfall districts in both EC and NW provinces indicate a weak dissimilarity, while
similar values are observed in about 15% of the rainfall districts in LP province. The values
for the SPI-6/EDI pair in Figures 7C and 8C show strong dissimilarity for 25% of the rainfall
districts in MP and 30% in provinces; FS, EC, and LP. A moderate dissimilarity for about 60%,
45%, 40%, and 35% of the rainfall districts in WC, NC, FS, and NW provinces, respectively,
and 90% in GT province, 60% in both MP and KZN provinces, and 50% in both EC and NW
provinces present a weak dissimilarity. Similar values were observed in 20% of the rainfall
districts in LP and 15% of province NC, FS, and WC. The comparison between SPI-12/EDI
pair in Figures 7D and 8D, strong dissimilarity values were observed for about 45% of the
rainfall districts in NC province and 50% in both KZN and NW provinces. SPI-12/EDI pair
shows that about 30% of the rainfall districts in LP province and 45% in both MP and WC
provinces indicate a moderate dissimilarity, while about 80%, 65%, and 45% of the rainfall
districts in FS, GT, and LP provinces, respectively, suggest a weak dissimilarity. Similar values
were detected in 15% of the rainfall districts in MP, LP, and WC.
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The comparison between SPI-1, SPI-3, SPI-6, SPI-12, and EDI for drought severity over
the rainfall districts of South Africa is portrayed in Figures 9 and 10 using periodogram
dissimilarity. The values of the SPI-1/EDI pair (Figures 9A and 10A) show strong dis-
similarity for 60%, 50%, and 30% of the rainfall districts in WC, NC, and EC province,
respectively. Moreover, 90%, 70%, 60%, and 55% of the rainfall districts in GT, MP, NW,
and KZN province, respectively, display a moderate dissimilarity. Additionally, SPI-1/EDI
depicts that about 40% of the rainfall districts in KZN province and 50% in both FS and
EC provinces display a weak dissimilarity. While similar values were observed in 30%
of the rainfall districts in MP and 20% in LP. As shown in Figures 9B and 10B, a strong
dissimilarity is observed in about 60% of SAWS’ rainfall districts in WC province, as well
as 50% of SAWS’ rainfall districts in NC province for the SPI-3/EDI pair. Moreover, 60%
of SAWS’ rainfall districts in both GT and MP provinces, and about 50% of the rainfall
districts in both FS and NW provinces show a moderate dissimilarity. Weak dissimilarity
was depicted in about 65% of the rainfall districts in EC province, 45% in LP province, 35%
in both KZN and NC provinces when the SPI-3/EDI pair were compared. While 40% of
SAWS’ rainfall districts in MP province have similar values.
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Figure 9. Periodogram dissimilarity measure for drought severity in South Africa. (A) SPI-1/EDI; (B) SPI-3/EDI; (C) SPI-
6/EDI; and (D) SPI-12/EDI.

Similarly, the comparison between SPI-6/EDI pair (Figures 9C and 10C) depicts
strong dissimilarity in 65%, 60%, and 40% of rainfall districts in NW, FS, and GT province,
respectively. A moderate dissimilarity in about 60%, 45% and 40% of the rainfall districts in
MP, LP, and EC province, respectively, while 65% of the rainfall districts in KZN province,
60% in both GT and WC provinces, and 48% in NC province indicate a weak dissimilarity.
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In addition, the SPI-6/EDI pair displays similar values in 25% of the rainfall districts in MP
province. When SPI-12/EDI pair values (Figures 9D and 10D) were compared, the results
show that strong dissimilarity was detected for 40% of the rainfall districts in both GT and
NC provinces, 35% in EC province, and 30% in both MP and NW provinces. Moreover, 40%
and 30% of the rainfall districts in KZN and WC province, respectively, exhibit a moderate
dissimilarity, while 60% of the rainfall districts in GT province, 45% in EC province, 40% in
MP province, NC province, and NW province show a weak dissimilarity. Furtherly, the
SPI-12/EDI duo values display similarity for 25% of the rainfall districts in LP province
and 20% in both KZN and WC provinces.
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(WD), Little or No Dissimilarity (LND).

4. Discussion

Frank et al. [4] made remarks that EDI has good similarity with the different SPI
accumulation periods, which makes it capable of recognizing all droughts. In other words,
it can recognize drought of different duration, giving a single value. This is evident in this
study, given the similarity observed in virtually all the scenarios. A similarity measure
provides a score that defines how similar a feature of the two vectors is, divergence from
distances, and dissimilarity measures, which give a score relating how much two items
differ. This study investigates the similarity and dissimilarity between the two frequently
used indices (SPI and EDI) for drought duration (DD) and severity (DS). The SPI-1, SPI-3,
SPI-6, and SPI-12 is compared with the EDI values using the Pearson correlation coefficient
estimate dissimilarity and periodogram measures. The study is conducted across the 93
South African Weather Service’s delineated rainfall districts over South Africa from 1980 to
2019.

The comparison between the SPIs (that is, SPI-1, SPI-3, SPI-6, and SPI-12) and EDI
shows variations in the dissimilarity and similarity among these drought indicators. How-
ever, there were no negative values for both the Pearson correlation coefficient estimate
dissimilarity and the periodogram dissimilarity. Comparison with the Pearson correlation
coefficient estimate dissimilarity shows that the drought indices/indicators for drought
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duration and severity displays similarity in quite several districts of the study area, some
of these districts are located in the GT and MP provinces. For instance, in the comparison
between SPI-3/EDI pair for DD, 100% of SAWS’ rainfall districts in GT and MP province
exhibit noticeable similarity, which is statistically significant—this implies that SPI-3/EDI
values can be used interchangeably in both GT and MP provinces. The majority of the dis-
tricts depict moderate dissimilarity among the drought indices for DD and DS, illustrating
spatial contrasts of the SPI/EDI values across South Africa. Except for the comparison
between SPI-12/EDI pair, where the majority of the stations depict weak dissimilarities
for the drought duration and drought severity. The similarities between SP1-1, SPI-3,
SPI-6, SPI-12, and EDI were more evident in the northern region of the study area for DD.
Similarly, for DS, the similarities were predominantly in the northern region except for
the comparison between SPI-3/EDI pair. Also, the study shows that the values of the
SPI-1/EDI pair and the SPI-3/EDI pair exhibit the highest similar values for DD, while
SPI-6/EDI pair shows the highest similar values for DS. Dissimilarities are more evident
in SPI-12/EDI pair for DD and DS. These results corroborate the findings of [4], which
state that various values of SPIs are replaceable with one value of EDI. In this study, the
SPI-1 values can be replaceable with the EDI values for DD, and the SPI-6 values can be
replaceable with the EDI values for DS in South Africa.

The case is fairly different with periodogram dissimilarity as stations with similar
values are more, cutting across all the provinces. Many of the districts, has weak dissim-
ilarity among the drought indices for drought duration and drought severity, except for
the comparison between SPI-1/EDI for DS, where moderate dissimilarity is predominant.
Furthermore, for the drought duration, the similarities were obvious in the western interior
and the northern part of South Africa for the SPI-1, SPI-6, and EDI pairs, while it was
predominant in the northern and southern part of South Africa for the SPI-12/EDI pair.
The similarities were more evident in the northern part of South Africa for the SPI-1/EDI
pair, the northern and western part of South Africa for the SPI-3/EDI pair, the northern
and southern part of South Africa for the SPI-6/EDI pair and SPI-12/EDI pair for DS. Ad-
ditionally, the values of the SPI-1/EDI pair and SPI-6/EDI pair exhibit the highest similar
values for DD, while SPI-1/EDI displayed the highest similar values for DS. Moreover,
drought duration and severity show that similarities are obvious in SPI-1/EDI. This study
indicates that in South Africa, the SPI-1 and SPI-3 values can be used interchangeably with
the EDI values for DD, while for DS, the SPI-1 values can be interchangeably used with
the EDI values. In general, the results show variation in the similarity and dissimilarities
of the indices across the entire study area. The observed differences in the (di)similitudes
could be related to regional variation in climatic conditions across the regions, as reported
in Reference [49].

5. Conclusions

Studies have demonstrated the application of 1- to 3-month accumulation of SPI for
short-term precipitation anomalies, such as meteorological drought, agricultural drought,
and soil moisture retention. Whereas, the 6- to 12-month accumulation of SPI timescales
have been used for assessing drought impact on reservoir levels, groundwater, and stream-
flow. Based on the similarity in mathematical computation of the EDI and SPI, it provides
an advantage for comparing the two indices for drought determination. In this study, the
Pearson’s correlation coefficient dissimilarity measure with p-values and the periodogram
dissimilarity measure was used to evaluate the similarity and dissimilarity between the
two indices; EDI and SPI accumulation periods of 1-, 3-, 6-, and 12-months. The study
provides insight into the variation in the performance, sensitivity, and suitability of drought
indices across the South African landscape. The results further illustrate the similarity and
dissimilarity between the SPI accumulation periods of 1-, 3-, 6-, and 12-months and EDI.
Consequently, the overall results deduce from this study can be summarized as follows:

The comparison between SPI and EDI in the study area shows dissimilarities; however,
the difference was moderate, which implies that the SPI and EDI values cannot be used
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interchangeably in monitoring drought for South Africa. As illustrated in the results, the
similarity is predominantly in the northern region of the study area.

The two measures show that the comparison between SPI-1/EDI has the highest
similarity for drought severity. This implies for stations where high similarity is found, SPI
and EDI values can be used interchangeably when considering the drought severity for
meteorological drought, agricultural drought, and soil moisture retention. Furthermore, the
two measures show that the comparison between SPI-12/EDI has the highest dissimilarities
for drought duration for drought impact on reservoir levels, groundwater, and streamflow.

Given the strong similarity between EDI and SPI-1, the results suggest that the two
indices can be used interchangeably for meteorological and agricultural drought monitoring
over the study area. This study further supports the WMO’s recommendation of SPI for
drought monitoring.

Drought periodicity is highly complex—there is, however, the need to effectively
monitor drought to enhance proper planning to mitigate the effect of drought in South
Africa. This contribution enlightens the fact that SPI and EDI values are replaceable in
some rainfall districts of South Africa for drought monitoring and prediction, reducing the
rigor of calculating the other drought indices in situations where one of the drought indices
is available. Furthermore, studies involving the use of historical records alongside the SPI
and EDI to determine the indices that best detect South African drought is recommended.
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