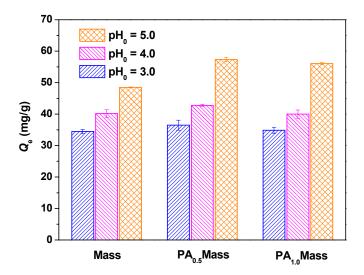

Supplementary Materials

A biosorption-pyrolysis process for removal of Pb from aqueous solution and subsequent immobilization of Pb in the char

Yue Wang, Jinhong Lü*, Dongqing Feng, Sen Guo and Jianfa Li

College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing Zhejiang, 312000, China; wangyue835@163.com (Y.W.); fengdongqing@yeah.net (D.F.); gsen1041@gmail.com (S.G.); ljf@usx.edu.cn (J.L.)

* Correspondence: lvjinhong@usx.edu.cn; Tel.: +86-575-8834-1524


Figure S1. Change of the quantity of Pb adsorbed (Q_t) by the three biosorbents (Mass, PA_{0.5}Mass and PA_{1.0}Mass) with the contact time (t). The initial Pb concentration was 150 mg/L, and the initial pH was 5.0 for all the sorption experiments. The kinetic data was analyzed by fitting with the *pseudo*-second order model shown in the Eq. S1:

$$\frac{t}{Q_t} = \frac{1}{k \cdot Q_e^2} + \frac{t}{Q_e} \tag{S1}$$

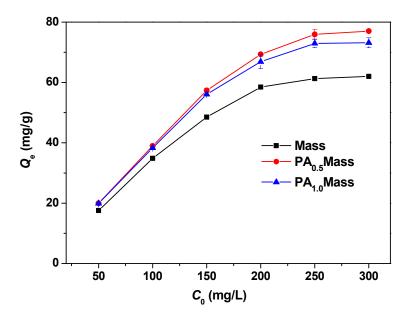

where Q_e stands for the simulated equilibrium adsorption (mg/g), and k is the sorption rate constant (g/(mg·h)). The fitting results are shown in Table S1.

Table S1. Parameters obtained by fitting the kinetic data (in Figure S1) with the *pseudo*-second order model (Eq. S1).

_1				
Parameters	Q _e (mg/g)	$k \left(g/(mg \cdot h) \right)$	R^2	
Mass	48.9	0.182	0.994	
PA _{0.5} Mass	59.8	0.208	0.998	
PA _{1.0} Mass	55.8	0.406	0.996	

Figure S2. Change of the quantity of Pb adsorbed after equilibrium (Q_e) with the initial pH (pH₀). The initial Pb concentration was 150 mg/L, and the contact time was 6 h for all the sorption experiments. Here, only acidic pH (3.0–5.0) was tested, because a pH > 6.0 will lead to the precipitation of Pb in the form of Pb(OH)₂ (Farooq U, et al. *Bioresour. Technol.* **2010**, *101*, 5043-5053).

Figure S3. Change of the quantity of Pb adsorbed after equilibrium (Q_e) with the initial concentration (C_0). The initial pH was 5.0, and the contact time was 6 h for all the sorption experiments.