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Abstract: Unlike a horizontal intake vortex, a submerged horizontal vortex is not bounded by a free
surface. It has an axial air core submerged in a vessel such as a dissipation well. Due to the motion of
its bound point (where the vortex ends), the front wall of the dissipation well could be damaged by
cavitation. The goals of this study are to (1) summarize general features underlying the formation and
collapsing of horizontal vortices in dissipation wells; (2) identify the features of submerged horizontal
vortices; and (3) propose potential measures to mitigate cavitation damage. Through scaling down
experiments performed in a transparent dissipation well with two optical sensors, various boundary
conditions have been carried out to accomplish this investigation. It was found that a wider inlet flow
falling with mixed air can facilitate the generation of submerged horizontal vortices. The optimal
mappings between the inlet discharge and the water head differential for maintaining the vortices
have been summarized. Depending on different applications, two configurations are proposed to
mitigate the adverse effects of submerged horizontal vortices.
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1. Introduction

Vortex is a common phenomenon in the world. Examples include tornadoes [1,2], dust devils [3],
whirlpools [4] and smoke rings [5]. Under some circumstances, vortices are undesirable due to their
destructive effects. Tornadoes and dust devils can cause devastating damage to villages and even cities.
Small-scale air vortices also can cause serious problems by drawing small stones from the ground
into the engines of a grounded airplane. In addition, inlet air resulting from a water vortex could
impair submerged pumps. However, vortices can also be utilized for energy control [6–8]. A practical
vortex is always a rotational vortex. In contrast with irrotational vortices, rotational vortices can only
be maintained by external forces [9,10]. In accordance with the Bernoulli’s principle, the axial core
usually stays in the space with relatively lower pressure and higher velocities [11,12].

A great number of studies have been conducted from different perspectives to illustrate the
characteristics of vortices in various applications. On one hand, many researchers have focused on the
development of strategies to avoid the hazard of vortices in past decades [2,13–20]. On a large scale,
tornadoes have been studied experimentally to help improve risk management [1,13]. On a small scale,
Lee [21] studied the K-regime in boundary layer transitions and the physical mechanisms of vortex
formation at the interface of the soliton-like coherent structures. Ligrani [22] investigated the features of
the wavy vortex motions associated with undulating and twisting vortices in a curved channel. For risk
management, Das [23] studied the development of tropical cyclone wind fields with the gradient
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wind model of Holland through calibration and validation against experimental observations. On the
other hand, vortices have positive usage in applications. For instance, Hrabovsky [24] experimentally
investigated the features of an electric arc, which was stabilized by a water vortex.

Most of the vortices are formed vertically due to gravity. Occasionally, a horizontal vortex can
be generated in the dissipation well of a pipeline system. Unlike intake vortices [25], the axial air
core of a horizontal vortex ends at a vertical wall rather than the free water surface. Due to the
rarity of this phenomenon, submerged horizontal vortices remain poorly understood. This paper
aims to understand the general features of submerged horizontal vortices, including the formation,
maintaining and collapsing, through experimenting with various configurations. In addition, three
dominant sensitive parameters are identified and analyzed, and two configurations are proposed for
potential applications.

2. Experiment Platform Setup

The whole experiment system consists of three parts: 1. the upstream part, including the upstream
inlet pipeline with the water supply devices; 2. the central part, including a discharge control valve,
an ultrasonic flowmeter, the inlet adjuster, a dissipation well and some measuring devices; and 3. the
downstream outlet pipeline with the recycle system. Figure 1 shows the overall layout of the experiment
platform. In this section, the water tower, the inlet adjuster and the dissipation well are particularly
explained in 3D models due to their significant roles in the experiment. Other devices include a pump,
a check valve, an operating valve, some steel pipelines, two optical sensors, a downstream filtration
and recycle system and an underground pool.
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Figure 1. Generalized layout of the experiment platform.

As shown in Figure 1, the upstream part includes a pump with a check valve and a water tower.
The pump is used to supply continuous discharge from the underground pool to the water tower, while
the water tower is used to provide a stable upstream water head. An operating valve is assembled
right after the water tower to adjust the flow rate, and, accordingly, an ultrasonic flowmeter is mounted
to detect the real-time flow rate. In the central part, there is an inlet adjuster, the shape of which can
be changed to generate different flow falling forms. Below the inlet adjuster, there is a dissipation
well with a circular exit on its back wall connected to the downstream pipeline. The horizontal vortex
occurs within the dissipation well. Two cameras were fixed separately in the front and left sides of the
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dissipation well to record the dynamic processes. The outlet pipe has a fixed end at the joint of the
dissipation well, and an adjustable downstream end to change the outlet altitude. After the central
section, the water will be filtrated and recycled into the underground pool. In detail, Figures 2–4 show,
respectively, the structures of the water tower, the inlet adjuster and the dissipation well.
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Figure 2. Detailed description of the water tower.

As shown in Figure 2, the water tower consists of an inlet pipeline, an overflow pipeline and an
outlet pipeline. The overflow pipeline is the highest, controlling the water level. To start with, water
coming from the inlet pipeline fills the water tower rapidly. When the water level exceeds the top of
the overflow pipeline, the extra water volume will be recycled by overflowing. The diameter of the
overflow pipeline is designed to be greater than the inlet pipe to make sure the overflow capacity is
adequate. In this way, the overflow pipe can be regarded as a circular downflow weir keeping the
water level stable.

Figure 3 is a sketch of the inlet adjuster. It is made up of four assembled boards with a circular
entrance on its back board connected to the inlet pipe, two screw rods and two inner adjustable boards.
The adjustable boards can be moved by screwing to change the width of the flow fall. The width
between the two adjustable boards is identified as lA, which is an independent. The width of the
adjuster lA0, the diameter of the inlet pipe DI and the length of the adjuster bottom board dA are
constant and listed in Table 1.
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Liquids fall from the inlet adjuster into the dissipation well, generating a submerged horizontal
vortex under some special conditions. Figure 4 shows the detailed definitions of the parameters and
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the outline of the dissipation well. In the experiment, the dissipation well is made of a top-open plastic
box connected to an outlet pipe on its back wall. The material is transparent so that the inside vortex
can be visualized. The dominant parameters include the height of the well hW, the height of the water
level hV, the width of the well dW, the length of the well lW, the height of the exit hE and the inner
diameter of the outlet pipe DE. Among them, hW, dW, lW, hE and DE are constant and listed in Table 1.
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Table 1. The value of constant parameters in the experiment (cm).

Inlet Adjuster Dissipation Well Pipes

lA0 dA hW dW lW hE DI DE
30 70 80 40 50 15 10 10

3. Experimental Results and Analysis

3.1. Formation and Collapse

When the parameters of inlet satisfy the conditions specifically discussed in the following
Section 3.2, a horizontal vortex will be generated in the dissipation well. To observe the forming and
collapsing processes of horizontal vortices, two optical sensors were installed separately in the front
and right side of the dissipation well. The cameras support 30fps and were fixed on two tripods for
stable recording. To build a coordinate system, four dividing rulers were stuck on the bottom and
right edges of the front and right side walls. In post-analysis, every single frame with a time interval
of 1/30 s was extracted from the recorded videos. With the coordinate information, the evolutions of
submerged vortices were analyzed quantatively. Figures 5 and 6 respectively show the forming and
collapsing processes of a submerged vortex. The axial core is identified to be formed by the trapped
air. Compared with the surrounding space, the core has the highest velocity and the lowest pressure
according to the Bernoulli’s principle. The inlet liquids and the entrapped air fell into the dissipation
well on one side (shown in Figure 5), and subsequently joined a counterclockwise circulation.

Figure 5 is captured from the front camera. The flow fall is mixed fluids containing water and air.
After the mixed fluids fell into the dissipation well, they were observed to rebound upwards. Part of
the carried air escaped out of the free water surface in this motion, while the other remained trapped
within the centripetal velocity field. Along with some newly joint air from vibrations at the free water
surface, a vortex occurred from the centre of the back wall exit. The vortex forming process is usually
accomplished in a short time. Firstly, the vortex starts to form with some bubbles converging in planes
of the front view. Gradually, the converged bubbles in different planes accumulate to connect, from the
back side to the front. Eventually, the converged bubbles finish connecting horizontally throughout
the well, accomplishing the vortex-forming process.

Figure 6 shows a record of the side camera, where DT = 0.2 s. In a vortex collapsing process,
the weakest part of the vortex is usually the highest point of it. As this point firstly loses the constraining
of the trapped air, some air volume escapes in forms of bubbles, rising to the free water surface.
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Soon after, the vortex vanishes as the connection breaks. The collapsing instant is magnified at the
right side of Figure 6, where the top of the submerged vortex is losing its stability. Subsequently, in the
bottom frame at the left side of Figure 6 (T = T0 + 2DT), the vortex breaks at the middle top, where it
is defined as the collapse point. With the disappearence of the vortex, the space near its initial joint
point on the front wall is suddenly replaced by water. This momentary change causes an instant and
dramatic rise in the endured pressure on the front wall. Hence, the initial joint point is identified as a
cavitation point. It should be noticed that the cavitation not only happens when the vortex breaks,
but also when the joint point moves. As observed, the joint point on the front wall keeps moving over
time, hence the cavitation point actually refers to the joint point in the following sections.Water 2020, 12, x FOR PEER REVIEW  5 of 13 

 

 

Figure 5. Front view of a forming process of the submerged horizontal vortex. 

Figure 5 is captured from the front camera. The flow fall is mixed fluids containing water and 
air. After the mixed fluids fell into the dissipation well, they were observed to rebound upwards. 
Part of the carried air escaped out of the free water surface in this motion, while the other remained 
trapped within the centripetal velocity field. Along with some newly joint air from vibrations at the 
free water surface, a vortex occurred from the centre of the back wall exit. The vortex forming 
process is usually accomplished in a short time. Firstly, the vortex starts to form with some bubbles 
converging in planes of the front view. Gradually, the converged bubbles in different planes 
accumulate to connect, from the back side to the front. Eventually, the converged bubbles finish 
connecting horizontally throughout the well, accomplishing the vortex-forming process. 

 

Figure 6. Side view of a collapse process of the submerged horizontal vortex. 

Figure 6 shows a record of the side camera, where DT = 0.2 s. In a vortex collapsing process, 
the weakest part of the vortex is usually the highest point of it. As this point firstly loses the 
constraining of the trapped air, some air volume escapes in forms of bubbles, rising to the free 
water surface. Soon after, the vortex vanishes as the connection breaks. The collapsing instant is 
magnified at the right side of Figure 6, where the top of the submerged vortex is losing its stability. 
Subsequently, in the bottom frame at the left side of Figure 6 (T = T0 + 2DT), the vortex breaks at the 
middle top, where it is defined as the collapse point. With the disappearence of the vortex, the 
space near its initial joint point on the front wall is suddenly replaced by water. This momentary 
change causes an instant and dramatic rise in the endured pressure on the front wall. Hence, the 
initial joint point is identified as a cavitation point. It should be noticed that the cavitation not only 

Figure 5. Front view of a forming process of the submerged horizontal vortex.

Water 2020, 12, x FOR PEER REVIEW  5 of 13 

 

 

Figure 5. Front view of a forming process of the submerged horizontal vortex. 

Figure 5 is captured from the front camera. The flow fall is mixed fluids containing water and 
air. After the mixed fluids fell into the dissipation well, they were observed to rebound upwards. 
Part of the carried air escaped out of the free water surface in this motion, while the other remained 
trapped within the centripetal velocity field. Along with some newly joint air from vibrations at the 
free water surface, a vortex occurred from the centre of the back wall exit. The vortex forming 
process is usually accomplished in a short time. Firstly, the vortex starts to form with some bubbles 
converging in planes of the front view. Gradually, the converged bubbles in different planes 
accumulate to connect, from the back side to the front. Eventually, the converged bubbles finish 
connecting horizontally throughout the well, accomplishing the vortex-forming process. 

 

Figure 6. Side view of a collapse process of the submerged horizontal vortex. 

Figure 6 shows a record of the side camera, where DT = 0.2 s. In a vortex collapsing process, 
the weakest part of the vortex is usually the highest point of it. As this point firstly loses the 
constraining of the trapped air, some air volume escapes in forms of bubbles, rising to the free 
water surface. Soon after, the vortex vanishes as the connection breaks. The collapsing instant is 
magnified at the right side of Figure 6, where the top of the submerged vortex is losing its stability. 
Subsequently, in the bottom frame at the left side of Figure 6 (T = T0 + 2DT), the vortex breaks at the 
middle top, where it is defined as the collapse point. With the disappearence of the vortex, the 
space near its initial joint point on the front wall is suddenly replaced by water. This momentary 
change causes an instant and dramatic rise in the endured pressure on the front wall. Hence, the 
initial joint point is identified as a cavitation point. It should be noticed that the cavitation not only 

Figure 6. Side view of a collapse process of the submerged horizontal vortex.

3.2. Formation Requirement Analysis

On the other hand, submerged vortices have feedback effects on the environment. As observed,
the vortex accelerates the drainage discharge, leading to a water level drawdown in the dissipation
well. Subsequently, the vortex will collapse when the water level exceeds the lower limit to maintain it.
Afterwards, as the vortex is not presented, the outlet flow rate decreases to a normal level, leading the
water level to grow back. Again, the vortex will reappear when the water level satisfies the forming
requirement. For different boundary conditions, the maintaining period of a vortex is different. In the
forthcoming sections, some sensitive parameters serving as boundary conditions are analyzed based
on information extracted from recorded videos.
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It is found that the vortices can only be generated in some certain circumstances, and its stability
differs under different boundary conditions. In addition to the inlet discharge Q and the width of the
inlet flow fall lA, the hydraulic head differential between the entrance center and the downstream end
of the outlet pipeline of the dissipation well is another independent variable identified as ∆h. Various
conditions were studied changing the three variables. The results are shown in Figures 7–9. Note that
except Q [L3/T], lA [L] and ∆h [L], there are six other important variables in the experiment: tV [T],
tR [T], lW [L], dW [L], hW [L] and hE [L], where tV is the vortex maintaining time out of the recorded
period tR. lW, dW and hW are constant parameters of the dissipation well, mentioned above in Figure 4.
hE is the height of the exit center in the dissipation well. Specifically, tV [T] and tR [T] are the only
two variables representing the time evolution, based on which a dimensionless variable τ = tV/tR

[T/T = 1] is proposed to reflect the stability of the submerged vortex. As the optimal inlet discharge is
supposed to be sensitive to the geometric scale of the dissipation well, another dimensionless factor
q = Q·1s/(lW·dW·hW) [L3/T × T/L/L/L = 1] is identified to stand for the inlet discharge. In addition to the
quantity, lA and lW reflect the performance of the inlet adjuster, effecting the forms of flow fall, hence
l = lA/lW [L/L = 1] is considered as another dimensionless boundary condition. On the other hand,
h = ∆h/hE [L/L = 1] represents the downstream boundary condition, which has a significant influence
on outlet discharge.
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As shown in Figure 7, keeping q as 0.23, changing h and l, it is found that a greater l is helpful
to generate a horizontal vortex. It suggests that a flow fall as wide as the dissipation well should be
the best for a horizontal vortex to form. In contrast, the influences of q and h are more complicated.
Keeping l as 0.5, more conditions were undertaken under different q and h, shown in Figure 8. Under
each discharge, there is always a best h to help horizontal vortices to maintain. Particularly, when q
is within 0.22 to 0.25, there are some conditions (1.41 ≤ h ≤ 1.53 when q = 0.22, and 0.87 ≤ h ≤ 0.96
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when q = 0.25) in which τ equals 1.0, meaning the vortex never vanishes. The value of the optimal h
decreases when q is increased. Figure 9 shows the best mapping strategies of h and q as well as the
most stable conditions.

After the least square fit in forms of linear and parabola, two fit lines are shown in Figure 9 to
predict the best mapping relation between q and h, which can be expressed as follows:

Linear fit: h = 2.76 − 7.44q (1)

Second order polynomial fit: h = −40.2q2 + 9.7q + 1.1 (2)

in which the standard deviations s =

√
N∑

i=1
(hi f−hi)

2

N are respectively 0.161 and 0.095, where N is the
number of samples, i is the series number and hi f is the fitted value of hi. The blue zone in the figure
represents the requirements of the most stable conditions concluded in the experiment. Equation (2)
agrees better on these stable conditions. However, it has to be clarified that this empirical equation only
fits the conditions when l = 0.5, thus the optimized mapping may differ as the falling form changes.
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3.3. The Motion of Cavitation Point

On one hand, the horizontal vortex can help enhance the energy loss by additional friction between
the liquid and air. On the other hand, it may also cause damage to the front wall because of cavitation.
Hence, it is ideal to have a stable horizontal vortex with a greater diameter and a motionless joint point.

Take a certain circumstance, for instance, when l is 0.5, q is 0.22 and h is 1.5. Extracting a frame
per second in a one-minute video helps to track the cavitation point movement, shown in Figure 10.
Despite it being one of the most stable conditions for a horizontal vortex to maintain, the cavitation
point is not static over time. The best thing to do is to search for an optimized operation strategy
that can fix the joint point. Another possible solution is to open another outlet exit on the front
wall containing the moving area of the cavitation point, which still needs to be validated in further
experiments since the discharge and pressure field will be changed as well.

To find the effect of h on the cavitation point moving area, six cases of different h from 1.0 to 1.5
(keeping other variables unchanged) are plotted in Figure 11. For each case, 60 pictures are extracted
respectively every per second to describe the cavitation ranges. It is found that with the increase in h,
the center of the cavitation range slightly moves upwards. However, the size of the cavitation area
does not change much, which indicates that h has little influence on the size of the harmed area.
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4. Discussion

The submerged horizontal vortex is a rare phenomenon compared with the vertical vortex, as it
occurs only under specific conditions. In this study, the conditions forming a submerged horizontal
vortex and its general features were investigated by analysis of the flow patterns in the dissipation
well. The effects and sensitivity of three non-dimensional independents h, l and q were studied.
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In addition, several generic rules were identified with various case studies. In general, a greater l is
helpful to generate a horizontal vortex. In terms of h and q, there is always a best mapping relationship
between them under different l. To be noticed, the shape and dimensions of the dissipation well
remained unchanged throughout this study. Besides, it should be better analyzed if more pressure and
velocity data could be obtained within the dissipation well. However, the installation of additional
sensors within the dissipation well may disturb the flow field. Therefore, in this study, only an
optical measurement was carried out. In further investigations, information of pressure and velocity
distribution will be tested if possible.

For practical applications, in order to decrease the scouring on the downstream basin due to
the huge hydraulic head difference [26–28], a stepped horizontal vortex dissipation wells system is
proposed, as shown in Figure 12. In addition to generating electrics, sometimes in flood seasons the
reservoirs need to release water through spillways or tunnel spillways in order to keep the water level
under the security line. Normally, a spillway should be clear and smooth enough, usually equipped
with a flip bucket at the end for dissipating kinetic energy. Tunnel spillways are constructed inside
rock masses, while the entrance can be set submerged, sometimes even at the bottom of reservoirs.
It is designed to allow more flexible operations to control the flow rate rather than entirely depending
on the live water level. On the other hand, the tunnel spillway usually has less frictional head loss
as the air–water friction is usually much greater than the pipe–water friction. The proposed stepped
dissipation wells system basically requires several places suitable to construct dissipation wells. Owing
to the effective energy-dissipating ability of vortices [28–30], the proposed system is supposed to
protect the downstream basin by dramatically decreasing the impact on it. In such systems, the great
hydraulic head differential can be divided into several sections to disperse the impact. Every section
will generate a submerged horizontal vortex inside the well, dissipating in the following outlet pipe,
in this way to help to decrease the kinetic energy transformed from the gravitational potential energy.
Figure 12 is the layout of a stepped horizontal vortex dissipation wells system.Water 2020, 12, x FOR PEER REVIEW  10 of 13 
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On the other hand, in long stepped pipeline systems, the entrapped air is undesirable because
the two-phase flow is likely to be harmful including local air retention and cavitation [31]. In these
situations, the stepped wells can help release the entrapped air and reduce the intensity of the water
hammer by cutting long pressured pipelines apart [32–39]. These strategies have to be studied with the
goal of preventing submerged horizontal vortices [40]. Based on the experiment in our study, Figure 13
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shows the preventing strategies of stepped dissipation wells. In the left half part, the range which
the two red curves formed represents the conditions that can generate submerged horizontal vortices.
The red curves are the critical conditions, while the blue marks represent the best environment for a
vortex to maintain. Subtracting the two red critical curves, a possibility distribution under different
discharges is shown as the right half part in Figure 13, where the red curve stands for the vortex
occurring possibility, while the blue curve is the most stable conditions. When the non-dimensional
discharge q is equal to 0.23, the submerged horizontal vortex reaches the widest generating range on h,
figuring 1.42 of hmax-hmin. To avoid the harms brought with submerged vortices, this analysis suggests
engineers to keep q under 0.1 or greater than 0.4, where only strictly limited possibilities remain to
generate a submerged horizontal vortex.

Water 2020, 12, x FOR PEER REVIEW  10 of 13 

 

 

Figure 12. Overall generalized figure of the stepped horizontal vortex dissipation wells system. 

On the other hand, in long stepped pipeline systems, the entrapped air is undesirable because 

the two-phase flow is likely to be harmful including local air retention and cavitation [31]. In these 

situations, the stepped wells can help release the entrapped air and reduce the intensity of the water 

hammer by cutting long pressured pipelines apart [32–39]. These strategies have to be studied with 

the goal of preventing submerged horizontal vortices [40]. Based on the experiment in our study, 

Figure 13 shows the preventing strategies of stepped dissipation wells. In the left half part, the 

range which the two red curves formed represents the conditions that can generate submerged 

horizontal vortices. The red curves are the critical conditions, while the blue marks represent the 

best environment for a vortex to maintain. Subtracting the two red critical curves, a possibility 

distribution under different discharges is shown as the right half part in Figure 13, where the red 

curve stands for the vortex occurring possibility, while the blue curve is the most stable conditions. 

When the non-dimensional discharge q is equal to 0.23, the submerged horizontal vortex reaches 

the widest generating range on h, figuring 1.42 of hmax-hmin. To avoid the harms brought with 

submerged vortices, this analysis suggests engineers to keep q under 0.1 or greater than 0.4, where 

only strictly limited possibilities remain to generate a submerged horizontal vortex. 

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

2.5

High possibility 

discharge range

None vortex zone

q

h
min

Non vortex zone

 Occuring limits curve

 Most stable conditions

 Experiment dots

Non vortex zone

Lower limit curve Upper limit curve

Vortex zone

h

q

h
max

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

 

 

 

h
m

ax
-h

m
in

 Vortex occuring range

 Most stable conditions

 

Figure 13. Avoiding rules of horizontal vortex in stepped dissipation wells. 

In the further study, we will conduct further investigations on the sensitivity analysis of the 

boundary conditions including the flow falling forms and the inlet geometry. The feasibility of the 

double-exits dissipation wells, which have two exits set separately on the opposite walls to avoid 

Figure 13. Avoiding rules of horizontal vortex in stepped dissipation wells.

In the further study, we will conduct further investigations on the sensitivity analysis of the
boundary conditions including the flow falling forms and the inlet geometry. The feasibility of the
double-exits dissipation wells, which have two exits set separately on the opposite walls to avoid
cavitation, will be validated through experiments. Furthermore, the strategies to form a stable
submerged horizontal vortex with a greater axial core diameter and static joint point will be studied.

5. Conclusions

In this study, submerged horizontal vortices generated by vertical flow fall in a dissipation well
are systematically investigated. They are formed by the counterclockwise circulation flow field in the
well and the axial air core is formed by the trapped air in the liquid. Based on the observations and data
analysis, three main variables affecting the formation of submerged horizontal vortices were identified.
The width of the inlet flow fall has a positive correlation with the occurrence possibility of submerged
horizontal vortices. The head differential between the exit and the downstream end, as well as the inlet
discharge, have a parabolic relation with the occurrence possibility. The submerged horizontal vortices
provide an additional dissipating effect in stepped dissipation systems. On the other hand, due to the
instability of vortices, there is the harm of cavitation on the front wall of dissipation wells. To prevent
this phenomenon, the dimensionless discharge should be kept out of the high-possibility range, which
is 0.14–0.33.
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Nomenclature

t time (s)
lA the width between the two adjustable boards (cm)
lA0 the width between the two fixed boards (cm)
DI the diameter of the inlet pipe (cm)
dA the length of the adjuster bottom board (cm)
hW the height of the well (cm)
hV the height of the water volume inside the well (cm)
dW the width of the well (cm)
lW the length of the well (cm)
hE the height of the exit hole (cm)
DE the diameter of the outlet pipe (cm)
T initial time point (s)
DT time step (s)
τ the possibility of vortices occurring
q the dimensionless discharge
l the dimensionless width of the inlet fall
h the dimensionless height
tV the time duration of maintaining the vortex (s)
tR the time duration of the whole record (s)
∆h the hydraulic head difference (m)
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