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Abstract: Sediment connectivity is considered a powerful geomorphic indicator for defining the most
sensitive areas to geomorphological modifications in a fluvial catchment (hotspots). This encourages
the development of methods and models for its assessment, to investigate the interrelation of
the various phenomena that occur in a river basin (landslides, floods, etc.). This work explores
the potential connection of the processes in flood dynamics, by focusing on induced flood hazard,
in order to evaluate the applicability of sediment connectivity to flood monitoring. By applying
the recently developed sediment flow connectivity index (SCI) computation method to the Severn
River basin, in UK, recurrently affected by floods, we investigate the agreement between the hotspot
areas (described by the index) and the areas recurrently flooded (as mapped by aerial photography,
satellite imagery and hydrodynamic modelling). Qualitative and quantitative approaches are used
for the analysis of past (March 2007 and January 2010) as well as predicted (with return periods of
200 and 500 years) flood events. The results show a good correspondence of areas of high sediment
connectivity with flood occurrence. Moreover, the detection performance of the SCI is slightly better
than that of a simple flow accumulation map, confirming the importance of the initial mapping of
sediment availability and mobility. This experiment extends the direct applicability of the SCI from
fluvial analysis to flood monitoring, thus opening interesting future scenarios.
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1. Introduction

Sediment connectivity represents an important geomorphic indicator to evaluate the erosion,
transport and deposition processes over time in fluvial basins [1–3]. The visualization of sediment
pathways contributes to the understanding of catchment dynamics by identifying the contiguity of
landscape components (structural connectivity) and their interaction in geomorphic, hydrological
and ecological systems (functional connectivity) [4–6]. It is therefore known that the estimation of
the processes of supply, transfer and storage of the sediment on the surface and in the channels becomes
relevant to explore geomorphological modifications and consequently to recognize the most sensitive
areas in the catchment (hotspots) [7–9].

As this fundamental role of sediment connectivity is being recognized in the geomorphological
analysis, during recent years the scientific community has shown a growing interest to investigate
various aspects of connectivity (spatial and temporal scale, types of fluxes, degree of connection, impact
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on/from natural and anthropic dynamics, etc.) [10–15]. New approaches were developed in order to
evaluate the sediment connectivity through indices that consider surface characteristics like topography
and land cover [16,17], then integrated with a rainfall erosivity factor [18]. New methods quantify
the hydrological and the material connectivity by exploring mobilization and transport processes in
time (time scale, thresholds, excesses and losses, T-TEL method, [19]), also by using models for erosion
and deposition rate estimation in order to investigate the interrelation with geomorphological and land
use changes [20,21]. At the same time, new applications assess the role of sediment connectivity in river
monitoring and management activities, taking into account the human impact in longitudinal, lateral
and vertical connectivity in the catchment [22,23]. Indeed, besides the need to make the computation of
sediment connectivity increasingly accurate and complete [4], it is just as useful to extend and improve
its applicability, both in terms of spatial scale and in terms of geomorphic processes interrelation. In this
perspective, the use of indicators as proxies for sediment yield quantification supports the modelling of
sediment transport processes [24–26]. At the same time, the combined use of hydrologic, geomorphic,
pedological and climatic parameters is explored together with their strong dependence from the spatial
and temporal scale of observation [27–31]. As the morphological evolution is conditioned by, and in
turn conditions, water and sediment displacement, it directly influences the dynamics of all events
in the catchment (landslides, floods, etc.). Therefore, sediment connectivity can become a tool to
evaluate and correlate the effects of the various geomorphic phenomena that affect the basin [32–38].
The analysis of flood events and the evaluation of flood hazard suggest that some geomorphological
processes can influence flood dynamics, also having an impact on the induced flood hazard [9,37,39].
Figure 1 collects some schematic examples from recent literature, illustrating how flooding could
occur in a river reach by the interaction between hydrological (discharge, water level, flow velocity,
etc.) and geomorphological processes (erosion, deposition and transport of sediments). For instance:
the increasing riverbed elevation due to sediment accumulation (aggradation) reduces channel capacity,
causing floods (Figure 1a); instability of the banks due to the erosion process may cause bank collapse
(Figure 1b), leading eventually to embankment failure and flooding; the rising riparian vegetation
(Figure 1c) and the transport of wooden material in the channel (Figure 1d) increase flood risk by
occluding channel sections. It is therefore evident that morphological modification processes can induce
(and then are connected to) the flood processes. It could then be argued that river reaches affected by
processes due to sediment connectivity may correspond to river reaches affected by flood processes. In
this perspective, sediment connectivity estimation becomes crucial for flood monitoring analysis.

The present study focuses on the exploitation of sediment connectivity in flood hazard assessment,
illustrating the application of the simplified approach of the sediment flow connectivity index (SCI) [40]
to a river basin (Severn, UK). In spite of the local nature of the SCI as an indicator of sediment transfer,
its mapping approach represents an efficient way to test sediment connectivity in relation with its
above-mentioned role in influencing the flood phenomena that recurrently affect a river basin.

This work proposes an assessment of the link between high sediment connectivity and high
flood occurrence along the channels, by comparing hotspot areas (high connectivity) and flooded
regions. The comparison (both qualitative and quantitative) is aimed at assessing whether a direct
or indirect connection of sediment fluxes continuity (i.e., a major sediment delivery) with a greater
flood occurrence is identifiable. The underlying hypothesis in this study is that SCI can help detecting
sediment paths, and that it can be applied in wide as well as small catchments, at both fine and coarse
spatial resolutions. In fact, the recent availability of open datasets could extend such kinds of analyses
to large catchments. For this aspect, this study follows the objective of leveraging the use of remote
detection of connectivity in the catchment by combining different data sources [41–43].
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Figure 1. Some examples, taken from recent literature, of schematic representations of the interaction 
of deposition, erosion and transport processes with hydrological processes in induced flood 
phenomenon. (a) Sediment accumulation in the riverbed determines flooding. From “Modeling of 
HydroGeomorphic Hazards” project, University of Washington 
(http://notesbyshelby.blogspot.com/2018/12/quarter-1.html, last accessed on 26 June 2020). (b) Results 
from a numerical model simulation showing the erosion of a bank toe, affected by increasing river 
water level and a decreasing stability factor, causes bank collapse and riverbank state recovery after 
bank line update (from left to right of the box). From [44], Figure 14 (slightly modified). (c) Graphic 
illustrating schematically the role of the riparian vegetation in watercourses, and its effects on the 
speed and capacity of streamflow, leading to increased risk of overflow. From [45], Figure 10 (slightly 
adapted). (d) Schematic illustration of the transport of large wood debris and its accumulation (log-
jam), creating local obstructions leading to flooding, especially at bridge locations. From [46], 
graphical abstract (slightly adapted). 

Figure 1. Some examples, taken from recent literature, of schematic representations of the interaction of
deposition, erosion and transport processes with hydrological processes in induced flood phenomenon.
(a) Sediment accumulation in the riverbed determines flooding. From “Modeling of HydroGeomorphic
Hazards” project, University of Washington (http://notesbyshelby.blogspot.com/2018/12/quarter-1.html,
last accessed on 26 June 2020). (b) Results from a numerical model simulation showing the erosion
of a bank toe, affected by increasing river water level and a decreasing stability factor, causes bank
collapse and riverbank state recovery after bank line update (from left to right of the box). From [44],
Figure 14 (slightly modified). (c) Graphic illustrating schematically the role of the riparian vegetation
in watercourses, and its effects on the speed and capacity of streamflow, leading to increased risk of
overflow. From [45], Figure 10 (slightly adapted). (d) Schematic illustration of the transport of large
wood debris and its accumulation (log-jam), creating local obstructions leading to flooding, especially
at bridge locations. From [46], graphical abstract (slightly adapted).

http://notesbyshelby.blogspot.com/2018/12/quarter-1.html
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2. Study Area

The geomorphologic features of the Severn River basin, in the central Wales and western regions
of England, UK, characterized by the presence of a large floodplain, and the recurrence of floods with
relative availability of data, make it suitable for the experimentation. This rather large catchment
(21,590 km2) includes three distinct geographic sectors, known respectively as Upper, Middle and
Lower Severn [47] (Figure 2a). The Upper Severn flows from the Welsh Cambrian Mountains toward
Ironbridge, where the fluvial erosion process has modelled a gorge. A sequence of ancient and recent
terraces characterizes the Middle Severn with the alternating river action of erosion and deposition,
which downstream from Worcester reflects also in the pattern of incision and aggradation with a series
of buried channels. The Lower Severn in the Vale of Gloucester crosses the wide floodplain with
a meandering course that, after receiving the main tributaries of the Teme and Avon rivers, flows in
the Bristol Channel with a large estuary. The Lower Severn valley is covered by fluvial, glaciofluvial
and glaciogenic deposits, and throughout the valley there are colluvial and local organic deposits.
The lithological structure of the area is based on sandstone (Sherwood Sandstone Group), mudstone,
quartz and quartzite, ironstone and limestone. Gravels are principally composed of Palaeozoic, Triassic
and (mainly below the Avon confluence at Tewkesbury) Jurassic material from the local bedrock
of the catchment, with an admixture of glacial material from the Anglian Wolston Formation and,
in the younger terraces, a substantial admixture of “Irish Sea” glacial material from the Devensian
Stockport Formation [48,49].

A marked gradient in topography and precipitation from west to east, and a range of geologic
units and terrain types, underline the substantial spatial variability of the catchment. Furthermore, an
extensive urbanization and land use variation make the surface more susceptible to changes, directly
influencing sediment supply to the hydrographic network, that is particularly dense with important
tributaries of the Severn, such as the Teme and Avon. Other channels, such as the Rivers Wye and Usk,
are often not regarded as tributaries of the Severn since they flow into the estuary, but they are included
in the Severn River basin district for flood management purposes. An area of the basin, located at
the confluence of the Severn with the Teme and Avon rivers, was affected by flood events in the past,
as investigated in several studies (see Section 3.3).
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Figure 2. (a) Digital Elevation Model (DEM) of the Severn basin in southwestern England (SRTM30). 
(b) Rainfall data: sub-catchments of the Severn basin in the value classes (mean annual precipitation, 
from catchment daily rainfall (CDR) dataset). (c) Soil stability data: soil properties conditions in 
assigned value classes (from the harmonized world soil database (HWSD) and the British geological 
survey superficial deposit thickness model (BGS-SDTM)). (d) Land use data in associated value 
classes (from Corine land cover map (CLC), 2018). See text for the explanations. 

Figure 2. (a) Digital Elevation Model (DEM) of the Severn basin in southwestern England (SRTM30). (b)
Rainfall data: sub-catchments of the Severn basin in the value classes (mean annual precipitation, from
catchment daily rainfall (CDR) dataset). (c) Soil stability data: soil properties conditions in assigned
value classes (from the harmonized world soil database (HWSD) and the British geological survey
superficial deposit thickness model (BGS-SDTM)). (d) Land use data in associated value classes (from
Corine land cover map (CLC), 2018). See text for the explanations.
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3. Data and Methods

3.1. SCI Map Computation

The mapping approach developed by [40] is based on the concept of sediment connectivity as
the potential connection among different areas of the fluvial basin through material transport (i.e., water
and/or sediment flow). The method considers this (sediment) linkage an effect of two phenomena:
the mobilization (erosion) of the sediment and its transfer along the channels to the outlet (target) both
in lateral and longitudinal direction. As explained in [40], the mapping approach is divided in two
steps: first, we estimate the sediment mobility considering the factors that control sediment erosion
and mobilization, and secondly, we simulate sediment fluxes through slope-driven flow accumulation.
In this way, we measure the connection of any raster cell with any other downstream cell by taking
into account flow pathways. The approach tries to implement a functional aspect (flow accumulation)
into a structural index (sediment mobility) in order to obtain a sediment flow connectivity index (SCI).

The first step consists of computing a sediment mobility index (SM), determined by two factors,
SM1 and SM2, taking into account main annual rainfall, soil stability, and land use (SM1) and surface
characteristics (SM2), respectively. The combination of these elements, which are well-known factors in
connectivity estimation [16–18,50–52], allows modelling the conditions for sediment initial availability
and movement on the surface.

SM is defined as:
SM = SM1 · SM2, (1)

with:
SM1 =

R
SI

L, (2)

SM2 =
S

Ru
, (3)

where R is a rainfall index, SI is a soil stability index, L is a land use index, S is the slope and Ru is
the surface ruggedness (i.e., a proxy of surface roughness, defined as the mean height difference between
a central pixel and its surrounding cells in a 3 × 3 analysis window [40]). All the (dimensionless) indices
are determined by categorizing the corresponding variables or terrain types in order of increasing
potential to generate and mobilize the sediment, based on an a priori interpretation of the dynamics
that affect the erosion phenomenon (rainfall amount for the climatic characterization, soil features
for the drainage and runoff evaluation, land cover for surface behaviour). This procedure aims
to standardize the method in order to apply it to any (medium-large) catchment. Obviously, this
qualitative classification imposes a simplification of the complexity of surface processes and inevitably
neglects some variables. In the following, we evaluate the incidence of this aspect on SM estimation,
also considering the use of available open datasets to support or compensate for the lack of in situ data.

The second step is the computation of the final sediment flow connectivity index (SCI), obtained by
using the SM map as a weighting raster within a classical flow accumulation algorithm F, in which SM
values are propagated from higher to lower elevation pixels, thus simulating a “sediment contributing
area” for each cell.

The procedure iteratively sums the weights (i.e., the SM values) of each cell to all its downslope
connected cells, in order to determine the final output of accumulated sediment flow. In this way,
a high cumulated value, due to a high sediment contributing area, indicates a high sediment flow, and
vice versa. This assumes the flow accumulation as a proxy of material transport pathways, simplifying
the sediment and water dynamics as a basic propagation in the steepest descendent direction. The final
index is given by

SCI = log10 F(SM) (4)

A cell with a high value of SCI expresses a high accumulation of sediment from sediment-active
cells (which contribute to sediment transfer), and vice versa.
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In order to ease the SCI map applicability in fluvial monitoring, [40] proposed a lower spatial
resolution version of the final map, by applying a mean filter through a rectangular window. This
smoother map, here called a-SCI map, reduces the potential impact of high spatial frequency noise in
the data. Also, it can be visualized through simple 3-color palettes as high, medium and low sediment
connectivity, thus translating the specificity of the phenomenon into a simple graphic representation,
understandable by a large number of end-users. In the present study, the a-SCI map constitutes
the main tool to apply directly sediment connectivity to the flood context.

For further details and considerations regarding all methods here summarized, the reader is
referred to [40].

3.2. SCI Map Data

All data considered for the SCI computation are extracted from open access datasets. The spatial
resolution of all the considered maps is 30 m. This corresponds to the spatial resolution of the DEM
(SRTM30, Shuttle Radar Topography Mission) used for extracting information from topographic data;
data originally with a coarser resolution were resampled to 30 m.

Rainfall data refer to the mean annual precipitation (MAP) derived from catchment daily rainfall
(CDR) long-term time series. CDR, provided from the National River Flow Archive (NRFA), are
derived from CEH-GEAR data [53], a 1 km gridded rainfall dataset generated from the interpolation
of observed rainfall of all rain gauges from the Met Office national database [54]. In the present
study, MAP values related to the main sub-catchments that compose the basin were cumulated over
the interval 1961–2015. This total rainfall over the basin was rescaled into index values from 0.05 to 1,
as in [40] (see Table 1 and Figure 2b).

Table 1. Mean annual precipitation (MAP) in the Severn catchment classified in rainfall index values.
The entire range (from maximum to minimum value of the temporal series) has been re-scaled from 0
to 1 (see text for details).

Rainfall MAP
(mm per year) Rainfall Index Values

667–668 0.05
669–719 0.11
720–772 0.18
773–825 0.24
826–878 0.3
879–931 0.36
932–984 0.43

985–1037 0.49
1038–1089 0.55
1090–1142 0.62
1143–1195 0.68
1196–1247 0.81
1248–1300 0.87
1301–1353 0.93
1354–1406 0.99
1407–1460 1

The soil stability index values were based on geotechnical soil properties classification. Soil units
and relative attributes (permeability, bulk density and thickness) come from the Harmonized World
Soil Database (HWSD, res. 1 km) and the British geological survey superficial deposit thickness model
(BGS-SDTM, 1 km hex-grid). Realized by FAO and International Institute for Applied Systems Analysis
(IIASA), HWSD combines existing regional and national updates of soil information worldwide and
integrates them with the information contained within the 1:5,000,000 scale FAO-UNESCO Soil Map of
the World (FAO, 1971–1981), (HWSD version 1.2, FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012. Harmonized



Water 2020, 12, 1857 8 of 21

World Soil Database—version 1.2. FAO, Rome, Italy and IIASA, Laxenburg, Austria). BGS-SDTM is
a national scale dataset of superficial deposit thickness, produced by BGS to summarize thickness
information via spatial statistics on the basis of a regular 1 km-sided hexagon grid distributed across
the surface of Great Britain. For the present study, top-soil permeability (presence of an impermeable
layer in the soil profile, in cm) and bulk density (kg/dm3) of soil units were extracted from HWSD, and
the mean values of thickness (in m) were extracted from BGS-SDTM.

The soil properties were examined for a first classification (high, medium, low permeability
etc., see Table 2), and then combined into a soil stability index with three classes, to which relative
normalized values were assigned (see Table 3 and Figure 2c). The rationale of this classification is
based on the interpretation of the role of soil properties in the stability dynamics. The selection of these
soil properties is based on previous studies on soil stability dynamics in which permeability, layer
thickness and plasticity were considered [40,55].

Table 2. Soil properties classification used for determining the soil stability conditions. The classes
and the values of the properties (permeability, bulk density and thickness) are divided in categories
(See text for details). LP = low permeability. MP = medium permeability. HP = high permeability.
LH = low bulk density. HB = high bulk density. LT = low thickness. MT = medium thickness. HT =

high thickness.

Soil Properties Soil Properties Classes

Permeability classes

Impermeable within 40 cm LP
Permeable between 40 and 150 cm MP

Permeable within 150 cm HP

Bulk density values

<1.4 kg/dm3 LB
≥1.4 kg/dm3 HB

Thickness classes

≤1 m LT
1–3 m MT
≥3 m HT

Table 3. Soil properties conditions classified in soil stability values (see text for details and previous
caption for the abbreviations).

Soil Properties Conditions Soil Stability Index Values

LP and HB or LT 0.05
MP and HB or MT 0.50
HP and LB or HT 1

In particular, the permeability is considered in association with the bulk density in order to
evaluate the drainage and runoff capacity of the soil surface. The thickness is considered to evaluate
the layer saturation.

The land cover index values were derived from the Corine land cover map (CLC) (version 2018,
res. 100 m). As explained in [40], high values were assigned to classes that can favour sediment
detachment (e.g., bare or poorly covered soil, arable land, cropland), lower values were attributed to
land cover classes that were considered obstacles to sediment detachment (e.g., covered soil, pastures,
grasslands). Urban areas were masked out assigning the 0 value. The classification is reported in
Table 4 and Figure 2d.
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Table 4. Land cover classes and index values associated with sediment mobility (see text for details).

Land Cover Classes Land Cover Index Values

Urban areas 0
Grassland, pastures, shrubs, moorland 0.25

Woods, forests 0.50
Arable fields, croplands 0.75

Bare soils, wetlands 1

The slope (S) and ruggedness (Ru) raster maps used for SM2 (see Section 3.1) are derived from
the above-mentioned SRTM DEM. For the ruggedness computation, the TRI (terrain ruggedness
index, [56]) was calculated by applying a tool implemented in the “gdaldem” module of the GDAL/OGR
Geospatial Data Abstraction software Library (Open Source Geospatial Foundation, https://gdal.org).
Since slope and ruggedness express the topographic variability in the catchment as local surface gradient
and local surface height variation respectively, the SM2 index has high values on the steep and/or regular
surfaces, and low values on the flat and/or irregular surface. ArcMap™ (ESRI, www.esri.com) and
QGIS® (Geographic Information System. Open Source Geospatial Foundation Project, http://qgis.org)
software were used in the various steps of the procedure.

3.3. Flood Maps

We use flood maps derived from aerial photography, Synthetic Aperture Radar (SAR) images, and
simulations, using visual interpretation, automatic floodwater mapping algorithm and hydrodynamic
modelling, respectively. All data derive from previous and still ongoing research conducted on
the Severn River catchment, in a specific test area at the confluence of the main river with the Teme
and Avon tributaries (see Section 2), which have been recurrently flooded in recent years [57–62].

The photointerpretation was applied to aerial photos acquired on 24 July 2007, and consisted
in visually mapping flooded areas [62]. Furthermore, aerial imagery of 31 July 2007 (available
from Centre of Environmental Data Analysis archive website, https://catalogue.ceda.ac.uk/uuid/

f73a1ed90ca550c350f587d43a5e20aa) were used for a visual comparison.
The Giustarini et al. algorithm [60] considers the pixel backscatter distribution in order to estimate

a flood probability, providing probabilistic flood maps (PFMs), based on Bayesian inference, in which
each pixel expresses the probability of being flooded (a value between 0 and 1), given its measured
backscatter value. This approach quantifies the uncertainty associated with SAR-based flood extent
maps. For a more detailed explanation of the procedure, refer to [60]. PFMs are here transformed into
binary maps (flooded/not flooded), by selecting the 0.5 probability value as threshold.

Other flood binary maps derived from model simulations water depth maps are used, in order
to consider additional flood events and corresponding water extents (i.e., flooded areas). Maps
of predicted flood events with return period (RP) of 200 and 500 years, available for the test area,
are obtained by adopting a consolidated methodology that involves hydrological analysis and
hydrodynamic modelling [63,64]. The procedure includes (1) a statistical analysis of the long time
series of hydrometric data (daily discharge) to derive the non-exceedance probability for predefined
scenarios, and (2) LISFLOOD-FP model simulations to predict flood extent maps. Long-term time
series of daily discharge acquired in seven gauging stations were processed. In order to obtain binary
maps, a minimum water depth value of 10 cm was set as the threshold for each pixel.

All the flood maps were obtained originally with a coarser resolution of 75 m (for model set up
see [63,64]) and were resampled to a spatial resolution of 30 m in order to apply the comparison with
the a-SCI map.

3.4. SCI and Flood Maps Comparison

In order to compare SCI values with flood occurrence, qualitative and quantitative methods
are applied.

https://gdal.org
www.esri.com
http://qgis.org
https://catalogue.ceda.ac.uk/uuid/f73a1ed90ca550c350f587d43a5e20aa
https://catalogue.ceda.ac.uk/uuid/f73a1ed90ca550c350f587d43a5e20aa
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The qualitative method is based on the visual analysis of the spatial coincidence of high sediment
connectivity areas with flooded areas. The overlap of the observed flood water extent and the a-SCI
map is considered for the events of 24 July 2007, and of 31 July 2007. For the other flood events, water
extents derived from SAR images are used.

A second method is based on the quantitative analysis of the distribution of SCI values in flooded
areas for selected flood events, both observed and predicted, to consider an increasing water extent.
Firstly, histograms of SCI values over flooded and non-flooded areas are computed for each selected
event in a smaller region of the test area. In this case the flooded area is composed by the pixels labelled
as water on the extent maps previously described, while a buffer zone of 3000 m around the fluvial
axis on both riversides, with the exclusion of the flooded areas, defines the non-flooded area. This
test aims to evaluate the correspondence of higher SCI values with flooded areas, and vice versa.
Secondly, receiver operating characteristic (ROC) curves are computed for each selected event, by using
the flood map pixels as the “true” class and the a-SCI map as classified one, to identify false positive
(fall-out) and true positive (sensitivity) rates. As a benchmark, ROC curves are also computed using
a flow accumulation (FA) map as the classifier for each selected event. This test is finalized to compare
the classification capacity of the SCI with respect to the role of sediment mobility—included in the SCI
index and not included in FA—in flooded/non-flooded area classification. Classical FA algorithms start
from unit values of flow on every pixel and propagate them downslope. Within the SCI definition, FA
is used with an initial weighting of pixel values given by the SM map. Therefore, a comparison of
the SCI map with a FA map (obtained with unit initial weights) allows quantifying the effect of the SM
on the performance of the SCI, in this case as a flood indicator. The area under the curve (AUC) is
the metric employed to evaluate the performance of the two classifiers.

4. Results

4.1. SM, SCI and a-SCI Maps

Figure 3 shows the maps obtained from Equation (1) and Equation (4) with red boxes highlighting
some areas of the catchment. In the SM map (Figure 3a), computed from Equations (1)–(3), most
of the catchment is characterized by a medium-high mobility (orange cells). While the areas with
a greater sediment mobility (red cells) are distributed along the Upper, Middle and Lower Severn
regions, the areas with a lower sediment mobility (blue cells) are mostly located in the eastern part of
the catchment. This sediment mobility pattern is justified by the lower rainfall rate and the higher soil
stability of the eastern basin compared to the greater rainfall rate, and the thinner and more permeable
and compact soils of the high mobility areas. In some of the latter ones, a larger slope and ruggedness
of the surface, as well as the presence of bare and arable soils, contribute to increase the mobility of
the sediment (Upper-Middle Severn areas).

In the SCI map (Figure 3b), having values ranging between −4 (very low) and 8 (very high),
the channels are identified by large values that show a spatial variation in relation with the longitudinal
continuity of sediment and water flows (detail box). In the wider central part of the catchment, the SCI
is high only along the main channels and in correspondence of the few red areas that can be considered
as local sediment sources from which the hydrographic network receives sediment contribution.
Moreover, dark green areas (very low SCI values), small but present throughout the whole basin,
represent disconnected areas, in which the supply and the mobilization of sediment is likely very low
or totally absent. The SCI map confirms the wide spatial variability of the Severn catchment, in which
the variety of the sediment dynamics is distinguishable not only between different regions of the main
river (i.e., Upper, Middle and Lower Severn), but also at a less extensive scale, with consequently
smaller areas of observation (sub-catchments scale).
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Figure 3. (a) Sediment mobility (SM) map (obtained from Equations (1)–(3)); (b) sediment flow
connectivity index (SCI) map, and (c) a-SCI map of the Severn catchment. The detail maps on the right
of each map correspond to the respective red boxes on the maps on the left, highlighting different areas
of the catchment chosen to better illustrate the small scale characteristics of each index.

Figure 3c shows the a-SCI map, which better emphasizes the areas with high, medium and low
sediment connectivity [40]. Here a 3 × 3 sliding window is used in the mean filter (see Section 3.1). In
this smoother map, the areas with similar SCI values are more visible and the hot spot areas (red) are
more easily identifiable. In the detail box on the right of the figure, the high sediment connectivity
along the channels is well shown, by defining the border of the contiguous area with lower sediment
connectivity (yellow and green).
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4.2. SCI Comparison with Flood Occurrence

As a first comparison, water extents relative to the event that occurred on July 2007 were considered,
by using event aerial photography acquired just after the event (see Section 3.4). As visible on the left
of Figure 4, the flood water extent (blue-bordered areas) fairly well covers the areas with higher
connectivity on the a-SCI map (red areas). Details of the areas along the main channels observed by
aerial imagery (on the right of Figure 4) show that open water areas mostly correspond to high a-SCI
areas (red box), while non-flooded areas coincide fairly well with low a-SCI areas (yellow box).
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Figure 4. Visual validation of results on a sub-area of the Severn catchment (location map at
the bottom-left). Left: a-SCI map with overlaid water extent borders (blue line) relative to the flood
event that occurred on July 2007. Right: detailed comparison with aerial photography (res. 1 m, 31
July 2007) showing flooded areas (top, red box) corresponding to high sediment connectivity areas (in
red) and non-flooded areas (bottom, yellow box) corresponding to low sediment connectivity areas (in
green).

In a second comparison, the eleven flood maps from past events, obtained as described in
Section 3.3, were considered (Figure 5).

A visual analysis shows a generally good correspondence of water extents relative to each event
with the high connectivity areas, as the latter mostly fall within the border line of the flood regions
(see flood occurrence map in Figure 5a). Each of the events that occurred between March 2007 and
January 2010 can be seen to affect roughly the same areas, with an obvious variation of the water
extent according to the relative magnitude. For this reason, the observed minimum, medium and
maximum water extent were determined over a sub-area of the entire catchment, in order to focus
the analysis (Figure 5b): the three regions (Figure 5c–e) fall quite well within the red area of the a-SCI
map. Furthermore, the maximum water extent fits almost completely the boundary of the high
connectivity zone.
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Figure 5. (a) a-SCI map and flood occurrence map relative to the 11 flood events considered (different
blue gradient regions). (b–e) Yellow box in (a) shows (b) a detailed region with the selected (c) minimum,
(d) medium, and (e) maximum water extent for the 11 events with the a-SCI map in background.

A quantitative analysis was then carried out by computing histograms related to flooded areas
and non-flooded areas (Figure 6) for selected events (see Section 3.4). For the events for which remote
sensing observations were available (shown in Figure 6a–c ordered in increasing intensity), a higher
frequency of high a-SCI values demonstrates that the higher connectivity zone (a-SCI values between
0.1 and 5.6, as seen in the legend of Figure 4) almost totally covers the flood region. Conversely, a higher
frequency of lower a-SCI values and a wider distribution of the samples characterize the non-flooded
region, that corresponds to a medium-low connectivity area. For the two predicted events (RP 200, 500
years), the histograms show a similar behaviour (Figure 6d,e).

Figure 7 shows ROC curves relative to the a-SCI map and the flow accumulation (FA) map,
obtained as explained in Section 3.4, for the same sequence of the events. The curve trends and
the areas under the curve (AUCs) indicate two elements. First, the performance of the a-SCI map
is better than that of the FA map for all examined samples (for all water extents). Second, the more
frequent the event (and thus the smaller the water extent), the higher the capacity of the a-SCI index to
recognize flooded areas as high-connectivity areas (AUCs of the blue ROC curves, from bottom to top
of Figure 7). The efficiency of the FA maps in identifying flooded areas as high flow accumulation
areas also improves similarly (AUCs of the red ROC curves).
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Figure 6. Histograms of a-SCI distributions for flooded and non-flooded areas, computed on a smaller
area of the test site. Blue-bordered region: flooded area. Fuchsia-bordered region: buffer of 3000 m
around the river course. (a–e) Flood and no flood areas in the considered flood events, observed (a–c)
and predicted (d,e), ordered in increasing magnitude (maps on the left) and relative histograms (in
blue and grey bins respectively, on the right).
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Figure 7. Receiver operating characteristic (ROC) curves and relative areas under the curve (AUCs) of
a-SCI and flow accumulation (FA) maps performance in test area. (a–c) Flooded area (blue-bordered
region, on the left) during observed flood events and corresponding ROC curves of a-SCI and FA maps
(blue and red curves respectively, on the right). (d,e) Flooded area (blue-bordered region, on the left) in
predicted flood events and corresponding ROC curves of a-SCI and FA maps (blue and red curves
respectively, on the right).
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5. Discussion

Although derived from low spatial resolution data (see Section 3), the SCI and a-SCI maps
indicate that the upscaling and standardization of the weighting procedure does not significantly
affect their application efficiency. Starting from the assumption that the appropriate spatial resolution
in any mapping exercise strongly depends on the characteristics of the data and the objective of
the study [28,43], the present experiment tells us that the assessment of sediment connectivity through
the SCI is possible even at rather coarse resolution (30 m pixel size) in a rather large catchment such as
the Severn basin.

The a-SCI map allows assessing the agreement between sediment connectivity and flood occurrence.
Our results suggest that the channels and the areas along the channels that receive a higher contribution
of water and sediment (due to their intense linkage with the sources and the paths of sediment flow)
represent areas most active in the morphologic dynamics and, consequently, most sensitive to flood
occurrence. This aspect makes the a-SCI map directly applicable in fluvial monitoring (as already
proposed in [40]) and, at the same time, suitable for flood hazard monitoring. The a-SCI map identifies
with a good precision the maximum possible water extent for events up to a relatively large return
period (500 years), marked by the transition from the high connectivity zone (red in Figure 4) to
the medium and low connectivity zone (yellow and green). If this is true, the high connectivity zone
along the river (the Severn, in this case) could be considered the “sensitive” zone within which floods
tend to occur. This result seems to be confirmed by the overlap of all eleven considered flood maps with
the a-SCI map (Figure 5). Indeed, for the period considered (March 2007–January 2010), the flooded
areas along the river are characterized by high sediment connectivity. In addition, the maximum
extension reached by water during the flood phenomenon can be identified using the limit of the high
connectivity zone. We argue that a more important sediment delivery in a river reach appears to be
connected to flooding, either as a cause or an effect. Another element seems to confirm this observation:
the green areas (low sediment connectivity), contiguous to the red areas, and thus to the flooded areas
(see Figure 5), are not affected by any of the considered flood events. Moreover, the SCI tends to have
higher values in the flood areas, as shown in Figure 6. However, this trend reduces as water extent
increases (from Figure 6a to Figure 6e) covering therefore areas only flooded during high-magnitude,
extreme events. The ROC curves confirm this scenario, showing a better trend for events of lower
magnitude (blue curves in Figure 7). Another aspect that characterizes the final step of SCI index
computation, i.e., the flow accumulation algorithm, could influence this result (see Section 3.1). Flow
accumulation (FA) is often considered as a (simplistic) proxy of water pathways in a catchment,
providing areas of accumulated flow in the valley bottom. The better performance of the SCI map
with respect to the FA map performance (red curves in Figure 7) tells us that the sediment mobility
taken into account by the SCI index contributes to improve the identification of high flood occurrence
areas. Obviously, this better performance cannot completely describe the complex interrelation of
the fluvial processes with the flood dynamics, including all the linkages between causes and effects
of an extreme event. In other words, it cannot be excluded that high sediment connectivity does not
always correspond to high flood occurrence, and vice versa. However, the better performance of the SCI
index compared to the FA algorithm suggests that the sediment mobility helps considering other
fundamental factors in flood susceptibility along the reaches. In fact, morphological and hydraulic
reach conditions, determined by the fluvial processes and partly described by the SCI index, strongly
influence the flood susceptibility of the reach. It is thus plausible that areas along the channels with
high sediment connectivity (i.e., hotspot areas) correspond to flood prone areas, because the most
active river reaches in water and sediment transport are presumably more susceptible to deliver
sediment from the sources, representing remarkably imbalanced reaches. This means that the sediment
transport between connected areas (sources and sinks) is intense and cannot be totally accommodated
by the channels, producing changes in the fluvial dynamics, and consequently in the morphology of
the surface [9].
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In fact, modifications in the morphologic structure of the catchment generally affect the alluvial
dynamics, because the areas where the flood propagates changes, influencing flow velocity and
therefore the forces acting on sediment and water [65,66].

At the same time, the morphological variations of the channel sections directly affect the evolution
of an inundation by obstructing or favouring the overflow and the water extent along that (modified)
reach [37,39]. Indeed, as shown in Section 1, geomorphic features, such as banks erodibility, section
variability (channel narrowing and aggradation), vegetation growth and/or accumulation of large
wood, are considered in the evaluation of flood event effects (and causes), because they can represent
natural barriers and/or impediment to the flow in the channel [38,67–71].

Finally, this experiment highlights the need to analyze in an integrated way the alluvial dynamics
in a catchment, by exploiting information from different data sources. The possibility to recognize
the hotspot areas (most morphologically dynamic and most frequently flooded areas) represents one
additional tool in river phenomena investigation. Obviously, this dynamics agreement (sediment
connectivity and flood occurrence) can be assumed reliable on the areas along the main channels of
the catchment. This study shows that a-SCI map constitutes a valuable tool in flood monitoring and
hazard assessment.

6. Conclusions

The sediment connectivity index (SCI) has been used to investigate the connection between basin
processes in flood dynamics, in order to test its potential applicability in flood prone areas mapping
and monitoring. The Severn River basin, UK, has been used as a test site because of its geomorphologic
(large floodplain) and climatic (marked gradient of precipitation) characteristics and its frequent
floodings, as well as the good data availability. The same procedure as in [40] has been used for
the processing of the data, which has been extracted from open datasets. The lower spatial resolution
version of the obtained SCI map, namely the a-SCI map, has been compared to flood maps of observed
and predicted events (using respectively aerial and satellite imagery, and hydrodynamic modelling) in
order to evaluate the correlation between the SCI-derived information and the flood occurrence along
the rivers in the test area (at the confluence of the Severn with Teme and Avon tributaries). The results,
obtained by visual interpretation and quantitative analysis, show a good correspondence between
high sediment connectivity areas and high flood occurrence areas. This experiment therefore suggests
that SCI is of high value in flood hazard analysis and monitoring.

More generally, the present work illustrates the contribution of an integrated analysis in
the exploration of the phenomena that affect river catchment. Furthermore, data combination
allows exploiting advantages of different sources of information (remote sensing, hydrodynamic
modelling, geomorphometry) in river processes investigation.

Another element to mention is that the SCI can be computed by using open datasets, available on
most (large) catchments, with the great advantage to obtain a description of sediment connectivity also
in basins with limited in situ data. On the other hand, the typically coarse resolution of these dataset
tends to underestimate the complexity of the surface by reducing the accuracy of the computation, also
affecting the correspondence between the SCI and the flood occurrence. Future studies could decrease
this uncertainty, by improving the computation methods and by exploiting increasingly more accurate
open source data.

The complexity of the context that the work explores (interrelation of processes, integrated
application, new research fields) partially limits the assessment procedure, as evaluation datasets are
very difficult if not impossible to observe in the field.
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