Supplementary Materials – Equations

Correlation coefficient (S1), Root Mean Square Error (RMSE, S2), Nash – Sutcliffe coefficient (NSE, S3) and Kling-Gupta efficiency (KGE, S4)

$$r_{xy} = \frac{S_{xy}}{S_x S_y} \tag{S1}$$

where, r_{xy} is the sample correlation coefficient, S_{xy} is the sample covariance, S_x , S_y are the standard deviations from the measured and simulated values respectively.

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (f_i - O_i)^2}{n}}$$
(S2)

where, RMSE is the Root mean square error, f_i is the simulated value, O_i is the measured value, n is the number of values.

$$NSE = 1 - \frac{\sum_{t=1}^{T} (O_t - P_t)^2}{\sum_{t=1}^{T} (P_t - \overline{O_t})^2}$$
(S3)

where, NSE is the Nash – Sutcliffe coefficient, O_t is the measured streamflow at t time, P_t is simulated streamflow at t time, $\overline{O_t}$ is the average of measured streamflow.

$$KGE_s = 1 - ED_s \tag{S4}$$

$$ED_{s} = \sqrt{[S_{r} \cdot (r-1)]^{2} + [S_{\alpha} \cdot (\alpha-1)]^{2} + [S_{\beta} \cdot (\beta-1)]^{2}}$$
$$\alpha = \frac{Sd_{mod}}{Sd_{obs}}$$
$$\beta = \frac{\mu_{s}}{\mu_{o}}$$

where, *KGE* is the Kling-Gupta efficiency, β is the ratio between the mean simulated and mean observed flows (bias), S_{α} , S_{β} , S_r are scaling factors that can be used to re-scale the criteria before computing the ideal distance from the ideal point (ED = 1), r is the correlation coefficient.