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Abstract: Direct membrane filtration of municipal wastewater has attracted a considerable interest
in recent years. Preventing severe membrane fouling is a crucial issue in the process development.
This paper aims to assess the effectiveness of a rotating hollow fiber module in enhancing fouling
control. The effect of rotation speed, intermittence and permeate flux was studied in short-term tests
at lab-scale. A combined filtration model considering residual fouling, intermediate pore blocking
and cake filtration was used to analyze the effect of the shear induced by rotation. Results showed
a significant flux improvement by increasing rotation shear stress and showed a nearly linear
correlation between the threshold flux (ranged between 12 and 32 L·h−1

·m−2) and the rotation speed.
A proper rotation intermittence (10/15 on/off) was found, which may maintain a fouling control
comparable to that achieved for continuous rotation. For a given energy demand, the optimal
operating conditions involve high speeds (≥180 rev·min−1) with low to moderate intermittences.
Analyzing the relative contribution of the different feedwater fractions on membrane fouling, colloidal
particles and macromolecules were found to be the main contributors.

Keywords: ultrafiltration; mechanical shear; threshold flux; fouling; shear-enhanced filtration

1. Introduction

In the last decades, population growth, pollution, urbanization and climate change are beginning
to overwhelm nature’s ability to provide freshwater resources. In order to reverse this situation
and achieve water sustainability, wastewater treatment and reuse must be further developed and
implemented [1]. It is also expected that the transition to a circular economy should create significant
synergies for enhancing this implementation [2]. There is large experience in arid or semi-arid regions,
where the reuse of treated wastewater has been recognized as a sustainable and cost-effective water
resource [3,4]. Globally, agriculture irrigation is the largest consumer, accounting for 32% of the
reclaimed wastewater, followed by landscape irrigation (20%) and industrial uses (19%) [5].

The selection of a treatment train or scheme for wastewater reclamation and reuse depends on
several factors including the wastewater type, available area, cost, population size, social acceptance and
level of quality to be reached [6]. Nevertheless, and regardless of the different factors, membrane-based
technologies play an essential role since they provide better assurance of treatment for safe applications.
One emerging membrane technology is direct membrane filtration (DMF) of raw wastewater [7,8].
By using a micro/ultrafiltration membrane, solids and pathogens can be removed from wastewater
producing a readily reclaimed wastewater for irrigation and landscaping. In terms of chemical oxygen
demand, removal efficiencies for municipal wastewaters in the range between 45% and 90% have
been reported, according to membrane and wastewater characteristics [9–11]. Several advantages over

Water 2020, 12, 1836; doi:10.3390/w12061836 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-3128-5112
https://orcid.org/0000-0002-8851-5046
http://dx.doi.org/10.3390/w12061836
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/6/1836?type=check_update&version=2


Water 2020, 12, 1836 2 of 14

other comparative technologies (e.g., activated sludge followed by micro/ultrafiltration or membrane
bioreactor) have been described: lower energy consumption, smaller footprint and higher nutrient
content of the reclaimed wastewater. In addition, the rejected stream, rich in organic matter, can be
anaerobically digested in order to produce biogas suitable for cogeneration of heat and power.

The main concern of DMF is the severe membrane fouling issue, which leads to lower operating
fluxes and higher cleaning frequency than other membrane technologies. This fouling potential has
been related to the large content of colloidal and soluble organic matter in the wastewater [7], which
is not removed by biological pretreatment. In addition, under conditions of high substrate and low
dissolved oxygen levels, stressed microorganisms can secrete extracellular polymeric substances,
which have been identified as main foulants [12]. In addition, recent studies have also pointed out
that wastewater cations, such as calcium or magnesium, can promote the abiotic aggregation of
dissolved polysaccharides resulting in transparent exopolymer particles (TEP). Although there is
no clear consensus on the role that TEP plays during wastewater ultrafiltration, it seems that these
particles could contribute to foul the membranes via gel layer or protobiofilm formation, favoring
the deposition of microorganisms on the membrane surface [13,14]. For the submerged membrane
configuration, which is less energy intensive than the sidestream configuration [15], traditional physical
methods have been applied to prevent membrane fouling, including continuous or intermittent air/gas
sparging and backwashing. Diamantis et al. [16] have compared the performance of submerged flat
sheet membranes with air sparging when filtering different feedwaters. They observed that fluxes for
raw wastewater were significantly lower (7 L·h−1

·m−2) than those obtained for secondary effluents
(29 L·h−1

·m−2). A flux of 10 L·h−1
·m−2 has been also reported for submerged hollow-fiber modules

with gas sparging [9]. In addition, regular in situ chemical cleanings have to be adopted (every 6–48 h
of filtration) for achieving a sustainable operation, in detriment of membrane lifespan. Therefore, due
to the serious membrane fouling associated with DMF of raw wastewater, significant total costs (capital
and operational) have been estimated [16].

To limit the fouling impact and also with the aim of increasing the organic removal efficiency,
several pre-treatments such as coagulation, adsorption or ozonation have been applied [7]. In general,
the studies highlight an improvement of process performance by the addition of inorganic coagulants,
which has been attributed to the aggregation of fine particles and colloids into larger flocs, that tended
to form a reversible cake layer on the membrane, thus enhancing physical cleaning efficiency [17–19].
A further improvement of this treatment has been reported by incorporating powdered activated
carbon [20]. Nevertheless, coagulants dose can be high depending on the type of wastewater. Given
the variability of composition of the wastewater (together with the ambient conditions), conducting
the operation at an optimal dose can be a complex issue and it has been reported that large dosages
of coagulant can induce a sharp increase of membrane fouling [21]. Furthermore, the addition of
inorganic coagulant affects permeate quality [22] and also generates a concentrated stream with a
relative high concentration of chemicals, which may have an environmental impact.

In this scenario, dynamic filtration systems, which create shear rates in the vicinity of the membrane
surface by a moving part, offer an alternative fouling control strategy for DMF. Most stablished systems
are based on membrane disks (rotating and vibrating) and hollow-fiber modules (vibrating) [23].
These systems have demonstrated their superior fouling control ability in challenging feedwaters [24].
In fact, previous studies have applied vibrating membranes in DMF, showing a better fouling control
than air sparging [25,26]. Based on this approach, a novel rotating hollow-fiber module was applied
for filtering raw wastewater, showing a performance comparable to that obtained for a pre-coagulated
wastewater [27]. Nevertheless, the application of a fixed rotation speed in the module becomes
energy intensive, while intermittent rotation seems to be energy-effective to prevent membrane fouling.
Therefore, this paper aims to explore the effectiveness in enhancing fouling control of an intermittent
rotating module applied to raw wastewater treatment. The membrane performance was evaluated at
different flux conditions. For a deeper analysis of the fouling mechanisms and their relationship with
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the main wastewater fractions, a combined filtration model considering residual fouling, intermediate
pore blocking and cake filtration has been proposed.

2. Materials and Methods

2.1. Feedwater

The experimental unit was fed with screened, degritted, degreased and sieved domestic wastewater
from the wastewater treatment plant of Noreste (Canary Islands, Spain). The feedwater was
characterized once per week during the experimental period. Table 1 summarizes the average values
of main parameters. As seen, the feedwater can be considered as a high concentrated wastewater, with
a large fraction of particulate matter.

Table 1. Average values of main characteristics of feedwater.

Parameter Units Mean Standard Deviation

COD mg·L−1 1073 160.3
DOC mg·L−1 62.5 36.0
TSS mg·L−1 569.8 231.8

Turbidity NTU 543.8 230.5

2.2. Bench Filtration Unit

The bench filtration unit consisted of a rotating hollow fiber membrane module (R-HFM) vertically
immersed in a 3 L tank (15 cm of inner diameter) for performing the direct filtration tests (Figure 1).
A ZeeWeed® ZW-1 (SUEZ Water Technologies and Solutions, Ontario, ON, Canada) hollow fiber
ultrafiltration module of 0.04 µm of pore size with 97 fibers of 1.9 mm outer diameter and 8·10−2 m of
length was used. The module has a nominal membrane surface area of 0.047 m2. ZeeWeed® consists
of a woven reinforcing braid on which a PVDF membrane is casted. Permeate was withdrawn at
constant flux (J) from the outside to the inside of the fibers by the vacuum created by a magnetic drive
gear pump (Micropump-GA Series, AxFlow, Stockholm, Sweden). The system operated in closed loop.
The shear rates generated to mitigate membrane fouling were originated by membrane rotation using
a mechanical stirrer (Heidolph-RZR2020, Heidolph Instruments GmbH & CO., Schwabach, Germany),
which acts as impeller of the R-HFM and is connected to the permeate line.

Figure 1. Bench filtration unit equipped with the rotating membrane module (R-HFM).

In addition, in order to evaluate membrane fouling and to control the filtration unit, transmembrane
pressure (TMP) data were registered and acquired by a pressure sensor (Sensotech, Barcelona, Spain)
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and the DAQ Factory software (AzeoTech®, Inc., Ashland, OR, USA), respectively. The control
system also allows setting the main operating variables: the permeate and backwashing fluxes (J
and JB, respectively), the filtration and backwashing cycle time (tF and tB, respectively) and the
intermittence operation of the stirrer. A detailed description of the experimental unit can be found in
Ruigómez et al. [27].

2.3. Flux-Step Assays

The flux-step assays were carried out to evaluate the influence of the rotating speed over
membrane fouling. In order to reproduce the operational conditions often employed during the
operation, backwashing stages were incorporated after every flux step, modifying the method proposed
by Le-Clech et al. [28]. The duration of each step and the flux increment were fixed in 15 min and
4 L·h−1

·m−2, respectively. Between steps, backwashing flux and duration were 60 L·h−1
·m−2 and

30 s, respectively. Four different rotating speeds (N) were evaluated: 120, 180, 260 and 340 rev·min−1.
According to Rector et al. [29], these values generate turbulent flow regimes (Re > 104), where the
corresponding rotational Reynolds numbers were 13,738; 20,607; 29,766 and 38,924, respectively.

2.4. Filtration Tests

Filtration tests were conducted during 30 consecutive filtration/backwashing cycles, where
the fouling model parameters were calculated as the average of the last 3 cycles. For each cycle,
the filtration and backwashing times were fixed in 450 s and 30 s, respectively. Four permeate fluxes
were investigated (4, 12, 16 and 20 L·h−1

·m−2) with the same backwashing flux of 60 L·m−1
·m−2. All tests

were performed with real wastewater at room temperature. The feed concentration was reproducible
along the experimental series, showing a low content of solids (TSS = 333 − 870 mg·L−1, see Table 1),
so feedwater viscosity can be estimated as the natural water one. In addition, transmembrane pressure
was continuously registered through the control system (TMP = 2 − 30 kPa). Rotation intermittence
was evaluated by the dimensionless rotation time (θ), defined as showed in Equation (1):

θ =
(trot)on

(trot)on + (trot)o f f
(1)

where (trot)on and (trot)off are the duration of rotation and non-rotation phases, respectively, during
a rotation cycle. For all values, (trot)on was fixed in 10 s and (trot)off varied according to the selected
θ value.

Net rotation speed (Nnet) was defined as the product of the rotation speed and the dimensionless
rotation time (Nnet = N·θ). Two different values were investigated (26 and 104 revxmin−1) obtained by
combining different pairs of θ and N (Table 2).

Table 2. Values of N and θ for the selected Nnet.

Nnet rev·min−1 N rev·min−1 θ

26 30 0.867
26 45 0.578
26 65 0.400
26 85 0.306
104 120 0.867
104 180 0.578
104 260 0.400
104 340 0.306

2.5. Membrane Fouling Characterization

Membrane fouling was characterized by a combined model developed for crossflow filtration [30],
considering the effect of fouling history on the effective flux [31]. This approach considers three
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different mechanisms: residual fouling, intermediate pore blocking and cake filtration. The first one
(often named physically irreversible fouling) is caused by adsorption or deposition of fine foulants
within the internal membrane structure [25,32] and/or by the formation of a compacted gel/cake
under long-term operation [17]. This fouling is expected to produce a reduction in the available
membrane surface area and thus to increase the local permeate flux in the unobstructed area. Therefore,
an effective permeate flux (Je) can be assumed for considering the effect of fouling history on the
filtration performance [31,33]:

Je = J ·
TMP0

(TMP0)pw
(2)

where (TMP0)pw is the transmembrane pressure obtained for pure water (i.e., clean membrane) at J flux
and TMP0 is the actual transmembrane pressure at the same flux.

During filtration, two fouling mechanisms occur simultaneously. Initially, intermediate pore
blocking is the predominant mechanism, evolving over time into a process dominated by cake filtration.
During the initial period, the overall hydraulic resistance is assumed to remain constant, since cake
layer is negligible. Intermediate pore blocking mechanism considers that foulants have the probability
of either to block open pores or to deposit on previously settled foulants, where the rate of pore blocking
is proportional to the actual unobstructed membrane surface area. In crossflow filtration, a balance
between the pore blocking rate and a foulant removal term (due to shear rate), proportional to the
actual obstructed area, is expected. Accordingly, TMP evolution during this period can be described
by Equation (3) [30]:

TMP =
TMP0(

1
Ki

+
(
1− 1

Ki

)
· exp(−Ki·B·t)

) (3)

where Ki is the intermediate pore blocking constant, B is the removal rate constant (s−1) and t is
the operation time (s). Likewise, Ki is related to pore blocking and foulant removal rate constants
(Equation (4)):

Ki = 1 +
σ·Je

B
(4)

where σ is the blocked membrane area per unit of filtrate volume (m−1), and the product σ·Je can be
considered as a pore blocking rate constant.

As filtration proceeds, foulant layers accumulate on the membrane surface, increasing the overall
hydraulic resistance. By using the Darcy’s Law, Equation (3) can be rewritten to consider the cake
filtration mechanism (Equation (5)) [30]:

TMP =
TMP0·(1 + Kc·Je·t)(

1
Ki

+
(
1− 1

Ki

)
· exp(−Ki·B·t)

) (5)

where Kc is the cake filtration constant (m−1) and represents the cake accumulation rate.

2.6. Wastewater Fractionation

The feedwater has been segregated in two different samples: supernatant and filtrate (≤1–3 µm).
Supernatant was obtained after 2 h of feedwater sedimentation. Filtrate samples were obtained by
filtering the supernatant through 1–3 µm filter sheets (Seitz® K-100, Pall Corporation, New York,
NY, USA). The main properties of each sample are shown in Table 3. Their fouling behavior were
evaluated by short-term filtration tests (four consecutive filtration/backwashing cycles). For each
sample, the obtained TMP profiles were fitted to the fouling model. Then, it was assumed that the
model parameters for the feedwater can be divided into the relative contribution of three fractions:
settling particles, non-settling particles, and colloidal and soluble components. The contribution of
the settling particles has been obtained by the subtraction of the feedwater and supernatant model
coefficients. Likewise, non-settling particles contribution has been determined by the difference
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between the supernatant and the filtrate. The rest constitutes the contribution of the colloidal and
soluble fraction.

Table 3. Main characteristics of the different fractions of feedwater.

Parameter Units Feedwater Supernatant Filtrate (<1–3 µm)

COD mg·L−1 1176 663 368
DOC mg·L−1 114 133 120
TSS mg·L−1 457 145 n.d.

Turbidity NTU 411 153 37

n.d.: not detected.

2.7. Analytical Methods

Chemical oxygen demand (COD), dissolved organic carbon (DOC), total suspended solids (TSS)
and turbidity were analyzed according to the Standard Methods [34].

3. Results and Discussion

3.1. Determination of Threshold Fluxes: Effect of Rotation Speed

The determination of the threshold flux and the threshold flux for irreversibility allows to evaluate
the fouling development and its irreversibility, and thus, to design an optimal operation strategy
(i.e., permeate flux and rotation speed). Given its simplicity, the threshold fluxes are often measured by
the improved flux-steps method [35]. Figure 2 shows the typical TMP profiles during the flux-step
testing. Regarding irreversible fouling, it can be evaluated by analyzing the initial transmembrane
pressures (TMP0), obtained after each backwashing step. Increasing flux produced a sharp increase in
the TMP0, which involves a deviation from the theoretical behavior described by the Darcy´s equation
for pure water. The existence of the irreversible fouling is also corroborated by the progressive decrease
observed in the backwashing TMP. Therefore, a threshold flux value for irreversibility (Jth)irr can be
identified (48 L·h−1

·m−2 in the example), beyond which the backwashing, under given conditions
(i.e., backwashing flux, duration and rotation speed), was no capable of completely removing the fouling,
as reported for activated sludge and model suspensions [35–37]. This approach is based on the existence
of a critical deposited mass, which arises from a balance between convective and back-transport of
foulants [38]. According to a combined model (cf. Equation (5)), after the backwashing, fouling is
initially governed by pore blocking, transitioning over time to cake filtration [30]. As seen in detail
in Figure 2, at fluxes above the threshold, the TMP slightly increased until achieving a value related
to intermediate pore blocking mechanism (TMPi = Ki·TMP0) and then linearly rising due to the cake
filtration mechanism. Hence, above the threshold value, the latter is the dominant mechanism. It has
been reported that the cake layer becomes more compact when filtering at higher fluxes during relative
large periods, being more difficult to detach by physical cleanings [39]. In addition, the irreversible
fouling layer could decrease the available filtration area during the successive steps, which can justify
the sharp increase of TMP0 observed at fluxes higher than (Jth)irr (Figure 2).
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Figure 2. Transmembrane pressure (TMP) and flux (J) profiles during a flux-stepping test.
N = 340 rev·min−1. TMP0: initial TMP for each step (after backwashing); TMPi: asymptotic TMP value
for intermediate pore blocking mechanism.

Based on the above approach, the same procedure was applied for other rotation speeds (N),
showing a substantial influence on (Jth)irr (Table 4). As expected, increasing the shear by rotation
declined the fouling deposition rate (i.e., dTMP/dt) and, in turn, increased the flux required to achieve
irreversible fouling. Specifically, varying the rotation speed from 120 to 340 rev·min−1 increased the
(Jth)irr by a factor of 2.4. As seen, the rotation efficiency remained nearly constant during the whole tested
range, where a correlation (Jth)irr ~N0.9 was found. According to several authors, the shear sensitivity
over the operating flux in dynamic filtration can be assessed by the exponent parameter in a power-law
function [23,40]. This empirical parameter typically ranges between 0.2 and 1.5, being influenced by
feedwater characteristics, membrane type, system configuration and TMP applied [23]. Considering
the configuration presented in this work as a stirred vessel with the rotating membrane acting as
an impeller, the average shear rate in the fluid is function of N3/2 under turbulent regime (Re > 104,
cf. Section 2.3) [41]. Accordingly, a power-law exponent of about 0.6 can be assumed, suggesting a
shear efficiency comparable with those typically reported for the wide established dynamic filtration
modules [24].

Table 4. Threshold flux, threshold flux for irreversibility and main model parameters for cake filtration
under each rotation speed.

N Jth, irr Jth αc·ωc αss·ωss αss·S

rev·min−1 L·h−1·m−2 L·h−1·m−2 m−2 m−2 m−1·s−1

120 20 12 8.6 × 1013 2.2 × 1014 8.2 × 108

180 24 16 6.6 × 1013 1.8 × 1014 8.3 × 108

260 40 28 1.8 × 1013 9.7 × 1013 7.2 × 108

340 48 32 8.3 × 1012 4.0 × 1013 3.4 × 108

With regard to reversible fouling, the threshold flux (Jth) (32 L·h−1
·m−2 in Figure 2) has been widely

used for discerning regions with different levels of fouling rates [38,42]. At low fluxes, the fouling rates
remained at very low values, while at fluxes slightly higher than the threshold, the TMP continuously
increased during the filtration step but at a rate not high enough to form an irreversible deposit
(i.e., critical mass). As a consequence, a flux range can be found between both threshold fluxes (from
32 to 48 L·h−1

·m−2 in the example), where the fouling of large particles can be effectively controlled.
This range tended to decrease in values and amplitude at lower rotation speeds, due to the similar
effectiveness of shear in both fluxes (Table 4). As mentioned before, the observed fouling behavior can
be physically interpreted through the combined intermediate pore blocking and cake filtration model
(cf. Equation (5)). The two specific model parameters Ki (pore blocking) and Kc (cake filtration) can
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be calculated by fitting the TMP trend for each step, where the slope during the linear growth phase
should equal TMP0·Ki·Kc·Je. Figure 3 shows the plots of both parameters against effective permeate flux.
Ki data show a high dispersion without a clear influence of the hydrodynamic conditions. It should
be noted that the increase of Ki over 1 denotes the relationship between the rate constants of pore
blocking and its removal. Due to the relative low values, pore blocking seems to have a minor role in
the fouling behavior at tested conditions. Conversely, permeate flux and rotation speed governed cake
filtration. As seen in Figure 3b, the cake formation rate, expressed as the specific model parameter
Kc·TMP0, followed the characteristic trend where the threshold flux marked a transition from low to
high fouling rates. One can argue, according to others [36,43], that the threshold flux is determined
by the deposition of large particles (i.e., suspended solids). It follows, for a polydisperse suspension,
that the cake layer is formed by fine particles (i.e., colloids) at low fluxes, while at fluxes beyond the
threshold value, large particles determined the cake formation. According to the proposed model,
Kc·TMP0 profile can be described by the following equations:

Kc·TMP0 = µ·αc·ωc·Je Je < Jth (6)

Kc·TMP0 = µ·αc·ωc·Je + µ·αss·(ωss·Je − S) Je > Jth (7)

where µ is the permeate viscosity (Pa·s); αc and αss are the specific cake resistances (m·kg−1) for the
colloidal and suspended components, respectively; ωc and αss are the solid concentrations per unit of
filtrate volume (kg·m−3) for the colloidal and suspended components, respectively, and S is the cake
erosion rate per unit area (kg·m−2

·s−1).

Figure 3. Model parameters Ki (a) and Kc ·TMP0 (b) against effective permeate flux (Je) at different
rotation speeds.

Based on the above approach, the threshold flux is governed by a balance between large particle
deposition and cake erosion. It has been assumed that the erosion process will only be significant
for a cake formed by large particles (i.e., suspended solids), in accordance with previous studies [44].
Therefore, the cake erosion rate can be calculated at each threshold flux (cf. Equation (7)). Main model
parameters for cake filtration are shown in Table 4. Interestingly, as N increased, both αc·ωc and αss·ωss

decreased in comparable relative values (i.e., ~90% and ~82%, respectively). Hence, the high shear
induced by rotation partially mitigated colloids deposition, even though a lower back-transport is
recognized for fine particles [45]. On the other hand, cake erosion rate tended to decrease with N,
which can be attributed to the lower deposition rate.

In summary, it may be concluded that the results demonstrated a significant flux improvement;
however, it should be noted that the operation at steady rotation speed is energy intensive. For turbulent
flow, the power input in stirred tanks is function of N3 [41], therefore a 2.4-fold improvement would
require about 22-fold increase in the power. Furthermore, conducting the operation at high rotation
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speed may decrease the fouling removal by cake erosion. Therefore, in the following sections
intermittent shear rotation was investigated for reducing the energy demand of the process.

3.2. Effect of Rotation Intermittence on Filtration Performance

In order to reproduce typical operation conditions, the fouling tests comprised several consecutive
filtration/backwashing cycles (cf. Section 2.4). As an example, Figure 4 shows TMP profiles at 0.4 of
dimensionless rotation time with a fixed speed of 260 rev·min−1 during the rotation periods. In Figure 5,
average model parameters at pseudo-stationary conditions are plotted against θ for the different
sub-threshold fluxes investigated (4, 12, 16 and 20 L·h−1

·m−2).

Figure 4. TMP evolution with consecutive filtration/backwashing cycles. J = 16 L·h−1
·m−2;

N = 260 rev·min−1; θ = 0.4. (A) corresponds to the three first cycles while (B) refers to three cycles at
pseudo-stationary regime.

Figure 5. Model parameters Ki (a) and Kc·TMP0 (b) against dimensionless rotation time (θ) at different
sub-threshold fluxes. N = 260 rev·min−1.

As seen in Figure 5a, Ki increased with the permeate flux and slightly decreased with θ, which is
consistent with the proposed model (Equation (4)). However, it shows that increasing the intermittence
of rotation over 0.4 (i.e., 10/15 on/off) has no substantial effect on controlling the pore blocking fouling.
By comparing Ki values with those obtained in the flux-step tests (Figure 3a), this type of fouling tended
to increase with the operation time. This can be also observed in Figure 4, where significant changes
in the fouling pattern with successive filtration/backwashing cycles were found. As seen, the pore
blocking becomes the predominant fouling mechanism at large operation times, which accounted for
approximately 80% of the global TMP increase (Figure 4, detail B). Furthermore, a transition from this
fouling to a residual one (i.e., irreversible) after a long-term operation has been reported [17]. As a
consequence, while the pore blocking fouling is expected to be reduced to some extent by optimizing
the backwashing conditions [46], the application of frequent chemical cleanings, required to remove
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the irreversible fouling, seems to be inherent to the process [10,25]. On the other hand, Figure 5b shows
that Kc·TMP0 decreased exponentially with increasing θ in all cases. In this case, values higher than
0.4 did not result in a significant improvement. As seen, the effectiveness of the intermittent rotation
increases with flux. Therefore, results revealed that imposing a proper rotation intermittence might
significantly reduce energy demand, whilst maintaining a fouling control comparable to that achieved
by continuous rotation.

3.3. Influence of the Net Rotation Speed

In previous sections, the impact of the rotation speed and the rotation intermittence on membrane
fouling has been examined in terms of the combined model coefficients. However, their relationship
is of great practical interest in order to optimize operating conditions and, consequently, the energy
consumption. Since power is proportional to membrane motion and rotation depends on the N and θ
values, the product between both parameters has been defined as the net rotation speed (Nnet = N·θ).
Based on the previous section, very low θ values were avoided due to the lesser fouling control.
Figure 6 shows Ki and TMP0·Kc against N for two different Nnet values (26 and 104 rev·min−1) obtained
by combining different pairs of θ (from 0.31 to 0.87) and N (from 30 to 340 rev·min−1) (cf. Section 2.4).
All tests were performed at J of 20 L/h·m2 and the same backwashing conditions described above.

Figure 6. (a) Ki and (b) TMP0·Kc against rotation speed (N) for two different Nnet values: 26 and
104 rev·min−1. J = 20 L·h−1

·m−2.

Ki at pseudo-stationary conditions under different N values is shown in Figure 6a. The results
indicate that the pore blocking coefficient decreases exponentially with the rotation speed applied
during the rotation periods. Consequently, a plateau was observed in the range of 1.2–1.4, when
N was equal or higher than 180 rev·min−1. Results also suggest that there was a low-turbulence
region (N ≤ 45 rev·min−1; Re ≤ 5152) where the shear rates are too weak to control pore blocking.
In agreement with a recent work, the reason of this trend may be related to the deposition of micron
and submicron-size particles on the membrane surface, which could not be mitigated operating at
low shear rates [27]. On the other hand, Figure 6b shows Kc·TMP0 profiles against N, where the
values remained approximately constant at ~630 kPa·m−1 until the rotation speed reached the turning
point. Then, a decreasing trend in fouling with the increase of the rotation speed can be observed.
Therefore, for a given energy demand, the optimal operating conditions involve large speeds with low
to moderate dimensional rotation times (~0.3–0.4). Although the optimal speed value depends on the
module design, the system hydrodynamics and the operating conditions; its identification is a key
factor to enhance process sustainability in terms of energy consumption.

3.4. Fouling Fractions Contribution

In order to assess a deeper analysis of the fouling mechanisms involved, the wastewater was
separated in the three main fractions (settling particles, non-settling particles and colloidal and soluble
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matter) and filtered at different θ values (0.1, 0.4 and 1). Figure 7 displays the relative contribution
of fractions to the total value of Ki (Figure 7a) and TMP0·Kc (Figure 7b), which were obtained as the
average values of the first four filtration cycles. The assays were performed at 260 rev·min−1 during
the rotation periods and with a permeate flux of 20 L·h−1

·m−2.

Figure 7. Relative contribution of fractions to (a) Ki and (b) TMP0·Kc against dimensionless rotation
time (θ). N = 260 rev·min−1; J = 20 L·h−1

·m−2.

Figure 7a shows a progressive decrease of Ki with θ for all fractions, where the colloidal and soluble
fraction (≤1–3 µm) was the main contribution, increasing its relative value with the dimensionless
rotation time, from 71.8% (θ = 0.1) to 97.3% (θ = 1). As mentioned before, it was assumed that
the fouling at fluxes below the threshold value was caused by fine particles (i.e., colloids), which is
consistent with the presented results. This behavior confirms that the shear efforts generated by
rotation cannot effectively control the progressive accumulation of fine foulants in the membrane
vicinity causing a pore blocking fouling. Nevertheless, the settling particles hardly contribute to the
total value of Ki (0–7.1%), and the non-settling particles percentage decreased down to 2.7% when
θ = 1.

As expected, a similar trend was observed for the product TMP0·Kc (Figure 7b). Results show a
decrease of the colloidal and soluble fraction contribution from 92.0% to 82.5% when θ was reduced
from 1 to 0.1, respectively. Simultaneously, the non-settling particles percentage increased from 5.1% to
12.4%, while that related to settling particles remained approximately constant. According to previous
studies, large particles could be easily removed from the membrane surface by erosion phenomena [47].
These results are consistent with the findings reported by Ji et al., during the evaluation of a dynamic
crossflow filtration system with a rotating tubular membrane using hollow glass microspheres as model
particles [44]. The authors found that the shear rates generated by the rotation-induced centripetal
force preferentially dislodge large particles (>5–10 µm) from the cake.

In summary, results show the high effectiveness of membrane rotation in the control of fouling
related to large particles, even at low θ values. Nevertheless, cake consolidation due to the substantial
residual fouling caused by fine foulants would be expected at high operational times. Thus, it would
be useful to carry out future long-term pilot-scale researches in order to improve the knowledge of
fouling phenomena during direct membrane filtration processes.

4. Conclusions

The influence of rotation speed, intermittence and permeate flux has been studied in a rotating
hollow fiber module applied to direct membrane filtration of wastewater. The filtration performance
has been evaluated by using a fouling model combining residual fouling, intermediate pore blocking
and cake filtration. From this work, the following may be concluded:
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• Membrane rotation has demonstrated a significant threshold flux improvement, where a correlation
(Jth)irr ~N0.9 has been found. Fouling behavior can be well described by the combined model,
where a balance between large particle deposition and cake erosion governs the threshold flux.

• At fluxes below the threshold, pore blocking becomes the predominant fouling mechanism at
large operation times. In these conditions, proper rotation intermittence (10/15 on/off) might
significantly reduce energy demand, whilst maintaining a fouling control comparable to that
achieved for the continuous rotation.

• Rotation intermittence plays a significantly minor role than rotation speed on membrane fouling
mitigation. Therefore, for a given energy demand, the optimal operating conditions involve high
speeds with low to moderate intermittences.

• At sub-threshold fluxes, membrane rotation demonstrated its high effectiveness in preventing
fouling phenomena linked to large particles (settling and non-settling ones). Therefore, colloidal
and macromolecules have been found as the main contribution to membrane fouling.
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