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Abstract: Large-scale flood risk assessment is essential in supporting national and global policies,
emergency operations and land-use management. The present study proposes a cost-efficient method
for the large-scale mapping of direct economic flood damage in data-scarce environments. The
proposed framework consists of three main stages: (i) deriving a water depth map through a
geomorphic method based on a supervised linear binary classification; (ii) generating an exposure
land-use map developed from multi-spectral Landsat 8 satellite images using a machine-learning
classification algorithm; and (iii) performing a flood damage assessment using a GIS tool, based on the
vulnerability (depth–damage) curves method. The proposed integrated method was applied over the
entire country of Romania (including minor order basins) for a 100-year return time at 30-m resolution.
The results showed how the description of flood risk may especially benefit from the ability of the
proposed cost-efficient model to carry out large-scale analyses in data-scarce environments. This
approach may help in performing and updating risk assessments and management, taking into
account the temporal and spatial changes in hazard, exposure, and vulnerability.

Keywords: flood damage; flood risk; large scale mapping; data-scarce environments; digital elevation
model; GFI; geomorphic flood area; machine learning; land use; geographic information system

1. Introduction

Flood damage assessment and analysis is a key component of any strategy for flood risk mitigation
and management [1–3], especially considering the potential consequences of climate change [4],
increasing human activities and high-value assets in vulnerable areas [5]. Methods and tools for
estimating and mapping economic damage [6–8] are essential for comparing the efficiency and
sustainability of a portfolio of flood mitigation measures to support decision-makers in delineating
flood risk management plans as required by the Flood Directive [9]. Therefore, a comprehensive
approach that appropriately quantifies the three components of risk, hazard, exposure and vulnerability,
is essential to identify exposed areas, design the most appropriate strategies for flood management,
aid the decision-making process to ensure preparedness, response and recovery [10–12], and, thus,
improve the sustainability and resilience of risk-based flood management practices (e.g., [13,14]).
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In this context, the need for national and transboundary flood risk assessment is gaining attention
at all levels [15]. Indeed, large-scale flood risk assessments can offer support for national and global
policies. For example, governments can use risk information to prioritize investments (e.g., cost-benefit
analysis), and take measures for flood risk reduction, for emergency operations and for land-use
planning, while insurance companies can improve their estimations of flood risk-based insurance
premiums [16].

Large-scale analyses often face a range of practical difficulties due to: (i) the large amount of data
and parameters needed for the calibration and validation of traditional models; (ii) the moderate/coarse
resolution of data accessible at a global scale and the limited availability of high-resolution data, which
may affect the accuracy of results and (iii) the computational demand of hydraulic models. Therefore,
in most countries across the globe, existing hazard and risk maps are incomplete, and there is a wide
variety of models used and level of detail adopted [17–19]. There is a need to identify efficient and
inexpensive ways to develop flood risk maps for large areas.

In this context, the present study proposes a simple and cost-effective model for large scale flood
economic damage quantification and mapping in data-scarce environments that aims to improve the
completeness of existing flood risk maps.

2. Background of the Study

Recent decades have seen a growing availability of data from new technologies of earth observation
(EO) and environmental monitoring [20]. At the same time, the high-computational power and number
of newly developed algorithms to analyse Big Data have increased significantly (e.g., machine learning
techniques). Their aim is to provide cost-effective solutions for large scale flood hazard estimation that
are critical to economies and organizations with limited resources. The use of free and open source
Geographic Information System (GIS) software has also increased significantly and has become a
consolidated technique for the analysis, visualisation and transparent communication of flood risk
worldwide [21]. Such advances have increased the range of possibilities for geo-scientists, updating
and re-inventing the way highly resource- and data-intensive processes, such as risk mapping and
management, are carried out [22].

Several fast-processing methods have been proposed for a preliminary delineation of flood-prone
areas using EO information that is readily available. Generally, these approaches are based on indicators
of the geomorphologic, climatic, hydrologic, geologic and land-use characteristics of the basins. Among
these, the approaches that appear the most suitable for the purpose of this study are those based on the
use of Digital Elevation Models (DEMs) for simplicity of application and reliability of results [23–28].
These methods represent a valid alternative to traditional hydrological/hydraulic modelling where
detailed analyses are not possible due to limited data and/or resource availability.

Several studies have been carried out (for example [29–31]) to identify the most influential
DEM-retrieved geomorphological features for the delineation of areas with high flood susceptibility
and to understand how to use these descriptors for large-scale applications. These investigations
highlighted the strong performance of a linear binary classifier based on a morphological index named
the Geomorphic Flood Index (GFI). GFI was recognized as the most suitable morphological indicator
among those examined for preliminary mapping over large areas and under limited data conditions [31].
The intrinsic properties of the GFI and the analysis of the DEM were further investigated [32] to obtain
an immediate estimate of the spatial distribution of the water surface elevation. Importantly, water
surface elevations can be coupled with the vulnerability of exposed assets to obtain an assessment of
the direct economic damage in a simple and effective way [33].

A wide range of damage models, e.g., empirical (data-driven approaches) or synthetic (i.e.,
expert-based/what-if-analysis approaches), for different sectors (agriculture, industry, residential, etc.)
and levels of detail (micro, meso and macroscale), is available in the literature [1,3,34–37]. These
methods are based on damage functions and vulnerability curves (e.g., depth–damage curves based
on flood water level) in order to describe component-by-component analysis of physical damage to
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buildings, which considers available information of damage mechanisms. To support the European
(EU) policies on flood risk management, the European Commission-Joint Research Centre (JRC)
collected and harmonized information of damage models developed specifically for some EU countries
(e.g., the Rhine Atlas and FLEMO (Flood Loss Estimation MOdel) [36] in Germany, the Standard
Method [38] and the Damage Scanner model [39] in the Netherlands), in order to develop vulnerability
curves and maximum damage values for all EU member countries [40]. These curves can be effectively
used since the maximum damage values have been collected for all European states. For each damage
class, an average value has been calculated, which can be scaled based on per capita GDP and applied
for each nation or region [41]. Recently, all the above-mentioned curves were integrated into an
open-source and user-friendly QGIS tool called FloodRisk [42] that is able to automatize the damage
assessment and mapping routine. These damage curves and their relative economic values vary
according to the land-use type. Exposure analysis, which consists of recognizing potentially vulnerable
elements and assigning them an economic value on the basis of land-use or considering individual
units, is important to explore prior to the application of the damage curves.

It is widely recognized that satellite remote sensing is able to provide useful information quickly
and economically regarding the classification of elements potentially exposed to flood risk based on
land-use analysis. In particular, medium-resolution Landsat-8 satellite sensors show high potential
for timely analyses and regional scale studies with reduced costs [43,44]. In analysing the built
environment using Landsat images, the different land-use classes are generally determined by the
alignment of buildings, roads and open spaces, thus they cannot be effectively described only by
the spectral values of a single pixel. Recently, object-based image analysis has shown better results
compared to pixel-based approaches; in addition, object-based image analysis can be usefully combined
with machine learning techniques to improve the description of urban models [45].

Based on the scientific advances described above, we propose a simplified and practical framework
for the quantification of direct economic flood damage through the integration of geomorphic methods,
land-use classification with machine learning techniques, and the damage curves method (Section 4).
The proposed integrated framework was tested in Romania for a 100-year return time (country attributes
are described in Section 3.) The resulting map, with a resolution of 30 m, covers the entire country,
including minor streams which are often not considered in large-scale analyses. The demonstration
application (Section 5) reveals how the flood risk description may particularly benefit from the
integrated use of geomorphic and geospatial methods, object-based image analysis combined with
machine learning algorithms, and EO freely available monitoring data. A discussion and conclusion
are provided in Section 6.

3. Case Study

According to CRED EM-DAT [46], Romania is one of the European countries most affected by
floods. Flooding was responsible for 86% of the economic damage caused by natural hazards in the
last 30 years in Romania [47].

The total area of Romania is about 238,000 km2. The Danube basin covers 97.8% of Romania and
30% of the entire Danube basin falls in the administrative area of Romania [48] (Figure 1).

In the last two decades, agricultural areas in Romania have decreased in favor of built-up areas,
which increased by 176 km2 from 1990 to 2006 [49]. Furthermore, the built-up areas increased by
112 km2 from 2006 to 2012, with an average annual growth of 19 km2 (0.15% increase from 2006
to 2012) [50]. As land uses shift, flooding is causing additional serious damage, due to the greater
concentration of people and economic assets in areas crossed by the waterways.
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Figure 1. Geographic and topographic setting of Romania, showing the adopted Shuttle Radar 
Topography Mission (SRTM) Digital Elevation Model (DEM) (m a.s.l) at 30-m resolution. 

4. Methodology 

The proposed methodological framework for flood damage mapping (for a single scenario 
event) is based on the three main steps described below and shown in Figure 2. 

The first step (see 4.1 of Figure 2) was the application of a supervised linear binary classification 
model based on the Geomorphic Flood Index (GFI) [30–32]. This step aimed to derive the maps of 
flood extent and water depth for Romania (including minor order basins) using Shuttle Radar 
Topography Mission (SRTM) [51] elevation data. The SRTM is one of the most widely used altimetric 
data sources in the world, due to its quality, accessibility and global coverage. Since 2000, a number 
of SRTM DEMs have been created and made available to the public with different ground sampling. 
In this study, we adopted the highest resolution dataset SRTM-1 Arc-Second Global elevation data (1 
arc-second/30 m). The second step (see 4.2 of Figure 2) aimed to realize an exposure map obtained by 
supervised land-use classification, by using a machine learning technique combined with an object-
based EO image analysis. In particular, the information obtained from Landsat-8 remotely sensed 
optical images [52] was used together with the discontinuous (i.e., available for a few large cities in 
Europe) existing high resolution land-use map Urban-Atlas [53], to obtain a harmonized and 
consistent land-use map with a resolution of 30 m for the areas estimated as flooded in the previous 
step. 

Finally, the flood economic damage (see 4.3 of Figure 2) mapping was carried out for a given 
return time by using vulnerability curves and maximum damage values proposed by [41] contained 
in the free and open-source GIS FloodRisk tool [42], by combining the water depth map (estimated in 
step 1) with information on exposure and vulnerability (evaluated in step 2). 

Figure 1. Geographic and topographic setting of Romania, showing the adopted Shuttle Radar
Topography Mission (SRTM) Digital Elevation Model (DEM) (m a.s.l) at 30-m resolution.

4. Methodology

The proposed methodological framework for flood damage mapping (for a single scenario event)
is based on the three main steps described below and shown in Figure 2.

The first step (see 4.1 of Figure 2) was the application of a supervised linear binary classification
model based on the Geomorphic Flood Index (GFI) [30–32]. This step aimed to derive the maps of flood
extent and water depth for Romania (including minor order basins) using Shuttle Radar Topography
Mission (SRTM) [51] elevation data. The SRTM is one of the most widely used altimetric data sources
in the world, due to its quality, accessibility and global coverage. Since 2000, a number of SRTM DEMs
have been created and made available to the public with different ground sampling. In this study, we
adopted the highest resolution dataset SRTM-1 Arc-Second Global elevation data (1 arc-second/30 m).
The second step (see 4.2 of Figure 2) aimed to realize an exposure map obtained by supervised land-use
classification, by using a machine learning technique combined with an object-based EO image analysis.
In particular, the information obtained from Landsat-8 remotely sensed optical images [52] was used
together with the discontinuous (i.e., available for a few large cities in Europe) existing high resolution
land-use map Urban-Atlas [53], to obtain a harmonized and consistent land-use map with a resolution
of 30 m for the areas estimated as flooded in the previous step.

Finally, the flood economic damage (see 4.3 of Figure 2) mapping was carried out for a given
return time by using vulnerability curves and maximum damage values proposed by [41] contained in
the free and open-source GIS FloodRisk tool [42], by combining the water depth map (estimated in step
1) with information on exposure and vulnerability (evaluated in step 2).
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Figure 2. Workflow of the Methodological Framework.

4.1. Flood Hazard Analysis

A hydrogeomorphic method based on the Geomorphic Flood Index (GFI) [31] was adopted to
derive flooding characteristics in terms of inundation extent and expected flood water levels. The GFI
is defined as the natural logarithm of the ratio between a variable water depth hr and the elevation
difference H:

GFI = ln
(

hr

H

)
(1)

For each basin location, hr represents the river stage at the point of the river network closest to
the one under examination, which is considered as the most probable source of flood hazard. The
parameter H represents the difference in elevation between the two above-mentioned points. The
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estimate of the river stage hr is derived as a function of the upslope contributing area Ar using a
hydraulic scaling relationship [54]:

hr ≈ aAr
n (2)

A simplified method to derive flood-susceptible areas based on the GFI has been recently proposed
and implemented in a QGIS plugin called the Geomorphic Flood Area tool (GFA tool) [48]. This tool
performs a linear binary classification based on the GFI to identify flood-prone areas by combining
morphological information extracted from digital descriptions of the earth’s surface (DEMs), along
with flood hazard information derived by existing inundation maps (e.g., official flood hazard maps
derived by hydraulic simulations). These maps are usually available for limited sections of a basin,
and are used as references to train the classifier by identifying the optimal discrimination threshold of
the GFI, τ. It represents the linear boundary of decision between the two classes (flood-prone areas and
flood-free areas) that best approximates the reference flood map. After the classifier has been trained,
it is able to detect flood-prone areas over unstudied portions of the basin.

Recently, Ref. [32] further explored the GFI approach to obtain a rapid estimation of floodwater
level. Specifically, since paired values of hr and Ar are generally not available to calibrate the hydraulic
scaling relationship of Equation (2), the authors suggest the GFI can be computed by estimating the
exponent n from literature values (see, e.g., [47]) and assuming the coefficient a using the threshold
calibrated with the linear binary classification. In particular, the coefficient a can be obtained as shown
in Equation (3):

a =

(
1

exp(τ)

)
(3)

Consequently, the scaling relationship of Equation (2) can be used for a more reliable estimate
of the floodwater level at each point of the river network. From the geomorphic analysis previously
performed, the difference in elevation H that separates all basin locations from the closest river is
known. Therefore, the hr values can be used to estimate the water depth (WD) within the delineated
flood-prone areas as follows:

WD = hr − H (4)

The main advantages of this approach are its limited requirements in terms of computational
time and input data (a DEM and a flood hazard map of at least 2% of the basin area). This makes it
particularly useful in poor data environments and for large scale analyses, where hydraulic simulations
are prevented by data unavailability, computational complexity and excessive costs.

4.2. Exposure Analysis

A central issue in exposure analysis is the availability of up-to-date information on the extent,
type and composition of the land-use map [55]. Nowadays, satellite imagery can provide, in a time and
cost-efficient manner, the information needed to derive land-cover information over large areas [56].
Thus, in this study, medium-resolution satellite images with a spatial resolution comparable to the
hazard information estimated above were used to derive proxies (land use/land cover) to support an
indirect characterization of exposure over large areas. The latest Landsat-8 free images were adopted
in this study for land cover classification due to their constant improvement in terms of richness in
spectral, spatial, radiometric and temporal resolution thanks to new generations of satellites being
launched with new and improved sensors [57,58].

This study used an object-based approach for image analysis and combined it with a machine
learning technique in order to derive a land-use pattern covering the flood susceptible areas.
Object-based image analysis (OBIA) uses geographic objects as basic units for land cover classification
that allows for the incorporation of various sources of information, such as spectral and texture, as the
basis for classification, reducing the within class variation and generally removing salt-and-pepper
effects, which result from isolated pixels mainly due to misclassification [44,45]. To partition the
multi-dimensional feature space into homogenous areas and label each image object/segment with
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respect to the desired land-use classes, an Artificial Neural Network (ANN) was used. The ANN
is able to estimate the non-linear relationship between the input data and desired outputs, has a
fast generalization capability and no a-priori knowledge requirements of the distribution model of
the input data, as it is a non-parametric classifier [59–61]. To train and test the adopted supervised
classifier, a reference dataset was compiled for the study area using the high-resolution Urban Atlas
land-use data, resampled to a 30 m raster to be consistent with the hazard map and Landsat dataset,
available for large cities (i.e., all urban areas with a population greater than 50K in Europe) as part of
the Copernicus Land Monitoring Service [53].

The proposed image processing and analysis chain consisted of three main modules, described in
the following sections: (i) image segmentation, (ii) feature-based description, and (iii) classification.

4.2.1. Image Segmentation

This study adopted an object-based approach to produce high classification accuracies based
on Landsat images [44,62,63]. However, OBIA has limitations, such as choosing an appropriate
segmentation scale: under-segmentation means that the image-objects are larger than the objects
on the ground, thus two or more land covers will be included in one large image object, while
over-segmentation results in more subdivision, in particular with low spatial resolution images [64].

Image pixels were clustered into segments in an unsupervised manner using image statistics
through an algorithm [65], called Efficient Graph-based Image Segmentation. This algorithm
delineates segment boundaries by minimizing intra-segment variability and maximizing inter-segment
separability. It does this through a comparison of the feature space, defined on the basis of the brightness
values of the pixels in the Landsat spectral bands, with that between neighboring pixels within each
segment. The segments were produced with a parameter combination [45], in an application on
Landsat-8 images, where the runtime parameter k was equal to 25 and the segment size m was equal
to 75 to effectively set a scale of analysis. The segmentation parameters were tuned using a spatial
autocorrelation metric, Global Moran’s I [45]. This measured, on average, how similar a region was
to its neighbors [66]. It quantified inter-segment heterogeneity and the standard deviation of the
brightness values of the input image bands, weighted by each segment’s size, and summed over all the
segments in the image scene, to assess intra-segment homogeneity.

4.2.2. Feature-Based Description

A recursive feature selection algorithm [45,67] was used to identify the most significant image
features using all spectral bands of Landsat-8. A pre-selected set of the 18 spectral features, 6 spectral
band indices and 20 textural features derived from the grey-level co-occurrence matrix (GLCM), were
calculated at the computational unit of segments for the most important spectral bands of Landsat-8.
A summary list of the features is presented in Table 1.

4.2.3. Classification

The multi-layer perceptron (MLP) neural network [68], was used to recognize land cover patterns.
The MLP consisted of an input layer that corresponded to individual data sources, such as the 44 image
features (listed in Table 1), a hidden layer used for computation and an output layer that included a
set of codes to represent the classes to be recognized. The inputs were introduced into the ANN in a
feed forward manner, which propagated through the hidden layer and the output layer. The values
associated with each node were estimated from the sum of the multiplications between input node
values and weights of the links connected to that node [69]. The initial weights were selected randomly
and then the back propagation (BP) training algorithm compared the calculated output for a given
observation with the expected output for that observation. The differences between the expected and
calculated output values across all observations were summarized using the mean squared error. This
process of feeding forward signals and back-propagating the errors was repeated iteratively until the
total error was minimized and distributed among the various nodes in the network [60].
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Table 1. List of image features derived from Landsat-8 [45]. Note: All image features were computed
per segment with i being the row number and j being the column number of the grey-level co-occurrence

matrix (GLCM). Pi, j was defined as: Pi, j =
Vi, j∑N−1

i, j=o Vi, j
where V is the value of GLCM.

Image Feature Features Class

Mean spectral value in image bands 1, 2, 4, 5, 6, 7; Spectral
Standard deviation in image bands 1, 3; Spectral

Weighted brightness, with I being the number of image bands, J being the number of
pixels per segment and p being the brightness value of the pixels;

wB = 1
I×J

I∑
i=1

J∑
j=1

pi j

Spectral

Minimum brightness value in image bands 1, 3, 9, 10; Spectral
Maximum brightness value in image bands 1, 4, 6, 9, 10; Spectral

Mean value of normalized difference vegetation index (NDVI)
NDVI = (NIR − Red)/(NIR + Red); Band index

Mean value of normalized difference water index (NDWI)
NDWI = (Green − NIR)/(Green + NIR); Band index

Mean value of modified normalized difference water index (MNDWI)
MNDWI = (Green − SWIR)/(Green + SWIR); Band index

Mean value of soil adjusted vegetation index (SAVI), where L (here equal to 0.5) is the
soil brightness correction factor

SAVI = (NIR−Red)
(NIR+red+L) (1 + L);

Band index

Mean and standard deviation value of normalized difference built-up index (NDBI)
NDBI = (SWIR − NIR)/(SWIR + NIR); Band index

Angular Second Moment derived from the GLCM in band 7;

CONT =
N−1∑
i, j=0

Pi, j(i− j)2 Textural

Dissimilarity derived from the GLCM in bands 1, 2, 6;

DISS =
N−1∑
i, j=0

Pi j
∣∣∣i− j

∣∣∣ Textural

Contrast derived from GLCM in bands 1, 2, 4, 7;

CONT =
N−1∑
i, j=0

Pi, j(i− j)2 Textural

Homogeneity derived from the GLCM in bands 1, 4, 6;

HOM =
N−1∑
i. j=0

Pi j

1+(i− j)2
Textural

Mean derived from the GLCM in bands 1, 3, 4, 5, 6, 7, 9, 10;

ui =
N−1∑
i, j=0

i
(
Pi j

) Textural

Variance derived from the GLCM in band 10;

σ2
i =

N−1∑
i, j=0

Pi j(i− u1)
2 Textural

In this study, several ANNs in sequences, each with a binary output layer, were used to solve and
decompose the multi-class problems, i.e., the clusterization of several land-use classes, as a flexible
classification scheme that consisted of different hierarchical levels [45]. For example, first, the extraction
of built-up areas and non-built-up areas was performed and, in order to get a more differentiated
picture of the built environment, the class “built-up area” was further refined and split into more
detailed classes (e.g., “residential” and “industrial/commercial”).

4.3. Damage Analysis

The free and open source FloodRisk GIS tool [42] was used to calculate the possible direct tangible
damage at the national level. This tool uses the powerful QGIS functions and python libraries to
calculate and display the expected economic damage in the form of maps.
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Specifically, the spatial distribution of the water depth estimated by the geomorphic method GFA
for a 100-year return period (described in Section 4.1), and the land-use map, derived by the Landsat-8
image analysis that combined object-based image analysis with an ANN (Section 4.2), were overlapped
and combined in the FloodRisk tool. Moreover, the asset values and vulnerability (i.e., the propensity of
the asset exposed to suffer damage) were associated with each land-use class in the damage model. In
particular, FloodRisk uses specific vulnerability functions, called depth–damage curves, to calculate the
range of damage (0 = no damage to 1 = complete destruction) for the different type of land-use classes
on the basis of the water depth in each cell of the land-use map. Considering that these curves are
context-specific, (i.e., very sensitive to local characteristics [35] and that functions developed for the
specific context of Romania were not available [33]), a set of average functions [40] based on data and
functions collected and harmonized for all of Europe by the JRC, were used in this application. These
can provide uniform and comparable results not only at the national level but also at a pan-European
scale. It is notable that the use of depth–damage functions is well-suited to large scale analysis because
the uncertainty of damage estimates decreases over larger sample areas due to the averaging effect [32].
The degree of damage in each land-use map pixel, obtained on the basis of these depth–damage curves,
was multiplied for the asset value associated with each land-use class [41], and adjusted on the basis of
inflation to estimate the total economic damage.

5. Results of the Application in Romania

The proposed integrated framework was tested in Romania for the 100-year return period. The
demonstration application over the entire country (including minor order rivers) and resulting maps
with a resolution of 30 m are presented in detail in the following sub-sections.

5.1. Flood Hazard Mapping in Romania

By applying the GFI method, a water depth map at 30 m spatial resolution was developed. To
derive the geomorphic features of the study area, the SRTM-1 Arc-Second Global elevation data (1
arc-second/30 m) were adopted. Its horizontal accuracy, as estimated by the NASA Jet Propulsion
Laboratory (JPL), ranges from 7.2 m (Australia) to 12.6 m (North America), while the absolute vertical
accuracy ranges from 5.6 m (Africa) to 9 m (North America) [70]. Indeed, the performance of this
hydrogeomorphic method, like almost all applications related to hydraulic and hydrological modelling,
is influenced by the quality of elevation data. For example, finer-resolution bare-ground Digital Terrain
Model (DTM) derived by airborne LiDAR (Light Detection and Ranging) would improve the terrain
analysis, and consequently the accuracy of the results [71]. Although the availability of these kinds of
high-resolution data is increasing, they are still limited in terms of extent, and in many cases cover
only river courses and not full hydrographic basins. It was therefore not feasible for our study that has
a country wide coverage. Thus, the SRTM dataset was chosen since, to the best of our knowledge,
it represents the highest quality elevation dataset freely available at the scale of our interest. It also
matches the spatial resolution of the Landsat-8 optical images used in the exposure analysis.

To train the classification, the 100-year pan-European flood hazard map derived by the JRC [18] was
used. This flood hazard dataset, to the best of our knowledge, is the most complete and state-of-the-art
dataset for the study area and, in addition, is open-access (https://data.jrc.ec.europa.eu/dataset/jrc-
floods-floodmapeu_rp100y-tif).

In a preliminary study, the extent of the 100-year flood-prone areas had been derived by using
the GFA tool over Romania, which sub-divided the country into five major basins (for more details
please see [48]). Starting from these maps, the procedure described in Section 4.1 was carried out for
the estimation of flood water levels assuming the exponent n was the average of literature values, with
n = 0.3544 [48], and the values for the coefficient a listed in Table 2.

https://data.jrc.ec.europa.eu/dataset/jrc-floods-floodmapeu_rp100y-tif
https://data.jrc.ec.europa.eu/dataset/jrc-floods-floodmapeu_rp100y-tif
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Table 2. The calibrated optimal threshold for the linear binary classification based on the geomorphic
flood index (GFI), and the relative estimated value of the scale factor for each of the five major basins
identified in Romania (see [48]).

Basin τ Scale Factor a

1 1.561 0.21
2 1.269 0.281
3 3.91 0.02
4 1.176 0.309
5 1.165 0.312

The obtained hazard map (Figure 3) includes minor order streams that are usually neglected
in large scale analyses. Therefore, it offered a more extended identification of areas exposed to
flood hazard, filling the gaps of the JRC pan-European map that essentially covers the major rivers.
Additionally, the use of a resolution of 30 m represented a further improvement in the detail of
the results.
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Unfortunately, we cannot provide a validation of these hydrogeomorphic flood maps, since real
recorded flow depths are rarely available for validation purposes. However, the performance of the GFI
method adopted here was validated against hydraulic flood hazard maps in previous studies [31,32,72].

5.2. Exposure Mapping in the Case Study

The exposure maps (Figure 4) at 30 m spatial resolution were derived by using a supervised
land-use classification through the combination of a machine learning approach and an object-based
image analysis on Landsat-8 optical images [52].
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The use of a consistent and complete dataset for all of Romania with a finer resolution would
enable rapid assessments of flood risk for local policymakers in regions where few data are available
and would also allow for consistent assessment across the country. Landsat-8 has 10 bands with a
resolution of 30 m for the visible spectrum, near infrared spectrum and shortwave infrared spectrum,
100 m for thermal infrared spectrum, plus an additional panchromatic band of 15 m resolution [52]. The
images are available in processing Level 1 T-Terrain Corrected, which means they are orthorectified,
radiometrically corrected and the TIRS bands are resampled to 30 m by using cubic convolution [45].
Moreover, these images were pre-processed by conversion to top-of-atmosphere reflectance, mosaicked
and transformed into the ETRS89/LAEA Europe coordinate reference system. The use of global EO
datasets, such as Landsat-8 images, for information on exposure enabled a rapid (due to the use
of machine learning) flood damage assessment with a controlled degree of consistency in terms of
accuracy and coverage. In addition, the analysis was done using a resolution of 30 m, which further
improved accuracy.

To train and test the adopted supervised classifier, a reference dataset was compiled for the study
area using the high-resolution Urban Atlas land-use data, available for large cities (i.e., all urban
areas with a population greater than 50K in Europe) as part of the Copernicus Land Monitoring
Service [53], resampled to a 30 m raster to be consistent with the hazard map and Landsat dataset.
In particular, data available for the 35 main cities in Romania were acquired from the website of the
European Union’s Earth Observation Programme Copernicus [73]. The three main steps described
in the methodological section for the land-use classification (i.e., image segmentation, feature-based
description, and classification) were based on commonly used ANN algorithms (e.g., [60,68]) and
extensively tested methodologies (e.g., for the choice of the segmentation method and parameters
or the image features derived by Landsat-8 images, see, e.g., [44]). However, a validation test was
performed to verify if the above-described methodologies could be effectively used in the proposed
case study.

The reference dataset, the Urban Atlas land-use map [53], was used to produce a large dataset
for training (90%) and a small dataset for testing (10%). After the ANN training, the classification
performance was evaluated on the testing dataset through an error matrix where the individual accuracy
of each category was plainly described with the classification errors of both inclusion (commission
errors) and exclusion (omission errors) [74]. Overall accuracy was defined as the total number of
correctly classified segments divided by the total number of test segments. Sensitivity, defined as the
true positive rate or producer’s accuracy, was estimated as the proportion of actual positives, which
were correctly classified as positives. Specificity, also defined as the true negative rate or user’s accuracy,
was assessed as the proportion of actual negatives, which were correctly classified as negatives.

For the testing dataset, the overall accuracy of the performed classification was around 85%. The
user’s and producer’s accuracies of individual classes were consistently good except for the land-use type
infrastructure (around 40%), due possibly to the resolution adopted in the study (e.g., 30 m resolution
could be too coarse to effectively identify roads or railway lines). The user’s accuracy of other land-use
classes ranged from almost 71% for industrial uses to 90% for agricultural uses. The producer’s accuracy
was reasonable for all other land-use classes (>62%). All results are shown in Table 3.
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Table 3. Performance evaluation of the testing dataset (Confusion/Error Matrix).

Urban Industrial Infrastructure Agricultural Forest Water User’s
Accuracy (%)

Urban 51,398 3101 175 4421 0 358 86.5%
Industrial 2379 43,008 1153 13,116 32 1002 70.9%

Infrastructure 1881 3226 7526 5739 70 525 39.7%
Agricultural 16,339 11,868 5792 379,258 234 6755 90.2%

Forest 1314 2094 646 1165 15,794 625 73.0%
Water 467 5362 3772 6260 0 64,998 80.4%

Producer’s
accuracy (%) 69.7% 61.7% 39.5% 92.5% 96.7% 87.5%

5.3. Economic Damage Mapping of Romania

The direct economic damage map (Figure 5) for the 100-year return time was derived in the
free and open-source GIS FloodRisk tool [42] by using vulnerability curves and maximum damage
values [40], and adjusted on the basis of inflation (see Table 4).

Water 2020, 12, x FOR PEER REVIEW 14 of 20 

 

 
Figure 5. Damage map for (A) Romania at 30 m resolution for an event with a 100-year return time 
and for (B) and (C) two major cities of Romania affected by past flood events. 

Table 4. Economic asset values divided by land-use classes for Romania. 

Code Land Use Class Adjusted Assets Value (Euro/m2) 
11100 Urban 495 
12100 Industrial 667 
12220 Infrastructure 11.2 
20000 Agricultural 0.07 
30000 Forest 0.04 

Moreover, because the GFA approach neglected diffusion and transients of the flooding process, 
it presented structural differences with respect to the method proposed by [18], which could influence 
the final results. It should also be mentioned that the linear binary classifier was calibrated using only 
the extent of the reference inundation map, while the flow depths obtained from the JRC maps were 
not used to calibrate the geomorphic water depth. In fact, the spatial distribution of water depth could 

Figure 5. Damage map for (A) Romania at 30 m resolution for an event with a 100-year return time and
for (B) and (C) two major cities of Romania affected by past flood events.



Water 2020, 12, 1834 14 of 20

Table 4. Economic asset values divided by land-use classes for Romania.

Code Land Use Class Adjusted Assets Value (Euro/m2)

11100 Urban 495
12100 Industrial 667
12220 Infrastructure 11.2
20000 Agricultural 0.07
30000 Forest 0.04

Along with the results obtained using the hazard and exposure data described above, additional
damage maps were produced for comparison. For the description of the flood hazard, the pan-European
flood hazard map (available in the JRC data catalogue) produced by applying a combination of
distributed hydrologic and hydraulic models for a return period of 100 years at a resolution of 100
m [18] (here resampled at 30 m), was adopted.

Regarding exposure, open data available for all of Europe, were adopted (Corine Land-Cover
(CLC)). The CLC database is part of the Copernicus Land Monitoring Service and provides a consistent,
comparable, pan-European land cover product [75]. The first CLC product was developed for the
reference year 1990, with updates in 2000, 2006 and 2012. The products, generated in raster format at
resolutions of 100 m and freely available for downloading from the EEA website [75], were resampled
at 30 m in order to be consistent with the results proposed in this study.

The comparison analysis covered only major rivers since the maps developed by [18] do not cover
minor order basins. The result of the combination of the different data and methods in the FloodRisk
tool are presented below: Figure 6 and Table 5 show the results of economic flood damage analysis
using (i) the GFA method and Landsat-8 data (as proposed in this study), (ii) the GFA method and
the CLC, (iii) the JRC flood hazard map [18] and Landsat-8 image analysis, (iv) the JRC flood hazard
map [18] and CLC.
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Figure 6. Comparison of the results of economic flood damage analysis of anthropic land-use classes
(i.e., urban, industrial and roads) using (i) the GFA method and Landsat-8 data (as proposed in this
study), (ii) the GFA method and the Corine Land-Cover (CLC), (iii) the Joint Research Centre (JRC)
flood hazard map [18] and Landsat-8 image analysis, (iv) the JRC flood hazard map and CLC. N.B:
forest and agricultural land-use classes are not visualized in this graph but they are reported in Table 5.
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Table 5. Results of economic flood damage analysis using (i) the GFA method and Landsat-8 data (as
proposed in this study), (ii) the GFA method and the CLC, (iii) the JRC flood hazard map [18] and
Landsat-8 image analysis, (iv) the JRC flood hazard map and CLC.

Economic Flood Damage (M€)

GFA_Landsat8 JRC_Landsat8 GFA_CLC JRC_CLC

Land Use
Class

Urban 140,674.86 107,996.13 84,299.48 54,422.28
Industrial 111,012.6115 82,446.2972 34,116.04 22,025.98

Roads 1143.17 1100.11 74.78 57.72
Agricultural 444.30 399.11 536.24 507.55

Forests 11.78 10.92 15.68 12.71
Total 253,286.73 191,952.57 119,042.22 77,026.24

The approach proposed in this study (i.e., (i) GFA method combined with Landsat-8 data) presents
the highest total value of economic damage due to the higher level of detail of the land-use maps but
also due to the greater water depths estimated by the GFA method. The Urban Atlas maps (used to
train the adopted ANN for producing, on the basis of the Landsat-8 images, the Romanian exposure
map), adopted a large number of classes to describe land-use with detailed classification. This could
result in a refined identification of the urban and industrial areas, and an efficient separation from
different classes with respect to CLC, where aggregated results could be affected by errors at this scale.
Considering that parts of the urban and industrial areas were located close to the river, the increase in
water depth values could strongly affect the final damage results.

Absolute damage values may not matter for prioritization of locations for investment, where the
risk ranking may be the same irrespective of the absolute values. However, it is important to highlight
that the difference was amplified by the very high maximum damage values proposed by [41] for the
industrial and urban classes, and that tended to produce a large increase in total damage with a small
increase in flooded areas or water depths.

Moreover, because the GFA approach neglected diffusion and transients of the flooding process, it
presented structural differences with respect to the method proposed by [18], which could influence
the final results. It should also be mentioned that the linear binary classifier was calibrated using only
the extent of the reference inundation map, while the flow depths obtained from the JRC maps were
not used to calibrate the geomorphic water depth. In fact, the spatial distribution of water depth could
eventually be optimized to reach the minimum error with respect to the reference hydraulic map, but
our aim was to derive the water depth using only flood extent (for more detail please see [32]).

Considering that a proper validation of flood risk assessments was not possible at this scale due
to data limitations in the study area, it was difficult to validate the performance of the combination of
different methods and data. However, the results showed that the major advantages of the proposed
method were its use of commonly available input data, the possibility of performing rapid analyses
at large scales with a medium spatial resolution (30 m) that also considered minor order basins, and
allowing for downscaling between spatial scales. This resulted in a rapid assessment of flood risk in
a data and resource-limited environment, and a more consistent comparison of flood risks in cities
across Romania.

Finally, the results of the methodology proposed in this study could support stakeholders in, for
example, developing national insurance programs and communication and awareness campaigns,
to help control local development and planning, and in prioritizing investments. While the central
approach is quite general, there are notable novel aspects in this study in terms of the integration of
different innovative methodologies and the applicability of the framework at different scales due to its
simplicity and cost-efficiency in using parsimonious and commonly available data.
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6. Conclusions

The present study proposes a cost-efficient method for a large-scale analysis and mapping of
direct economic flood damage at medium resolution in data-scarce environments. The proposed
methodological framework consists of three main stages: (i) deriving a water depth map through
a DEM-based geomorphic method using a linear binary classification; (ii) generating an exposure
land-use map developed from multi-spectral Landsat 8 satellite images using a machine-learning
classification algorithm; and (iii) performing a flood damage assessment using a GIS tool based on
the vulnerability (depth–damage) curves method. The cost-effective model was based on commonly
available datasets and innovative methodologies that took advantage of increased computing power.

The proposed integrated framework was tested in Romania for a 100-year return period. The
resulting map, with a resolution of 30 m, covered all of Romania including minor order streams,
which are often not considered in large-scale analyses. The proposed method can therefore enhance
the completeness and spatial details of existing flood hazard and damage maps, allowing for a
methodologically consistent assessment for Romania. The use of free and open data allows for more
consistent comparisons on flood risks in cities across the EU and within individual countries. However,
it is important to stress that these datasets may be subject to error that may certainly affect the final
quality of the results. In the case of higher quality input data availability (for example, increased
accuracy and spatial resolution), model results might be improved by including a validation against
real event data at varying return periods. In the present case, the use of global/continental datasets
enable rapid assessments of flood risk for policymakers in regions of the country where there are few
data available and, in particular, it allows for quantitative comparisons of the damage in different
regions/communities. On one hand, this is particularly important to identify the total risk facing the
country in order to determine investment priorities, and the scale of government grants for flood
risk management measures undertaken on the basis of consistent assessments. It is also necessary to
demarcate the limits of the national insurance program. This is particularly important to identify the
flood risk at the country level in order to determine investment priorities and flood risk management
measures. On the other hand, this responds to the need of local decision-makers for controlling
development where little data is available but a significantly higher level of detail is required—not
least because decisions made based on that information are likely to be contested.

Although detailed and accurate flood inundation maps can be obtained by means of hydrological
and hydraulic models, very few continental-scale studies that employ detailed hydraulic models are
presented in the literature (e.g., [76,77]) due to the difficulties of data availability and computational
expense. However, significant research advances and increasing computational and data resources
are extending the range of possibilities for practical applications, filling the gap that exists between
simplified large-scale approaches and detailed reach scale hydraulic models. The low complexity of
the proposed approach provides a computationally inexpensive flood hazard assessment that does
not account for the spatio-temporal dynamic of inundations especially in territories where numerous
hydraulic infrastructures exist. However, hydrogeomorphic approaches benefit from the increasing
availability of high-resolution DEMs, and our study has shown the potential of fast-processing
DEM-based algorithms for consistent flood hazard characterization. Additionally, the results of the
proposed integrated framework, due to its simplicity and cost-efficiency in using parsimonious and
commonly available data, could be used to explore future scenarios at large scale to study temporal
and spatial changes related to, for example, impacts of climate change, socio-economic growth or both.
Taking into account these changes, the proposed model could perform future risk assessments in terms
of hazard, exposure and vulnerability.
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