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Abstract: The consumption of seafood has considerably increased over recent decades; however,
as wild seafood stocks are limited, the cultured ones represent a possible valuable alternative.
The purpose of this study was to compare wild and cultured scallops, Flexopecten glaber, on the
basis of their marketability indices and biochemical characteristics. Wild and cultured specimens
were harvested from the Ionian Sea (the Central Mediterranean Sea). Protein and lipid were
significantly different between scallops, with the values of protein of 8.50 and 11.6 g/100 g and lipid
of 1.45 and 1.70 g/100 g for wild and cultured scallops, respectively. Regarding fatty acids (FAs),
statistical differences were also detected. The cultured species showed significantly (p < 0.05) higher
polyunsaturated fatty acids (PUFAs) than its wild counterpart. Eicosapentaenoic (EPA, 20:5 n3) and
docosahexaenoic acid (DHA, 22:6:3) were the major polyunsaturated fatty acids, although only DHA
showed significant differences between wild and culture scallops (p < 0.05). The ratio of n3/n6 PUFA
showed high values, with 2.7 and 3.1 for wild and cultured scallops, respectively. The atherogenic
and thrombogenic indices and hypocholesterolemic/hypercholesterolemic fatty acid ratio indicated
an import role in human diet. The appreciated nutritional properties of this species could support the
interest to promote its cultivation, ensuring high food nutritive value for the purchasers.

Keywords: Flexopecten glaber; proximate composition; fatty acids; mariculture; lipid nutritional
quality indices

1. Introduction

The commercial exploitation of shellfish (mainly mollusk bivalves) represents a very important
resource worldwide, with species of high economic value, such as oysters, mussels, scallops and clams,
that account for about 1.8 million tons from marine and freshwater capture fisheries [1]. However,
the constant request for seafood leads to the overexploitation of wild stocks beyond biological
sustainability, reducing these resources to critical levels. The attention on these products is growing
at a time when global demography show us that world population is growing and will continue to
grow in the future, which means that there is a need to produce more protein foods [2]. Aquaculture
holds the key to mitigating the growing request that must focus on forms of marine aquaculture that
generate high quality products on a solid base of environment sustainability [3].
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The lack of diversification in shellfish culture in European aquaculture is a serious weakness
that could prevent the expansion of this sector in Europe [3]. To overcome such problems, there is
great interest in developing a sustainable bivalve culture, adding value to production with high-value
species that could contribute to a new source of protein for consumers [4]. The diversification of
aquaculture through the introduction of new bivalve species can contribute to meet the demand in
seafood production, reducing pressure on wild stocks [5].

Bivalve aquaculture is considered a “sustainable and green” aquaculture industry [3]. Indeed,
bivalves feed on phyto- and micro-zooplankton, on various organic detritus, and bacteria, present
naturally in the water column and they do not need prepared feeds [6].

Bivalves products represent a very valuable source of essential nutrients for much of the world’s
population, although there are considerable variations of consumption between countries and regions in
terms of the overall amount, which reflects differences in eating habits, availability, and socioeconomic
levels [7,8]. Some of the benefits attributed to the bivalves are the incorporation of components of
significant nutritional value, such as high quality proteins, vitamins, essential amino acids, minerals,
and low lipid contents, besides being a source of n3 series polyunsaturated fatty acids (PUFAs),
especially eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid, which bring several benefits to
human organisms [9–12].

Among bivalves, scallops represent a valued delicacy that is particularly appreciated in European
countries. They represent an important part of the global seafood market and are obtained from fishery
or aquaculture activities [13]. The development of scallop culture has been promoted in the United
Kingdom, France, Spain, Norway, and Ireland, and, to a lesser extent, in Italy and Croatia; however,
despite the attempts, a successful, large-scale scallop aquaculture industry has not yet developed in
Europe [14]. However, the commercial aquaculture activities for Pecten maximus have been developed
in France, Spain, Scotland, and Norway, and for Aequipecten opercularis in Spain (both on the Atlantic
and Mediterranean coasts) and Scotland. In relation to the Mediterranean regions, there are some
promising candidate species for aquaculture, including Pecten jacobaeus, Mimachlamys varia and the
Flexopecten glaber [15].

Flexopecten glaber (Linnaeus, 1758) is a commercially important species belonging to the Pectinidae
family and is widely distributed in the Mediterranean Sea, including the Black Sea coast [15,16]. They are
harvested via artisanal fisheries, even though this is insufficient to fulfil the market demands [17].
Previous studies reported that F. glaber could be a promising candidate for an emerging Mediterranean
aquaculture on artificial substrates of wild spat because of its wide availability and ease of collection;
moreover, they grow fast and do not seem to be threatened by severe pathogens. For these reasons,
the smooth scallops show the potential to diversify bivalve cultures, stimulating the perspective of the
meat market and consumer demands [5,18].

Generally, the quality of the biochemical composition of any edible organisms is an important
indication of flesh quality and permits determining its nutritional value in comparison to other
organisms. This is a valuable tool to assess the source of nutritive constituents for human
consumption [11,12,19]. Information on the quality differences between wild and cultured bivalves is
central to better ensuring that products from aquaculture meet the beneficial requirements. However,
to our knowledge there is no literature data that reports the comparison of the nutritional composition
of wild and farmed Pectinidae.

Through a comparative analysis between wild and cultured Flexopecten glaber, the objectives of
this paper were to investigate: their marketability indices (Percentage Edibility and Condition Index),
biochemical composition (proximate and fatty acid composition) and Lipids Nutritional Quality indices.
This information could be useful to consider F. glaber as an emerging species in European aquaculture.
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2. Materials and Methods

2.1. Collection, Samples Preparation, Percentage Edibility and Condition Index of Bivalves

Scallops were cultivated in suspended cages at a depth of 6–9 m in an experimental long-line
plant located in an area of the Ionian Sea (the Central Mediterranean Sea, 40◦25′54′′ N, 17◦14′22′′ E).
The suspended cages consisted of round plastic crates, generally used to on-grow shellfish. The crates
are made up of shallow cylindrical baskets (height 11 cm, 60 cm in diameter and 1 cm mesh size,
with an available surface of about 0.25 m2), which stack together and are suspended by a single rope
running vertically through the center of the stack. In the same area, samples of wild specimens were
collected by scuba diving during April and May 2016.

Dissolved oxygen was measured by means of a Niskin bottle, while water temperature and salinity
were measured using a probe (IDROMAR IM 52). The values of the water temperature registered were
18 ± 2 ◦C, the salinity was about 38 ± 1 psu, and the dissolved oxygen, 105–107%.

All samples were immediately iced and transported to the laboratory within 1 h to be brushed,
washed, and processed. To avoid analytical differences that were size dependent, adult samples with
similar shell length were chosen (n = 30; 45.2 ± 3.2 mm and 45.3 ± 5.0 mm shell length for wild and
cultured scallops, respectively; n = 30; 11.9 ± 2.2 g and 12.3 ± 3.5 g total weight for wild and cultured
specimens, respectively). Three subsamples of ten individuals each were rinsed with deionized water
and opened by cutting the adductor muscle with a scalpel. The meat was pressed with blotting
paper to remove excess moisture before weighting, homogenized and stored at −20 ◦C until use for
biochemical analysis.

Percentage Edibility (PE) was calculated as: PE = (wet meat weight/total weight) × 100 [20].
Condition Index (CI) was determined as: CI = (wet meat weight/shell weight) × 100 [21].

2.2. Proximate Composition

The edible portion of cultured and wild Flexopecten glaber was analyzed for proximate composition.
Moisture and ash content were determined according to the standard methods [22]. For moisture,
samples were dried at 105 ◦C overnight until reaching constant weight. The ash content was determined
in the furnace oven at 550 ◦C overnight.

The total proteins were determined using the protein dye binding method [23], with blue brilliant
of Coomassie (G 250, Merck, Milan, Italy) as the reagent and bovine serum albumin (Sigma, Milan,
Italy) as standard.

The carbohydrate content was quantified according to the phenol-sulfuric acid method [24],
using glucose as the standard.

The chloroform-methanol (2:1, v/v) lipid extraction and gravimetric determination of total lipid
(TL) were performed following the method of Folch et al. [25].

The contents were expressed on wet weight of sample since the main purpose of this work was to
evaluate the quality of a product as purchased by consumers.

2.3. Fatty Acids

The fatty acids (FAs) in the total lipid were esterified into methyl esters by saponification with
0.5 N methanolic NaOH and trans-esterified with 14% boron trifluoride (v/v) in methanol.

Fatty acid methyl esters (FAMEs) were analyzed on a Hewlett Packard (HP) Agilent 6890 N model
gas chromatograph (GC) equipped with a flame ionization detector (FID) and fitted with a capillary
column (Omegawax; 30 m × 0.32 mm, i.d., film thickness 0.25 µm; Supelco, Bellefonte, PA, USA).
Helium was used as the carrier gas (1 mL/min). The column temperature program was as follows:
150 to 250 ◦C at 4 ◦C/min and held at 250 ◦C.

The fatty acid peaks were identified by comparing their retention times to a mixture of fatty
acid methyl ester standards (Supelco 37 Component FAME Mix; Supelco Inc., Bellefonte, PA, USA).
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Quantification was made using the technique of internal standardization with triheptadecanoin serving
as standard (Sigma, St. Louis, MO, USA).

Relative quantities were expressed as weight % of total fatty acids. Percent of total fatty acids
data were converted to amounts per 100 g wet fillet according to Greenfield and Southgate [26].

2.4. Lipid Nutritional Quality Indices (LNQI)

The data from the fatty acid composition analysis were used to determine the nutritional quality
of the lipid fraction by means of three indices using the following formulas:

1. The atherogenicity index [27]:

AI =
(C12 : 0 + 4 x C14 : 0 + C16 : 0)∑

MUFAs +
∑

PUFAs
(1)

2. The thrombogenicity index [27]:

TI =
(C14 : 0 + C16 : 0 + C18 : 0)[(

0.5 x
∑

MUFAs + 0.5 x
∑

n6 PUFAs + 3 x
∑

n3 PUFAs + n3
n6

)] (2)

3. The fatty acids hypocholesterolemic/hypercholesterolemic ratios [28]:

HH=
(C18:1 cis 9+C18:2n6+C20:4n6∗C18:3n3+C20:5n3+C22:5n3+C22:6n3)

(C14:0+C16:0) (3)

2.5. Statistical Analysis

All data were expressed as mean values ±SD (standard deviation). Analyses were performed in
three replicates. The normality and homogeneity of the data was evaluated by Kolmogorov–Smirnov
and Levene tests. The differences between scallop product types (wild and cultured products) were
compared using independent sample t test. A significance level of 0.05 was used.

3. Results and Discussion

As the edibility percentage and condition index reflect the eco-physiological status of the
individuals (gametogenesis and nutrient reserve storage consumption), they are parameters of
economic importance because they detect the commercial quality of bivalve species, especially of those
exploited [7,29]. These, together with proximate composition, are probably the simplest and most
useful criteria adopted as standard in international trade [30].

In this work, the percentage of edibility and the condition index were highest in farmed scallops,
with values of 45.2 and 95.3, respectively (p < 0.05) (Figure 1), in agreement to those reported by
Prato et al. [12] for other bivalve species from the same area and same period.

The knowledge of proximate composition of food is necessary to ensure the requirements of food
regulations and at the same time to provide the commercial specifications. Moreover, the awareness of
the chemical composition of any edible organism is enormously significant because it gives an idea
about the nutritive value of that organism.

The moisture content of food material affects the physical and chemical aspects and it is
considered a good indicator of freshness and quality of seafood [31]. Its content depends on the flesh
physical structure since the water is a fundamental medium for chemical reactions involved in many
physiological processes, such as nutrient transport, the removal of waste products, nerve impulse
transmission, and muscle contractions [31].
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Figure 1. Mean values of three replicates ±standard deviation. Percentage of edibility (PE) and
condition index (CI) of cultured and wild Flexopecten glaber. Different letters indicate significant
differences (p < 0.05).

The results of this study indicated the moisture as the main component is >83% of F. glaber and
similar values are typical of other bivalve mollusks [32]. However, between wild and cultivated
scallops, no significant differences were found (p > 0.05) (Table 1).

Table 1. Proximate composition of wild and cultivated Flexopecten glaber. Values are average ± SD
(N = 20, n = 3). Means followed by different letters are significantly different (p < 0.05).

Wild Cultivated

Moisture (g/100 g) 84.53 ± 1.5 83.17 ± 0.8
Ash (g/100 g) 3.51 ± 1.7 3.78 ± 0.8

Protein (g/100 g) 8.50 ± 1.2 a 11.62 ± 1.1 b

Lipid (g/100 g) 1.45 ± 0.3 a 1.70 ± 0.2 b

Carbohydrate (g/100 g) 0.03 ± 0.1 0.03 ± 0.1

Wild and cultured scallops showed a comparable ash content (p > 0.05), with values of 3.51 and
3.78 g/100 g, respectively.

According to the literature data and the results of this study, the carbohydrates in tissues of
scallops examined in this study (0.03 g/100g) are less compared with other nutrients [33,34].

It is generally accepted that seafood is a high-quality source of protein and that its consumption
provides health benefits to growing children, adolescents, and the aged. [12,35,36]. The farmed F. glaber
had a significant higher protein content with 11.62 g/100 g than the wild (8.50 g/100 g) (p < 0.05).

The cultured scallops showed a lipid content higher than that of the wild specimens (p < 0.05)
(Table 1).

The main biological functions of lipids comprise signaling and storing energy and are important in
the structural organization of cell membranes [37]. Moreover, they represent a storage material utilized
during stressful conditions [38], and they are an efficient energy source and essential component for
the formation of tissue membranes [34,39].

Several previous studies reported similar values, for protein and lipid content to those found in
the present study. Berik et al., [15] reported values of 12.0–13.7 g/100 g for protein and 1.12–1.95 g/100 g
for lipid in wild samples from Lapseki Bay in Canakkale (Turkey). Prato et al. [12] found similar
protein content in cultivated F. glaber.

In general, F. glaber from Mar Grande exhibited a proximate composition comparable to that of
the specimens from the north east of Tunisia (Bizerte lagoon) [40].

Limited studies exist on the fatty acid composition of scallops from different areas of the
Mediterranean Sea, including Italian waters, and therefore the comparison with other scallop species,
harvested in the same period.
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The importance of fatty acids in seafood commonly focus on polyunsaturated fatty acids, which are
important to human health. As well as other marine invertebrates, bivalves are not able to synthesize
n-3 and n-6 PUFAs de novo to satisfy physiological needs, so PUFAs are derived exclusively from their
diet (phyto- and zooplankton, bacteria and detritus) [41].

Moreover, FAs are considered as biochemical markers, since the potential food sources of seafood
(diatoms, dinoflagellates, zooplankton, bacteria) have a distinctive FA composition with unique FAs;
therefore, they can be considered an efficient tool to provide information on a bivalve’s diet [42].

The fatty acid profile of the F. glaber, wild and cultured, with their absolute amounts (mg/100 dw)
and relative proportions (% of total FAs) are summarized in Table 2.

Table 2. Values reported are means ± standard deviations. Fatty acids (FAs) composition (mg/100 g) in
the brackets (% of total FAs) of wild and cultured F. glaber. Means followed by * in the same line are
significantly different (p < 0.05).

Wild Cultured

C14:0 56.25 ± 43.13 (5.54) 44.42 ± 8.93 (3.73)
C15:0 18.26 ± 30.85 (1.80) 1.35 ± 0.56 (0.11)
C16:0 253.32 ± 21.96 * (24.96) 319.32 ± 29.78 * (26.83)
C17:0 18.54 ± 2.89 (1.83) 18.64 ± 1.81 (1.57)
C18:0 39.57 ± 19.91 * (3.90) 77.35 ± 11.72 * (6.50)
C20:0 2.92 ± 2.27 (0.29) 1.98 ± 0.72 (0.17)
C21:0 3.09 ± 0.33 (0.30) 4.01 ± 1.22 (0.34)∑
SAFA 398.19 ± 55.08 (39.22) 467.07 ± 25.66 (39.25)

C14:1 1.3 ± 0.49 (0.13) 1.54 ± 0.47 (0.13)
C16:1 82.67 ± 9.10 * (8.14) 45.62 ± 7.74 * (3.83)
C17:1 8.67 ± 0.89 (0.89) 9.72 ± 2.93 (0.82)

C18:1n9t 10.21 ± 2.21 (1.00) 11.98 ± 2.75 (1.01)
C18:1n9c 6.43 ± 0.64 (0.63) 3.23 ± 1.89 (0.27)
C18:1n7 55.61 ± 45.94 (7.84) 54.62 ± 11.40 (4.59)
C20:1n9 3.07 ± 0.62 (0.27) 2.97 ± 1.19 (0.25)
C22:1n9 3.71 ± 0.13 (0.36) 4.88 ± 0.74 (0.41)∑

MUFA 195.65 ± 16.03 (19.27) 134.57 ± 7.11 (11.31)

C18:2n6t 12.65 ± 1.49 (1.24) 14.75 ± 9.86 (2.56)
C18:2n6c 30.09 ± 1.05 (2.96) 36.25 ± 9.80 (3.05)
C18:3n6 3.75 ± 0.18 * (0.37) 1.58 ± 0.29 * (0.13)
C18:3n3 38.66 ± 4.94 (3.81) 40.62 ± 2.85 (3.41)
C18:4n3 62.91 ± 1.92 (6.20) 52.95 ± 17.65 (4.45)

C20:2 1.71 ± 0.38 * (0.17) 7.14 ± 3.14 * (0.6)
C22:0 + 20:3n6 32.02 ± 6.51 * (3.15) 65.65 ± 17.65 * (5.52)
C20:3n3 + 22:1 9.89 ± 0.32 * (0.97) 44.23 ± 20.02 * (1.40)

C20:4n6 39.44 ± 2.95 * (3.88) 16.66 ± 4.76 * (3.43)
C22:2 0.89 ± 0.16 * (0.09) 40.86 ± 11.74 * (0.06)

C20:5n3 101.11 ± 2.25 (9.96) 105.91 ± 4.12 (8.90)
C22:5n3 23.81 ± 5.19 (2.34) 7.21± 1.07 (0.61)
C22:6n3 81.06 ± 10.25 * (7.98) 163.43 ± 4.95 * (13.73)∑

PUFA 403.02 ± 49.24 * (39.70) 553.79 ± 13.78 * (46.54)

PUFAs represented the highest proportion of total FAs, contributing to 39.70% of the total FAs in
wild scallops and to 46.54% of the total FAs in those cultured. Saturated fatty acids (SAFAs) were the
second group with proportions that did not show significant differences between scallops, as well as
the monounsaturated fatty acids (MUFAs) that accounting for 19.27 and 11.31% of the total FAs in wild
and cultured, respectively (p > 0.05).

The most abundant SAFAs in all samples of both scallops were: myristic (C14:0), palmitic (C16:0)
and stearic acid (C18:0). The significant higher content of palmitic and stearic in cultured scallops
compared to the wild specimens (p < 0.05) suggests the importance of detritus in the scallop’s diet
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when cultured in suspended cages. The amounts of odd-branched carbon SAFA 15:0 + 17:0 in both
species reached 3.63% of total FAs in wild scallops and 1.68 in cultured samples, evidencing a moderate
presence of bacteria in the diet of both scallops [42] (Table 2).

It is known that the high SAFA consumption represents a risk factor to develop coronary heart
disease or cardiovascular disease [43] since it increases the blood total cholesterol and Low Density
Lipoprotein (LDL) [44]. Lauric (12:0), myristic (14:0), and palmitic acids (16:0) are the SAFAs that
contribute to increase total and LDL-cholesterol [44], because these fatty acids reduce the activity of
the LDL receptors and thereby decrease the cellular LDL uptake [27]. On the contrary, stearic acid
(18:0) does not cause a significant increase of cholesterol levels, but rather a High Density Lipoprotein
(HDL)-cholesterol-level-lowering effect [45].

MUFAs are often referred to as “beneficial to human health” because they help in reducing both
total and low density lipoprotein-LDL blood cholesterol levels and protect against cardiovascular
disease [46].

In this study, palmitoleic (16:1), vaccenic (18:1 n7) and oleic (18:1 n9) acids were the major MUFAs
detected in both wild and cultured scallops. Significantly higher amounts of 16:1 (82.67 mg/100 g dw;
corresponding to a percentage of 8.14% of total FAs) in wild scallops than cultured (45.62 mg/100 g dw;
corresponding to a percentage of 3.83% of total FAs) were found, while wild and cultured scallops did
not differ for 18:1 n7 as well as 18:1 n9 contents (p > 0.05). A high concentration of 16:1n-7 indicates an
important contribution of diatoms in the diets of bivalves [42].

Cultured scallops exhibited higher PUFA content than wild ones, with 553.8 and 403.0 mg/100 g dw
for cultured and wild, respectively (p < 0.05). PUFAs are very important biochemical components of
bivalves, contributing to their high nutritional quality and making them an ideal food for the human
diet. The major contributors to n3 PUFA were eicosapentaenoic (EPA 20:5 n3), docosahexaenoic acid
(DHA, 22:6 n3), stearidonic acid (STD, 18:4 n3), and α-linolenic acid (ALA, 18:3 n3), although only DHA
was significantly higher in cultured scallops than wild scallops (p < 0.05). DHA predominated over
EPA in cultured samples, and this could reflect an ingestion of Dinophyceae while the ratio DHA/EPA
was reversed in favor of EPA in wild scallops indicating a diatom- or flagellate-based diet.

Chakraborty et al., [47] in a study on the nutritional composition of wild and cultured oyster
Crassostrea madrasensis from the southwest coast of India, reported a higher EPA and DHA content
in wild oysters. Stancheva et al. [48] reported for Black Mussel (Mytilus galloprovincialis) from the
Bulgarian Black Sea values of EPA + DHA from 0.252 g (wild) to 0.425 g/100 g (cultured).

Despite the essential role that n3 PUFA play in the normal growth and development along the
lifespan, they are not adequately consumed, especially in Western countries where a relative imbalance
in the consumption of n6 and n3 PUFA is observed due to a high consumption of food of animal
origin [49].

Large amounts of n6 PUFA and low amounts of n3 PUFA, with the consequent high n6/n3 ratio,
contribute to increased cardiovascular risk, cancer, inflammatory and autoimmune diseases.

However, there is a growing public interest in the benefits of dietary n3 FA on the human health,
as several studies state that a diet rich in marine origin food prevents chronic diseases such as coronary
heart disease (CHD) [50].

It is widely recognized that a high dietary intake of n6 PUFA promotes a proinflammatory response
in the consumers; however, recent evidence has also shown the opposite [51,52], suggesting some
anti-inflammatory actions such as those of the n3 PUFA [53]. For example, mean serum C-reactive
protein concentrations showed a decrease with increased n6 PUFA ingestion, in both Japanese men
and women [51,52].

Among n6 PUFAs, arachidonic acid (ARA C20: n6) plays an important role for the synthesis of
eicosanoids, for cognitive functions, in the development of skeletal muscle, central nervous system.

In this study the ARA content showed significantly higher values in wild (39.4 mg/100 g dw) than
cultured scallop (16.66 mg/100 g dw) (Table 2) indicating a major contribution of micro-heterotrophs
(flagellates and ciliates) in the wild scallops’ diet [42].
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The health benefits of seafood may be related to n3 PUFAs that in this study were significantly
higher (p < 0.05) in cultured scallop (414 mg/100 g dw) than wild (317.44 mg/100 g dw), while the n6
PUFAs content did not show significant differences between wild and cultured scallops (Figure 2A).
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Figure 2. Nutritional quality indexes of wild and cultures scallops. Values are mean (± SD). (A)
∑

n3 and∑
n6 = sum of omega 3 and omega6 fatty acids; (B) n3/n6 and n6/n3 ratios; (C) SAFA/PUFA = saturated

and polyunsaturated fatty acids ratio and UNS/SAT = unsaturated and saturated fatty acids ratio; (D) AI
= Atherogenic Index; TI = Thrombogenicity Index; and HH = hypocholesterolemic/hypercholesterolemic
fatty acid ratio. Different letters indicate significant differences (p < 0.05).

Chakraborty et al. [47], on the contrary, for the edible oyster C. madrasensis, reported a total content
of n3 significantly higher (p < 0.05) in the wild than in the cultured.

In general, the n3/n6 ratio is higher for many marine organisms than terrestrial food—this is
consistent with previous studies [54–58]. This ratio is very useful index for assessing the nutritional
quality of fish lipids, due to their human health effects in coronary heart diseases, chronic inflammatory
conditions, autoimmune diseases [59–61]. An appropriate n3/n6 ratio is fundamental to the balanced
production of eicosanoids and allows a major conversion of α-linolenic acid into DHA [60,62]. In the
present work, the n3/n6 ratio was 2.70 for wild and 3.1 for culture scallops. Chakraborty et al. [47]
reported higher n3/n6 ratio in both wild and cultured C. madrasensis, with 5.1–6.7 in the wild and
4.4–5.7 in the cultured samples. n6/n3 ratios of F. glaber wild and culture were 0.37 and 0.32, respectively
(Figure 2B). The UK Department of Health recommends an ideal ratio of n6/n3 of 4.0 at maximum [63],
and values above 4.0 are considered harmful to human health. Therefore, the consumption of food
rich in n3 PUFA is an important approach to balance the high n6/n3 ratios.

Another important nutritional indicator is the PUFA/SAFA ratio. Many studies report that both
reduced SAFA and increased PUFA dietary intakes were very important in regulating blood cholesterol
level [64,65]. According to some nutritional guidelines, the PUFA/SAFA ratio should be above 0.45 [66].
In this study, the PUFA/SAFA exhibited good values with 1.03 in wild and 1.20 in cultured scallops
(Figure 2C). Also, the ratio unsaturated (UNS)/SAFA is largely used to evaluate the nutritional quality
of lipid [11]. Wild and cultured scallops showed a ratio in favor of UNS with values of 1.53 (wild) and
1.48 (cultivated).

AI, TI, and HH are widely used to assess the nutritional quality of the lipid fraction and its potential
effect on the appearance of cardiovascular disease (Figure 2D) [27]. High AI and TI values indicate
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high fatty acids content involved in atherogenic and thrombogenic processes and are considered to be
important factors underlying CHD risk increase. Therefore, the smaller the AI and TI index values,
the healthier the food. The higher n3 fatty acid content, and consequently the higher n3/n6 fatty acid
ratio, in all samples in this study contributed to lower atherogenic and thrombogenic indices. AI was
slightly lower in cultivate scallops (0.61) than wild (0.81); as well as IT, with values of 0.22 in cultivated
scallops and 0.27 in those wild.

As regard hypocholesterolemic/hypercholesterolemic fatty acid ratio, lower values of HH are
deleterious to human health. The HH ratio take into account specific effects that single fatty acids might
have on cholesterol metabolism, and high HH values are desirable for human benefit. The scallops
studied herein showed values of 1.07 (in wild) and 1.03 (farmed), indicating that edible tissues are
beneficial to human health.

The dietary guidelines from international agencies recommend a regular seafood consumption (one
to two servings per week with each serving to provide the equivalent of 250–500 mg of EPA + DHA) [67].
The results of this study showed that, in order to obtain the recommended daily portion (RPD) of EPA
+ DHA, people need to eat a smaller portion of farmed scallops (93.0 ± 3.1 g) than wild ones (of about
137.5 ± 7.0g (p < 0.05).

4. Conclusions

The approach of this study aimed to examine if suspended farmed scallops of Flexopecten glaber in
the sea could compete with the wild ones currently offered on the market. The results demonstrated
that the scallops as a new product cultured in the Ionian Sea at the experimental site could compete
positively with current wild products.

The proximate composition and fatty acids profile of cultured and wild scallop products were
similar, in line with a previous study on mussels from Ionian waters by Prato et al. [58]. The comparison
between the two scallop products showed that the cultured ones had higher n3 fatty acids, n3/n6
ratio, EPA, DHA, than their wild counterparts, so it is possible to say that commonly cultured
scallops are products with slightly higher nutritive value, especially in term of the prevention of
cardiovascular diseases.

The present study provides baseline information to assess the nutritional value of scallops (F. glaber)
in the Ionian Sea (Mediterranean Sea) that could be useful for eliminating the prejudice toward their
production through the cultivation of sea products. In conclusion, F. glaber can be worthily considered
as a potential sustainable candidate in Mediterranean aquaculture.
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