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Abstract: Devastating floods are observed every year globally from upstream mountainous to
coastal regions. Increasing flood frequency and impacts affect both major rivers and their tributaries.
Nonetheless, at the small-scale, the lack of distributed topographic and hydrologic data determines
tributaries to be often missing in inundation modeling and mapping studies. Advances in Unmanned
Aerial Vehicle (UAV) technologies and Digital Elevation Models (DEM)-based hydrologic modeling
can address this crucial knowledge gap. UAVs provide very high resolution and accurate DEMs
with low surveying cost and time, as compared to DEMs obtained by Light Detection and Ranging
(LiDAR), satellite, or GPS field campaigns. In this work, we selected a LiDAR DEM as a benchmark
for comparing the performances of a UAV and a nation-scale high-resolution DEM (TINITALY)
in representing floodplain topography for flood simulations. The different DEMs were processed
to provide inputs to a hydrologic-hydraulic modeling chain, including the DEM-based EBA4SUB
(Event-Based Approach for Small and Ungauged Basins) hydrologic modeling framework for design
hydrograph estimation in ungauged basins; the 2D hydraulic model FLO-2D for flood wave routing
and hazard mapping. The results of this research provided quantitative analyses, demonstrating
the consistent performances of the UAV-derived DEM in supporting affordable distributed flood
extension and depth simulations.

Keywords: UAV-DEM; DRONE-DEM; LiDAR; TINITALY; EBA4SUB; FLO-2D; ungauged basins;
flood modeling

1. Introduction

Remote sensing and hydrologic-hydraulic modeling data and tools, nowadays, effectively support
flood hazard simulations for understanding, forecasting, and mitigating nuisance inundations in major
rivers of the world. Continental models are increasingly accurate and efficient in developing flood
hazard mapping [1–4] and forecasting [5,6] empowered by global meteorological and topographic
surveying systems. Nonetheless, several issues impact large scale flood models, including limitations
when simulating small-scale flooding dynamics [7]. For small-scale, here, we referred to the spatial
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scale, considering those small basins that have a fast response to rainfall events (in the order of 1–10 h)
and that can be, thus, categorized using their time of concentration or contributing area. Longuevergne
et al. 2010 [8] and Grimaldi et al. (2015) [9] defined small basins as the ones with a contributing area
lower than, respectively, 250 km2 and 500 km2.

Flood modeling studies of tributaries and minor rivers are lacking behind considering their
geographic (i.e., small rivers and complex and diverse landscapes) and societal scale (i.e., less people,
agriculture, and industries) [10]. Those areas are, thus, challenged by inadequate financing to extend the
in situ topographic data field surveys and the distribution of flow gauges and inundation studies [11–14].
The small basin knowledge gap determines increased uncertainty of flood management and mitigation
strategies for many countries, both developed and developing [15–17].

Flood modeling uncertainty represents a central research topic with a significant number of
studies that investigated the two major components of the inundation simulation chain: hydrology and
hydraulics [18–25]. The topography is recognized to have a governing role in driving all mechanisms of
surface runoff generations following extreme precipitation events and, thus, one of the most impacting
factors for the accuracy of flood models [26,27]. The lack of detailed topographic datasets is still a
critical factor for small-scale basins that require finer DEMs (that are often unavailable) for simulating
geomorphic and hydrologic processes.

Technological advancements of Unmanned Aerial Vehicles (UAVs) provide demonstrated
capabilities for effective and affordable production of optical images and topographic data
surveying [28–33]. Structure from Motion (SfM) techniques allow to obtain accurate DEMs even without
the use of Ground Control Points (GCPs) [34]. UAV-based topographic data are able to overcome some
limitations related to traditional remotely sensed data, like the capturing of fine-scale spatial data related
to hydrological processes (soil moisture, vegetation, topography, flow) in a cost-effective way and
with a fine temporal resolution [35]. Besides these advantages, limited battery life-affecting maximum
flight time [36], adverse wind and weather conditions [36], the quality of hardware navigation devices
due to small size and the reduced payload of UAV platforms [37], requested user interaction for
related commercial software [37], and UAVs flight regulations and restrictions are major constraints to
their large scale uptake [38]. Moreover, limitations on data processing time, image matching in low
altitude image sets, and problems of selecting accurate tie-points to reference the images in flooded
areas are the main challenges for the UAV adoption during or after flood events [39]. UAV-derived
topography and environmental variables and dynamics (e.g., flow depth and velocity, water-vegetation
interactions) are of particular interest for small streams that are usually less investigated and have a
geomorphic impulsive response to intense rainfall, causing flash floods [38]. A comprehensive review
of the limitations and challenges of UAVs for environmental monitoring is provided by Manfreda et al.
2018 [31] and Yao et al. 2019 [40].

Some studies have investigated the use of UAV for environmental monitoring and modeling and
specifically on flow modeling. Leitão et al. [41] performed a sensitivity analysis of the UAVs flight
parameters on the accuracy of the UAV-generated DEM and obtained limited Elevation Differences
(ED) with 2 m resolution LiDAR (mean ED equal to 0.06 m). There are successful applications of
UAV-derived DEM as topographic input for short rainstorm modeling [42], channel reconstruction,
and flood modeling for reproducing real flood events [43,44], showing some limitations mostly in
highly vegetated areas (e.g., along river banks). Hashemi-Beni et al. 2018 [40] adopted UAVs for water
surface detection after a flood event, providing results in agreement with the ones obtained from
LiDAR DEM. Schumann et al. 2018 [38] evaluated the accuracy of a UAV-derived SfM DEM with
respect to a LiDAR DEM and assessed its reliability on flood mapping by applying a simple flood-fill
operation over a floodplain area. Watson et al. 2018 [45] performed a comparison of DEM accuracy
analysis, landslide, and flood simulation results among a UAV-derived DEM and global DEM products
(GDEM2, AW3D30, and SRTM). Sodnik et al. 2012 [46] found strong limitations on the use of public
DEMs for debris flow-modeling due to their low accuracy and proposed a methodology to adopt
the LiDAR-derived topography with short computational times, obtaining promising results. To our
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knowledge, procedure and assessment studies on the use of UAV-derived DEMs, with respect to large
scale DEMs, for supporting the hydrologic-hydraulic modeling and flood hazard mapping chain in
small basins are missing.

In this work, we proposed to fill this research gap by providing a quantitative investigation
of UAVs’ performances for rapid and affordable DEM data gathering and processing to support
the inundation modeling of small-scale basins. A comparison of the impact of the different DEM
data sources on flood mapping accuracy was developed by applying the Event-Based Approach for
Small and Ungauged Basins (EBA4SUB) rainfall-runoff modeling framework [47,48] for designing
hydrograph estimation and applying the commercial 2D hydraulic model FLO-2D [49] for performing
the flood wave propagation simulations (Section 2). Results are presented in Section 3 with a practical
case study that considered a minor tributary of a coastal basin in central Italy, analyzing the varying
outcomes of the flood modeling using a freely available country scale 10 m DEM, a high-resolution
LiDAR 1 m DEM, and a UAV-based DEM. A discussion and concluding remarks are discussed in
Sections 4 and 5, respectively.

2. Data and Methods

2.1. Case Study

The case study is represented by the Maschiolo torrent, a small tributary of the Marta river,
in Central Italy (Figure 1). The Marta river is the emissary of the Bolsena lake and flows from the lake
to the Tyrrenian sea. The Maschiolo-Marta confluence, in the proximity of Tuscania town, defines
a watershed with elevation ranging from 125 m to 398 m and a total contributing area of 28.7 km2.
Average elevation and slope are, respectively, 284 m and 7.8%, while the maximum distance between
outlet and watershed divide is 19.2 km. The DEM at 10 m resolution was provided by the National
Institute of Geophysics and Volcanology (INGV-TINITALY [50,51]), while the land cover was retrieved
from CORINE Database [52], and the predominant class is non-irrigated arable land.
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2.2. Topography and Digital Elevation Models

The morphology of the selected floodplain domain was obtained by gathering two digital
topographic data sources from national agencies—the TINITALY and a 1 m LiDAR DEM provided
by the Italian Ministry of Environment. The UAV flight was specifically designed and executed for
supporting this research. Specifications of the three DEM products are reported in Table 1.

Table 1. Summary of specifications of the TINITALY, LiDAR, and UAV DEMs 1.

DEM Resolution (m) Coverage Cost (€/km2)
Vertical

Accuracy (m) Year

TINITALY 10 Entire country Free ±16 [50,51] 2007
LiDAR 1 Major rivers/coasts 1000–5000 1 ±0.15–0.30 [53] 2011
Drone 3 0.25 Local scale 500–1500 2 ±0.10 2015

1 Abbreviations: Light Detection and Ranging (LiDAR); Unmanned Aerial Vehicle (UAV); Digital Elevation Models
(DEMs) 2 The LiDAR used in this study was freely available for the coverage. In the case of on-request flight, the cost
was variable as a function of the spatial domain to be surveyed with a minimum area consistent with the aerial
flight plan (min. 10–100 km2). 3 There was no minimum flight domain for Drones.

The Italian TINITALY was created from the integration of different input elevation data, including
contour lines and spot heights derived from the Italian Regional topographic maps, satellite-based
global positioning system points, and ground-based and radar altimetry data. The topographic data
sourced were processed for producing a Triangular Irregular Network (TIN) dataset. The TIN was
projected in the UTM 32 WGS 84 coordinate system and converted in a regular squared grid format
with 10-m cell size and vertical accuracy of ±16 m [50,51].

The LiDAR DEM, produced during the “Piano Straordinario di Telerilevamento ambientale” (PST)
project by the Italian Ministry of Environment, was freely available in raster format in WGS84
Geographic coordinate system, divided in 0.01◦ (angular units) cell size tiles. The surveying flights
(scanning angle 25◦, flight height 1500–1800 m above ground level, pulse frequency 100 kHz) were
carried out over a period of time from 2008 to 2014 (mainly in 2011). The geometric resolution of the
pixel was 0.0001◦, corresponding to approximately 1 m. The native resolution of the LiDAR point
cloud was averaged 1.6 pp/m2, recording up to 4 return echoes from the single sensor output pulse [53].
Despite the good accuracy of the LiDAR DEM, some interpolation errors, like triangle patterns in the
sloping areas of the north-eastern and south-western part of the domain, were evident (Figure 1D).
However, these areas were outside the floodplain domain, so the LiDAR DEM could be considered
acceptable for the accuracy assessment analysis.

The DEM obtained using UAV technology (i.e., Drone-DEM for brevity from now on) was
generated adopting a quadcopter DJI Phantom 2 equipped with a GoPro3 + model camera, 2-axis
stabilization gimbal Zenmuse H3-2D model, a ground transmission device for the live viewing of the
shooting, and telemetry data sent by the autopilot control unit via iOSD device. A DJI Datalink model,
autonomous as a flight programming device, was installed.

A flow chart of the steps needed to generate the Drone-DEM is represented in Figure 2. The 6 steps
are hereafter described in detail.
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Figure 2. Flow chart of the Drone-DEM processing and production procedure. GCP, Ground
Control Point.

Step (1) Flight planning (required time: around 3 man-hours). A flight plan was preliminarily
investigated to identify the area of investigation. The path of the UAV was designed to cover a
buffered (larger) area taking into consideration the need for maintaining a constant elevation and speed,
avoiding obstacles and interdicted areas, and taking into consideration the battery-limited flight time.
The predefined flight plan covered an 8 ha wide-area traveling for a 1.4 km distance and acquiring
1 frame every 2s. The set flight height was 100 m with respect to the take-off point, and the speed was
5 m/s. The camera was kept in the nadiral position throughout the flight. The nominal resolution of
the photos was 2560 × 1920.

Step (2) GCP survey (required time: around 5 man-hours). High contrast and 11 adequately
sized markers were positioned as Ground Control Points, visible in the acquired photos and, therefore,
usable within the software as Ground Control Points of known coordinates (X, Y, and Z) surveyed
using a GPS Leica Model.

Step (3) Data download, images selection, geopositioning, and alignment, solving internal and
external orientation (required time: around 4 man-hours). The photogrammetric analysis was carried
out using the Agisoft Photoscan Professional software. Once the photos were selected, the markers (i.e.,
GCPs) were identified, their coordinates were attributed, their six main orientation parameters were
estimated, taking into account the markers and tie points automatically recognized by the software.
The result of the alignment was a sparse cloud composed of the tie points.

Step (4) Dense cloud creation and filtering (required time: around 1 man-hour). After removing
inaccurate points from the sparse cloud, a dense point cloud was generated starting from the sparse
cloud, adding high detail to the three-dimensional model for subsequent mesh generation. To generate
the DEM, a vegetation removal algorithm was applied by means of an automatic supervised process,
assigning threshold values of ground slope and maximum vertical distance, while the Digital Surface
Model (DSM) was generated skipping this step (Figure 3).
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errors, but as relative differences, because of the potential topography changes occurred during the 
surveying time gaps (4 years between TINITALY and LiDAR, 4 years between LiDAR and Drone-
DEM). The analysis was performed, masking the computational domain inside the floodplain area, 
preliminarily determined with a hydro-geomorphic approach [55,56] based on the application of 
power-law formulas [57,58] that had been parametrized according to previous studies on basins 

Figure 3. 3D scene of the Drone-derived Digital Surface Model (DSM) and orthophoto.

Step (5) Mesh generation (from mesh to the grid) (required time: around 0.5 man-hours). A vector
mesh of the detected area was obtained, interpolating the ground points. It was noted that, in riverbed
areas covered by shrubby and arboreal riparian vegetation, the reconstruction of the hidden topography
was affected by some limitations.

Step (6) DEM generation (required time: around 1 man-hour). The DEM was generated, degrading
the mesh and interpolating the TIN; the size of the DEM cells (0.25 m) was proportional to the number
of points generated in the dense cloud and to the flight altitude.

A visual comparison of the three DEMs is shown in Figure 4.
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DEMs Comparison

LiDAR DEMs are usually characterized by high vertical accuracy (e.g., 0.1–0.2 m of RMSE) that
is considered comparable with the sensors’ noise generated by the microtopographic features [54].
For this reason, LiDAR can be considered a good benchmark for comparing the performances of flood
simulations derived from other DEM sources [46].

A preliminary comparison among the three DEMs was carried out considering the LiDAR as
a benchmark. Note that elevations differences among the DEMs could not be considered properly
as errors, but as relative differences, because of the potential topography changes occurred during
the surveying time gaps (4 years between TINITALY and LiDAR, 4 years between LiDAR and
Drone-DEM). The analysis was performed, masking the computational domain inside the floodplain
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area, preliminarily determined with a hydro-geomorphic approach [55,56] based on the application
of power-law formulas [57,58] that had been parametrized according to previous studies on basins
geographically close to the study area [59]. This model has been adopted for evaluating floodplain’s
disconnectivity [60–62], filtering the computational domain for flood modeling [63], and DEM accuracy
in floodplains [64]. Indeed, the high error value of the TINITALY (±16 m) is expected to be lower in
floodplain areas because of the absence of significant reliefs [65].

The cell-by-cell elevation comparison was performed considering the closest pixels of the TINITALY
and Drone-DEM to the correspondent LiDAR. As difference metrics, the Mean Deviation (MD),
Root Mean Square Deviation (RMSD), Standard Deviation (STD), and Skewness (Skew) were adopted:

MD =

∑n
i=1(∆hi)

n
(1)

RMSD =

√∑n
i=1 ∆hi

2

n
(2)

STD =

√∑n
i=1(∆hi −MD)2

n− 1
(3)

Skew =

∑n
i=1(∆hi−MD)3

n(∑n
i=1(∆hi−MD)2

n

) 3
2

(4)

where ∆hi is the elevation difference between the reference LiDAR and the analyzed DEM of the i-pixel,
and n is the total number of pixels.

2.3. Hydrologic Modeling

The design flood wave hydrograph for the case study was estimated, employing the EBA4SUB
(Event-Based Approach for Small and Ungauged Basins) [66] procedure. EBA4SUB estimated the
design hydrograph, implementing the following steps: (a) event-based analysis of design hyetograph;
(b) excess rainfall estimation; (c) excess rainfall-runoff modeling.

Step (a) was implemented by gathering the Intensity-Duration-Frequency (IDF) curves from the
VAlutazione delle Piene in Italia (VAPI) method [67] for the return periods of 10, 50, 100, and 200 years.
For this case study, the symmetric Chicago method was adopted as a design hyetograph. Starting from
the gross rainfall, the excess rainfall was estimated by applying the mixed procedure CN4GA [68,69],
where Curve Number (CN) value was assessed using the Natural Resources Conservation Service
(NRCS) tables [70]. Land cover data and Hydrologic Soil Groups (HSG) were provided, respectively,
from the Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA) and the Regione Lazio.

Step (b) was implemented by applying DEM-based terrain analysis processing (i.e., removal of pits
and flat areas; flow directions, flow accumulation, and drainage network identification) for supporting
the application of the Width Function Instantaneous Unit Hydrograph (WFIUH) rainfall-runoff

model [48,71]. The WFIUH simulated the geomorphic response of the river basin to the rainfall input by
analyzing the travel-time probability density function for defining the Instantaneous Unit Hydrograph
(IUH). Parametrization of the WFIUH was developed by assuming hillslope’s surface flow velocities
so that its center of mass was equal to the basin’s lag time [9,47].

2.4. Hydraulic Modeling

The design hydrograph was inserted as a boundary condition and routed using the FLO-2D
bidimensional (2D) hydraulic model [49]. FLO-2D applied the dynamic wave approximation to the De
Saint Venant continuity and momentum equations for simulating channel routing (1D), river overbank
inundation flow, river-floodplain flow exchange, and runoff routing over unconfined flow (2D)
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dynamics. The floodplain morphology was represented with regularly spaced squares (i.e., regular grid,
raster) with 8 potential surface flow directions (4 cardinal and 4 diagonal directions). The differential
form of the model equations was solved with a central, finite difference numerical scheme. Surface flow
friction losses were estimated integrating Manning’s roughness depth-varying parameterization.
Interaction of surface runoff with urban features (e.g., levees, bridges, culverts, buildings) was
simulated, adopting areal reduction factors and simplified conveyance routines employing rating
curves or simplified models for considering breaching and overtopping mechanisms.

The computational domain was 12 ha wide, and the upstream channel element was around
500 m far from the confluence with the Marta river. The 10 m grid resolution was selected as
optimal shared (i.e., across the different model set-ups) working scale to compare the results of the
simulations considering the three different DEM specifications. Manning values ranged from 0.04 to
0.06 m/s1/3, assigned, respectively, to lower and higher vegetation densities as per visual inspection of
the Drone-derived orthophotos. The available CORINE land cover resolution (100 m) was not adequate
to assign Manning values. At the 10 m scale, a constant Manning value equal to 0.04 m/s1/3 was
assigned to the channel domain. These values were consistent with the ones obtained from literature
related to the calibration of the hydraulic model of the Marta river (Annis et al. 2020 [72]).

The channel geometry was derived, extracting 27 cross-sections from the LiDAR DEM. We designed
the comparison experiment of the three flood models, neglecting the impact of the channel geometry
differences considering that DEM-based representation of the bathymetry is always poor (in TINITALY
as well as in the Lidar and the UAV DEM). For this reason, the same LiDAR-derived channel geometry
was assigned to the Drone-DEM and TINITALY computational domains in order to consistently
compare the model results focusing on the floodplain domain.

2.5. Inundation Extent Performance Indicators

A numerical comparison of the maximum asynchronous flood extensions (i.e., the envelope of
maximum flow extensions over simulation time) related to the different input DEMs was performed,
adopting the three different scores, namely, the True Positive rate (TP), the False Positive rate (FP),
and the Critical Success Index (CSI):

TP = A
A+C

FP = B
A+B

CSI = A
A+B+C

(5)

where A, B, and C represent, respectively, the matched, over-predicted, and under-predicted areas
with respect to the reference flood map (from the LiDAR).

Moreover, the differences of flow depth were computed adopting MD, RMSD, and STD metrics
introduced in Section 2.2, where, in this case, ∆hi is the water depth difference between the reference
LiDAR-derived flood map and the one derived from the analyzed DEM of the i-pixel.

3. Results

3.1. DEMs Comparison

From a visual inspection of Figure 4, the Drone-DEM seemed more accurate than the TINITALY
with respect to the LiDAR DEM. This was confirmed by the statistical measurements shown in Table 2
and by the distribution of the elevation differences of Drone-DEM and TINITALY with respect to
LiDAR shown in Figure 5. Specifically, Table 2 shows a relevant negative MD of the TINITALY with
respect to the LiDAR. This meant that the systematic error of TINITALY, expressed by the Mean
Deviation, could cause an underestimation of the flooded areas adopting this DEM as topographic
input of a flood inundation model. A slight negative MD value for the Drone-DEM could be due to
the presence of the short height floodplain vegetation [73] that has not been properly removed by the
adopted vegetation removal algorithm. RMSD and STD values showed a significant correspondence
between the LiDAR and the Drone-DEM with respect to the TINITALY. The negative skewness (−4.44)
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of the Drone-DEM could be due to the mentioned presence of the short vegetation, while the TINITALY
elevation error distribution seemed to be more symmetrical with respect to the biased MD value of
−5.76 m.

Table 2. Difference metrics of the TINITALY and Drone-DEM with respect to the LiDAR 1.

DEM MD (m) RMSD (m) STD (m) Skew (−)

TINITALY −5.76 6.10 2.01 −0.89
Drone-DEM −0.05 0.75 0.75 −4.44

1 Abbreviations: Mean Deviation (MD), Root Mean Square Deviation (RMSD), Standard Deviation (STD),
Skewness (Skew).
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Results on the relative extensions of the flood maps derived from the TINITALY and Drone-DEM
with respect to the LiDAR are reported in Table 3. For each selected return period, the TP values related
to the Drone-DEM flood maps were between 0.96 and 0.98. This meant that the Drone-DEM had a high
probability to effectively identify the flooded area as compared to the LiDAR-based reference flood
model. Both Drone-DEM and TINITALY flood maps were characterized by a high False Positive rate
for the 10 years return period simulation. As clearly shown in the TD.10 panel of Figure 7, this was
due to the fact that, for relatively low flows, the Drone-DEM and TINITALY allowed an inundation
flow over the right bank due to lower terrain elevations with respect to the LiDAR. Since flood areas
for the 10 years return period simulations were relatively low, the high value of FP caused relatively
low values of the CSI. For each simulation, the Drone-DEM flood maps were characterized by better
performances with respect to the ones from TINITALY. The latter seemed to strongly under-predict the
areas located in the downstream part of the computational domain. This was due to the substantial
negative value of the MD, as shown in Table 2. The inaccuracy of the results obtained adopting the
TINITALY DEM was consistent with the ones obtained by Sodnik et al. 2012 [46] adopting public
DEMs. This outcome could help the flood modelers to understand the limitation of using largely and
freely available DEMs, usually affected by systematic errors, in small basins characterized by relatively
narrow floodplain that would require detailed topography.

Table 3. Scores of the spatial comparison between the maximum asynchronous flood extension of the
LiDAR-derived computational domain (reference map) and the ones derived from TINITALY and
Drone-DEM 1.

Return Period (Years) DEM TP FP CSI

10
TINITALY 0.57 0.66 0.27

Drone-DEM 0.96 0.67 0.32

50
TINITALY 0.70 0.16 0.62

Drone-DEM 1.00 0.21 0.79

100
TINITALY 0.71 0.09 0.66

Drone-DEM 0.98 0.13 0.86

200
TINITALY 0.72 0.03 0.71

Drone-DEM 0.98 0.07 0.92
1 Abbreviations: True Positive rate (TP), False Positive rate (FP), Critical Success Index (CSI).
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Figures 8 and 9 show that LiDAR and Drone-DEM flood maps were more consistent in terms
of distributions of the maximum asynchronous flow depths and flow velocities for the 200 years
return period with respect to the TINITALY flood maps. However, Drone-DEM flood maps had higher
values of flow depths and velocities in the downstream part of the right river bank; this was due to a
relatively lower depression of the terrain that caused significant differences in flood extensions for
low magnitude flood simulations (see Table 3 and Figure 7). Values of MD, RMSD, and STD of the
maximum flow depths distributions of the TINITALY and Drone-DEM flood maps with respect to the
LiDAR ones for each return period are reported in Table 4.
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Table 4. Values of Mean Deviation (MD), Root Mean Square Deviation (RMSD), Standard Deviation
(STD) of the maximum flow depths distributions of the simulations related to the TINITALY and
Drone-DEM computational domains with respect to the ones of LiDAR-derived computational domain
for the selected return periods (10, 50, 100, 200 years).

Return Period (Years) DEM MD RMSD STD

10
TINITALY 0.01 0.42 0.42

Drone-DEM −0.13 0.56 0.55

50
TINITALY −0.49 1.11 1.00

Drone-DEM −0.11 0.49 0.48

100
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Drone-DEM −0.04 0.46 0.46

200
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Values of MD for Drone-DEM flood maps were considerably lower, if compared with the ones
of the TINITALY flood maps, with the exception of the values related to the 10 years return period
simulation, because of the significant differences in flood extensions (higher flood extension for the
same flood volume led to lower flow depths, thus negative Mean Deviations). Values of RMSD
and STD for the Drone-DEM flood maps were generally more than 50% lower than the ones of the
TINITALY flood maps, with the exception of the 10 years return period simulation for the same reason
explained above.

4. Discussion

The proposed research emphasized the potential benefits of low-cost UAVs-derived DEM with
respect to freely available large scale DEM for flood mapping in small-scale basins.

Advances in UAVs-derived DEMs, such as Structure from Motion (SfM) techniques [34], allow
reducing the surveying costs and times while covering scarcely accessible areas. Rapid UAV mapping
can also meet the need of providing updated topography, whose changes due to human activities [74]
or erosion-deposition processes [75] can strongly influence flood dynamics. Moreover, the relatively
low flight height and high accuracy of UAVs-derived DEMs can be particularly effective in peri-urban
environments where anthropic features (e.g., thin walls), which have a crucial impact on flood dynamics,
cannot be properly detected by satellite or airborne imaging survey technologies. In fact, anthropogenic
and vegetation features in floodplain areas represent a major challenge for airborne or satellite products,
considering most inundation models require bare earth DEM and artificial features as two separate
inputs [22,76–78]. Indeed, while minor infrastructure and micro-topographic features are usually only
explicitly defined in flood model parametrization [79,80], they may have a great influence on flow
dynamics [54] as in the case of man-made flow constrictions (streets, gutters, swales), obstacles or
diverters (boundary walls, buildings), obstructions (e.g., culverts, ridges), and flow regulators (weirs,
detention ponds) [81].

The approach adopted in this work could provide quick and accurate support to decision-makers
for the identification of hazard areas, in order to define measures intended at reducing the flood risk and
for the implementation of flooding protection policies. A further improvement of this research could
be addressed to exploit faster Drone-derived DEM generation techniques (e.g., the SfM) to include
different case studies and types of large scale available DEMs in order to systematically quantify the
simulations performances, varying floodplain morphology, and climate.

5. Conclusions

In this work, we investigated the potential benefits of UAV-derived DEMs with respect to a
freely and largely available DEM (TINITALY) for flood modeling in small basins. We considered
as a benchmark a validated high-resolution LiDAR DEM (1 m) characterized by a vertical accuracy
(0.15–0.3 m). Drone-DEM flood simulations performed significantly better than the ones derived from
the TINITALY DEM in terms of metrics related to flood extensions and maximum asynchronous flow
depths. These differences were not negligible (e.g., 72% of flood extension matching from TINITALY
flood maps versus 98% from Drone-DEM flood maps for the 200 years return period simulation) and
suggested that flow dynamics could be substantially influenced by detailed topographic features at the
local scale in small basins characterized by limited flood volumes and floodplain width. The obtained
results supported the conclusion that the UAV-derived DEMs could be an appropriate alternative to
the LiDAR DEM for small basin flood mapping being a good compromise between accuracy and cost
compared to the freely available DEM (TINITALY).
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46. Sodnik, J.; Vrečko, A.; Podobnikar, T.; Mikoš, M. Digital Terrain Models and Mathematical Modelling of
Debris Flows. Geod. Vestn. 2012. [CrossRef]

47. Petroselli, A.; Grimaldi, S. Design Hydrograph Estimation in Small and Fully Ungauged Basins: A Preliminary
Assessment of the EBA4SUB Framework. J. Flood Risk Manag. 2018, 11, S197–S210. [CrossRef]

48. Grimaldi, S.; Petroselli, A.; Nardi, F. A Parsimonious Geomorphological Unit Hydrograph for Rainfall-Runoff

Modelling in Small Ungauged Basins. Hydrol. Sci. J. 2012. [CrossRef]
49. O’Brien, J.S.; Julien, P.Y.; Fullerton, W.T. Two-Dimensional Water Flood and Mudflow Simulation.

J. Hydraul. Eng. 1993. [CrossRef]
50. Tarquini, S.; Isola, I.; Favalli, M.; Mazzarini, F.; Bisson, M.; Pareschi, M.T.; Boschi, E. TINITALY/01: A New

Triangular Irregular Network of Italy. Ann. Geophys. 2007. [CrossRef]
51. Tarquini, S.; Vinci, S.; Favalli, M.; Doumaz, F.; Fornaciai, A.; Nannipieri, L. Release of a 10-m-Resolution

DEM for the Italian Territory: Comparison with Global-Coverage DEMs and Anaglyph-Mode Exploration
via the Web. Comput. Geosci. 2012. [CrossRef]

52. Büttner, G.; Feranec, J.; Jaffrain, G.; Mari, L.; Maucha, G.; Soukup, T. The CORINE Land Cover 2000 Project.
EARSeL eProceedings 2004, 3, 331–346.

53. Scrinzi, G.; Floris, A.; Clementel, F.; Bernardini, V.; Chianucci, F.; Greco, S.; Michelini, T.; Penasa, A.; Puletti, N.;
Rizzo, M.; et al. Models of Stand Volume and Biomass Estimation Based on LiDAR Data for the Main Forest
Types in Calabria (Southern Italy). J. Silvic. For. Ecol. 2017. [CrossRef]

54. Mason, D.C.; Cobby, D.M.; Horritt, M.S.; Bates, P.D. Floodplain Friction Parameterization in Two-Dimensional
River Flood Models Using Vegetation Heights Derived from Airborne Scanning Laser Altimetry.
Hydrol. Process. 2003, 17, 1711–1732. [CrossRef]

55. Nardi, F.; Vivoni, E.R.; Grimaldi, S. Investigating a Floodplain Scaling Relation Using a Hydrogeomorphic
Delineation Method. Water Resour. Res. 2006, 42. [CrossRef]

56. Nardi, F.; Annis, A.; Di Baldassarre, G.; Vivoni, E.R.; Grimaldi, S. GFPLAIN250m, a Global High-Resolution
Dataset of Earth’s Floodplains. Sci. Data 2019, 6, 1–6. [CrossRef] [PubMed]

57. Dodov, B.; Foufoula-Georgiou, E. Generalized Hydraulic Geometry: Insights Based on Fluvial Instability
Analysis and a Physical Model. Water Resour. Res. 2004. [CrossRef]

58. Leopold, L.B.; Maddock, T.J. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications;
US Government Printing Office: Washington, WA, USA, 1953.

59. Annis, A.; Nardi, F.; Morrison, R.R.; Castelli, F. Investigating Hydrogeomorphic Floodplain Mapping
Performance with Varying DTM Resolution and Stream Order. Hydrol. Sci. J. 2019, 64, 525–538. [CrossRef]

60. Nardi, F.; Morrison, R.R.; Annis, A.; Grantham, T.E. Hydrologic Scaling for Hydrogeomorphic Floodplain
Mapping: Insights into Human-Induced Floodplain Disconnectivity. River Res. Appl. 2018, 34, 675–685.
[CrossRef]

61. Morrison, R.R.; Bray, E.; Nardi, F.; Annis, A.; Dong, Q. Spatial Relationships of Levees and Wetland Systems
within Floodplains of the Wabash Basin, USA. J. Am. Water Resour. Assoc. 2018, 54, 934–948. [CrossRef]

62. Scheel, K.; Morrison, R.R.; Annis, A.; Nardi, F. Understanding the Large-Scale Influence of Levees on
Floodplain Connectivity Using a Hydrogeomorphic Approach. J. Am. Water Resour. Assoc. 2019, 55, 413–429.
[CrossRef]

http://dx.doi.org/10.3390/rs11121443
http://dx.doi.org/10.5194/hess-20-1637-2016
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W13-181-2019
http://dx.doi.org/10.1088/1755-1315/95/2/022014
http://dx.doi.org/10.3390/w9110861
http://dx.doi.org/10.3390/drones3010018
http://dx.doi.org/10.15292/geodetski-vestnik.2012.04.826-837
http://dx.doi.org/10.1111/jfr3.12193
http://dx.doi.org/10.1080/02626667.2011.636045
http://dx.doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)
http://dx.doi.org/10.4401/ag-4424
http://dx.doi.org/10.1016/j.cageo.2011.04.018
http://dx.doi.org/10.3832/efor2399-014
http://dx.doi.org/10.1002/hyp.1270
http://dx.doi.org/10.1029/2005WR004155
http://dx.doi.org/10.1038/sdata.2018.309
http://www.ncbi.nlm.nih.gov/pubmed/30644852
http://dx.doi.org/10.1029/2004WR003196
http://dx.doi.org/10.1080/02626667.2019.1591623
http://dx.doi.org/10.1002/rra.3296
http://dx.doi.org/10.1111/1752-1688.12652
http://dx.doi.org/10.1111/1752-1688.12717


Water 2020, 12, 1717 16 of 16

63. Annis, A.; Nardi, F. Integrating VGI and 2D Hydraulic Models into a Data Assimilation Framework for Real
Time Flood Forecasting and Mapping. Geo-Spat. Inf. Sci. 2019, 22, 223–236. [CrossRef]

64. Hawker, L.; Neal, J.; Bates, P. Accuracy Assessment of the TanDEM-X 90 Digital Elevation Model for Selected
Floodplain Sites. Remote Sens. Environ. 2019, 232. [CrossRef]

65. Falorni, G.; Teles, V.; Vivoni, E.R.; Bras, R.L.; Amaratunga, K.S. Analysis and Characterization of the Vertical
Accuracy of Digital Elevation Models from the Shuttle Radar Topography Mission. J. Geophys. Res. Earth Surf.
2005. [CrossRef]

66. Piscopia, R.; Petroselli, A.; Grimaldi, S. A Software Package for Predicting Design-Flood Hydrographs in
Small and Ungauged Basins. J. Agric. Eng. 2015, 46, 74–84. [CrossRef]

67. Rossi, F.; Villani, P. A Project for Regional Analysis of Floods in Italy. In Coping with Floods; Springer:
Dordrecht, The Netherlands, 1994. [CrossRef]

68. Grimaldi, S.; Petroselli, A.; Romano, N. Green-Ampt Curve-Number Mixed Procedure as an Empirical
Tool for Rainfall-Runoff Modelling in Small and Ungauged Basins. Hydrol. Process. 2013, 27, 1253–1264.
[CrossRef]

69. Grimaldi, S.; Petroselli, A.; Romano, N. Curve-Number/Green-Ampt Mixed Procedure for Streamflow
Predictions in Ungauged Basins: Parameter Sensitivity Analysis. Hydrol. Process. 2013, 27, 1265–1275.
[CrossRef]

70. NRCS. National Engineering Handbook; NRCS: Washington, WA, USA, 1983.
71. Nardi, F.; Grimaldi, S.; Santini, M.; Petroselli, A.; Ubertini, L. Hydrogeomorphic Properties of Simulated

Drainage Patterns Using Digital Elevation Models: The Flat Area Issue. Hydrol. Sci. J. 2008. [CrossRef]
72. Annis, A.; Nardi, F.; Volpi, E.; Fiori, A. Quantifying the Relative Impact of Hydrological and Hydraulic

Modelling Parameterizations on Uncertainty of Inundation Maps. Hydrol. Sci. J. 2020, 65, 507–523. [CrossRef]
73. Cobby, D.M.; Mason, D.C.; Davenport, I.J. Image Processing of Airborne Scanning Laser Altimetry Data for

Improved River f Lood Modelling. ISPRS J. Photogramm. Remote Sens. 2001, 56, 121–138. [CrossRef]
74. Apollonio, C.; Balacco, G.; Novelli, A.; Tarantino, E.; Piccinni, A.F. Land Use Change Impact on Flooding

Areas: The Case Study of Cervaro Basin (Italy). Sustainability 2016. [CrossRef]
75. Hooke, J.M. Variations in Flood Magnitude-Effect Relations and the Implications for Flood Risk Assessment

and River Management. Geomorphology 2015. [CrossRef]
76. Notti, D.; Giordan, D.; Caló, F.; Pepe, A.; Zucca, F.; Galve, J.P. Potential and Limitations of Open Satellite

Data for Flood Mapping. Remote Sens. 2018. [CrossRef]
77. Mason, D.C.; Horritt, M.S.; Hunter, N.M.; Bates, P.D. Use of Fused Airborne Scanning Laser Altimetry and

Digital Map Data for Urban Flood Modelling. Hydrol. Process. 2007. [CrossRef]
78. Pellicani, R.; Parisi, A.; Iemmolo, G.; Apollonio, C. Economic Risk Evaluation in Urban Flooding and

Instability-Prone Areas: The Case Study of San Giovanni Rotondo (Southern Italy). Geosciences 2018.
[CrossRef]

79. Dottori, F.; Di Baldassarre, G.; Todini, E. Detailed Data Is Welcome, but with a Pinch of Salt: Accuracy,
Precision, and Uncertainty in Flood Inundation Modeling. Water Resour. Res. 2013. [CrossRef]

80. Ferrari, A.; Viero, D.P.; Vacondio, R.; Defina, A.; Mignosa, P. Flood Inundation Modeling in Urbanized Areas:
A Mesh-Independent Porosity Approach with Anisotropic Friction. Adv. Water Resour. 2019. [CrossRef]

81. Miller, J.D.; Hutchins, M. The Impacts of Urbanisation and Climate Change on Urban Flooding and Urban
Water Quality: A Review of the Evidence Concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/10095020.2019.1626135
http://dx.doi.org/10.1016/j.rse.2019.111319
http://dx.doi.org/10.1029/2003JF000113
http://dx.doi.org/10.4081/jae.2015.432
http://dx.doi.org/10.1007/978-94-011-1098-3_11
http://dx.doi.org/10.1002/hyp.9303
http://dx.doi.org/10.1002/hyp.9749
http://dx.doi.org/10.1623/hysj.53.6.1176
http://dx.doi.org/10.1080/02626667.2019.1709640
http://dx.doi.org/10.1016/S0924-2716(01)00039-9
http://dx.doi.org/10.3390/su8100996
http://dx.doi.org/10.1016/j.geomorph.2015.05.014
http://dx.doi.org/10.3390/rs10111673
http://dx.doi.org/10.1002/hyp.6343
http://dx.doi.org/10.3390/geosciences8040112
http://dx.doi.org/10.1002/wrcr.20406
http://dx.doi.org/10.1016/j.advwatres.2019.01.010
http://dx.doi.org/10.1016/j.ejrh.2017.06.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data and Methods 
	Case Study 
	Topography and Digital Elevation Models 
	Hydrologic Modeling 
	Hydraulic Modeling 
	Inundation Extent Performance Indicators 

	Results 
	DEMs Comparison 
	Inundation Modeling and Mapping Comparison 

	Discussion 
	Conclusions 
	References

