
water

Article

Nitrifying and Denitrifying Microbial Communities
in Centralized and Decentralized Biological Nitrogen
Removing Wastewater Treatment Systems

Sara K. Wigginton 1,*, Elizabeth Q. Brannon 2, Patrick J. Kearns 3 , Brittany V. Lancellotti 4,
Alissa Cox 1 , Serena Moseman-Valtierra 5, George W. Loomis 1 and Jose A. Amador 1

1 Department of Natural Resources Science, University of Rhode Island, 1 Greenhouse Rd., Kingston, RI 02881,
USA; alibba@uri.edu (A.C.); gloomis@uri.edu (G.W.L.); jamador@uri.edu (J.A.A.)

2 Gloucester Marine Genomics Institute, 417 Main Street, Gloucester, MA 01930, USA; ebrannon@my.uri.edu
3 Department of Microbiology and Molecular Genetics, Plant Resilience Institute, Michigan State University,

East Lansing, MI 48823, USA; lele123@gmail.com
4 Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT 05405,

USA; blancell@uvm.edu
5 Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA;

smoseman@uri.edu
* Correspondence: sarawigginton@gmail.com

Received: 6 May 2020; Accepted: 8 June 2020; Published: 12 June 2020
����������
�������

Abstract: Biological nitrogen removal (BNR) in centralized and decentralized wastewater treatment
systems is assumed to be driven by the same microbial processes and to have communities with a
similar composition and structure. There is, however, little information to support these assumptions,
which may impact the effectiveness of decentralized systems. We used high-throughput sequencing
to compare the structure and composition of the nitrifying and denitrifying bacterial communities
of nine onsite wastewater treatment systems (OWTS) and one wastewater treatment plant (WTP)
by targeting the genes coding for ammonia monooxygenase (amoA) and nitrous oxide reductase
(nosZ). The amoA diversity was similar between the WTP and OWTS, but nosZ diversity was generally
higher for the WTP. Beta diversity analyses showed the WTP and OWTS promoted distinct amoA
and nosZ communities, although there is a core group of N-transforming bacteria common across
scales of BNR treatment. Our results suggest that advanced N-removal OWTS have microbial
communities that are sufficiently distinct from those of WTP with BNR, which may warrant different
management approaches.

Keywords: wastewater; wastewater treatment plant; onsite wastewater treatment system; biological
nitrogen removal

1. Introduction

Wastewater treatment plants (WTP) and onsite wastewater treatment systems (OWTS) with
biological nitrogen removal (BNR) can lower the concentration of N in effluent before it is discharged to
receiving waters [1], lowering the public health and environmental risks associated with N-pollution of
ground and surface waters [2–4]. In both cases the BNR process employs some type of microbial growth
surface and achieves removal by engineering conditions that promote sequential nitrification (NH4

+

→NO3
−) in an oxic zone and denitrification (NO3

−
→N2O, N2) in a hypoxic/anoxic zone. Nitrogen

removal is maximized by recirculation of wastewater between the oxic and hypoxic/anoxic zones.
Because they are designed to promote the same microbial processes and conditions, OWTS with

BNR—commonly referred to as advanced N-removal systems—are considered to be a scaled-down

Water 2020, 12, 1688; doi:10.3390/w12061688 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-8112-9927
https://orcid.org/0000-0002-9579-6165
http://dx.doi.org/10.3390/w12061688
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/6/1688?type=check_update&version=2


Water 2020, 12, 1688 2 of 19

version of a WTP with BNR [1], with designs explicitly based on engineering principles underlying
a WTP [5,6]. This is based on the expectation that environmental selection—in this case alternating
oxic and hypoxic/anoxic conditions—drives microbial community structure [7]. The validity of this
assumption can have consequences for effective management of OWTS with BNR.

There are considerable differences between these two types of treatment. Centralized WTPs serve
populations ranging from 103 to greater than 106 and receive inputs from a broad range of uses (e.g.,
homes, businesses, restaurants, manufacturing facilities, stormwater runoff), resulting in wastewater
flows that range from 106 to 109 L per day [8,9]. In contrast, most OWTS serve single homes with fewer
than 10 people, resulting in wastewater flows of ~103 L per day [1], between 1000 and 1,000,000 × lower
than for a WTP. In addition, the hydraulic retention time (HRT) is shorter in a WTP (1 h or less) relative
to an OWTS with BNR (8–12 days) [10]. Operation and maintenance conditions at WTPs are closely
controlled and monitored continuously in terms of inputs (e.g., flow, C and N levels, pH), process
conditions (e.g., aeration rate, dissolved O2, availability of organic C, temperature), and concentration
of N in final effluent [11]. In contrast, advanced N-removing OWTS are maintained once or twice a year,
with maintenance limited to the physical and mechanical aspects of the systems and are generally not
monitored for N levels in treated effluent [1]. Differences in the magnitude and temporal variability of
flow, in sources of microorganisms, type and concentration of electron donors and acceptors, and in the
control and monitoring of system operations can result in divergent microbial communities involved
in N removal in OWTS vs. WTP. Erroneous assumptions about the similarities between these systems
with different scales of treatment could result in designs and operation practices that interfere with,
rather than promote, the capacity of advanced N- removing OWTS to lower effluent N levels.

The microbiome of WTPs has been well described using culture-independent, high-throughput
sequencing techniques [12] that can identify low abundance and transient taxa in WTP communities
more accurately than culture-dependent techniques [13,14]. These advances in molecular microbial
probing have allowed for analyses of the microbial community of WTPs, which have shown that
communities vary as a function of geography [15–17], time [18–20], influent type [21], and zone
within a treatment facility [22]. A number of the N-transforming communities of WTP—including
ammonia-oxidizers [23], anammox [24], comammox [25], and denitrification [26]—have been described.
Physical and chemical water properties, including levels of dissolved oxygen [27,28] and of NO3

− and
NH4

+ [29,30], pH [20,29], organic C concentration [31], and temperature [27,32], have been identified
as important factors shaping the microbial communities responsible for N removal.

The microbiome of OWTS has been the topic of comparatively few studies, mostly using
culture-dependent [33,34] or low-throughput sequencing methods [33,35–37]. Studies describing the
microbial community of OWTS using high-throughput sequencing have focused on the microbial
community of the soil treatment area [38–40] or of mesocosms representing conventional septic
tanks [41,42].

To our knowledge, only two studies have described the microbiome of BNR OWTS at the whole
system scale. Brannon et al. [10] compared the abundance of N ammonia-oxidation and nitrous oxide
reduction genes among nine advanced N-removal OWTS and a BNR WTP using quantitative PCR.
They found that the abundance of nitrification and denitrification genes normalized by nucleic acid
concentration differed between the WTP and OWTS, with higher abundance of nitrifiers at the WTP
and higher abundance of denitrifies in the OWTS. Wigginton et al. [43] reported on the structure and
composition of nitrifying and denitrifying communities in 38 advanced N-removal OWTS within the
Greater Narragansett Bay watershed, and found that the most prevalent taxa for both communities
were also associated with municipal wastewater treatment plants. They also found that the composition
of denitrifying, but not nitrifying, communities was weakly driven by geographical location.

Here, we used high-throughput sequencing to describe the ammonium-oxidizing and nitrous
oxide-reducing bacterial communities in nine advanced OWTS with BNR in Jamestown, RI, USA
and the Field’s Point WTP BNR in Providence, RI, USA. Because Wigginton et al. [43] suggested
that differences in denitrifying communities may be driven by geography, the OWTS included in the
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present study were all within a small island (90 km2; Jamestown, RI, USA) about approximately 40 km
off the WTP, as the crow flies. We sampled the oxic and hypoxic/anoxic zones in the centralized and
decentralized systems in June and October of 2016, and compared the structure and composition of
the bacterial functional genes ammonia monooxygenase (amoA)—which carries out the first step of
ammonia oxidation—and nitrous oxide reductase (nosZ), which carries out the last step of denitrification.
Understanding the differences and similarities between microbial communities in BNR WTP and
advanced OWTS can help identify which organisms are responsible for N removal at different scales of
wastewater treatment. A better understanding of these communities may eventually lead to changes
in design and operation that enhance N removal, especially in OWTS.

2. Materials and Methods

2.1. Study Systems

The advanced OWTS and the WTP we studied are in the Rhode Island, USA portion of the
Greater Narragansett Bay watershed. The OWTS were located in the town of Jamestown, RI, USA,
and served three-bedroom dwellings that used wells as their source of potable water, and represented
three of the most commonly used types of advanced N-removing OWTS in the state: Orenco Advantex
AX-20® (Sutherlin, OR, USA) (recirculating textile media filter, n = 3), BioMicrobics MicroFAST®

(Lenexa, KS, USA) (fixed activated sludge aerobic treatment unit, n = 3), and SeptiTech D Series®

(Lewiston, ME, USA) (recirculating trickling filter, n = 3). All three designs include a hypoxic/anoxic
(denitrification) zone, and an oxic (nitrification) zone. The AX-20s is a textile filter design that promotes
nitrification as water is time-dosed from the septic tank over hanging textile sheets and recirculated
back to the processing tank that serves as the denitrification zone. Similarly, SepticTech systems remove
nitrogen by time-dosing wastewater over a media filter to promote nitrification; water and sludge are
then recirculated back to the processing tank which promotes denitrification. FAST systems have a
submerged, fixed-film activated sludge design that promotes nitrification via a surface blower that
introduces air into a submerged aerobic treatment insert with a ridged-block type media. The air
current produced by the blower moves nitrified wastewater from the aerobic treatment unit into an
anoxic/hypoxic area around the insert. The media filters/inserts in these systems are designed to provide
habitat for microbial community and biofilm establishment through inputs from the household during
a start-up phase (<3 months). Wastewater is recirculated between the nitrification component and the
denitrification reactor component via time-dosed pumps in the AX-20 and SeptiTech systems; in the
FAST systems, air from the blower forces nitrified effluent from the insert back to the denitrification
reactor component through a channel. All OWTS were installed between 2006 and 2014.

The Field’s Point WTP is in Providence, RI, USA and serves approximately 226,000 residents [10].
It provides treatment for combined domestic and industrial wastewater and includes an Integrated
Fixed Activated Sludge (IFAS) BNR system as part of secondary treatment. The WTP contains
10 identical open-air tanks each consisting of four zones: pre-anoxic, aerated IFAS, post- anoxic,
and re-aeration. A portion of the solids and wastewater are returned to the pre-anoxic zone from the
end of the aerated IFAS via internal mixed liquor return. The aerated IFAS zone contains high-density
polyethylene cylinder media to provide surface area for biofilm growth. Further description of the
WTP and OWTS systems, including average operating parameters (BOD5, NH4

+, NO3
−

, temperature,
flow, pH, dissolved oxygen (DO), total N) can be found in Appendix A and in Brannon et al. [10] and
Lancellotti et al. [44].

2.2. Sample Collection and DNA Extraction

Samples were collected from the WTP and OWTS in June and October of 2016. The oxic and
anoxic zones of the nine advanced OWTS were sampled, and one of the IFAS tanks at Field’s Point
was sub-sampled by zone (Figure A1). Samples from the oxic zone of OWTS were obtained at the
recirculating splitter valve, drainfield pump basin, and discharge pump basin within the processor
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for Advantex, FAST and SeptiTech technologies, respectively (Figure A2). During each sampling
event (June and October 2016), we collected one sample from the anoxic/hypoxic zone (i.e., primary
processing tank, Figure A2) of the advances OWTS, and one from the oxic zone (Figure A2), for a
total of 36 OWTS samples. At the WTP, all four zones in the tanks were sampled and grouped by
treatment (i.e., aerated or anoxic) for analysis (Figure A1). In June, the zones at the WTP were sampled
in triplicate and in October the zones were sampled in duplicate, for a total of 20 WTP samples. In all
cases sampling took place between 8:00 a.m. and 4:00 p.m. Samples were collected in sterilized,
1-L plastic Nalgene bottles from just below the water surface and stored at 4 ◦C for a maximum of 8 h
before filtering a known volume (~100 mL) of sample onto a sterile, 0.22-µm-pore-size nitrocellulose
membrane filter (MilliporeSigma, Burlington, MA, USA). DNA was extracted from the filters using a
PowerWater DNA Isolation Kit (MoBio Laboratories, Inc., Carlsbad, CA, USA).

Samples from the WTP were collected from just below the water surface in one of the tanks in the
IFAS from each of the four zones: (1) pre-anoxic, (2) aerated IFAS, (3) post-anoxic, and (4) re-aeration
(Figure A1). June samples were collected in triplicate and October samples were collected in duplicate.
A known volume (~50 mL) of sample was centrifuged at 3000× g for 15 min, the supernatant liquid
decanted, and DNA was extracted from the solid pellet using a PowerSoil DNA Isolation Kit (MoBio
Laboratories, Inc., Carlsbad, CA, USA). DNA samples were stored at −20 ◦C or below until analyzed.

2.3. Miseq Illumina Sequencing

Before sequencing, we optimized PCR reactions to amplify nosZ and amoA target amplicons using
the primer pairs nosZ 1F (5’ CGY TGT TCM TCG ACA GCC AG 3’) and nosZ 1662R (5’ CGS ACC
TTS TTG CCS TYG CG 3’) [45] and amoA 1F (5’ GGG GTT TCT ACT GGT GGT 3’) and amoA 862R
(GAA SGC NGA GAA GAA SGC) [46]. Each 50 µL reaction contained: 2.5 µL DNA template, 25 µL
BIO-X-ACTTM Short Mix (Bioline, Taunton, MA, USA), 21.25 µL H2O, and 1.25 µL (10 µM) of each
amoA primer or 1 µL (10 µM) of nosZ primers. Thermocycler settings for nosZ were: 4 min at 94 ◦C,
35 amplification cycles (each 60 s at 94 ◦C, 60 s annealing at 61 ◦C, and 60 s at 72 ◦C), and a final
extension at 72 ◦C for 10 min. Thermocycler settings for nosZ were: 4 min at 94 ◦C, 35 amplification
cycles (each 60 s at 94 ◦C, 60 s annealing at 58 ◦C, and 60 s 72 ◦C), and a final extension at 72 ◦C for
5 min. The resulting amplicons were visualized on a 1% agarose gel to ensure a single band of the
correct size (417 and 349 basepairs for nosZ and amoA respectively) was produced and samples were
then sequenced at the University of Rhode Island Genomic Sequencing Center (Kingston, RI, USA) on
an Illumina Miseq Next Generation Sequencer using MiSeq Reagent kits v2 (500-cycles, Illumina San
Diego, CA, USA) Six nosZ (two WTP and four OWTS) and 11 amoA samples (all OWTS) failed to band
after PCR amplification and were not sent for sequencing.

2.4. Data Analyses

We used QIIME (version 1.9.1) [47] to join pair end reads, remove sequences that could not be
joined, and demultiplex samples following Wigginton et al. [43]. Briefly, we quality-filtered sequences
following Bokulich et al. [48], checked for chimeras using USEARCH in de novo mode [49], and
clustered sequences into representative OTUs (operational taxonomic units, a proxy for species-level
distinction) using swarm [50]. Clusters were based on a 90% identity similarity threshold for nosZ [51]
and an 85% identity similarity threshold for amoA [52]. We rarefied data to the lowest sequencing
depth—2028 and 1430 sequences per sample for nosZ and amoA, respectively—and calculated alpha
diversity metrics (species richness and Shannon’s diversity index) using QIIME (version 1.9.1).
To identify representative OTUs for nosZ, we used the nucleotide-nucleotide Basic Local Search
Alignment Tool (BLASTn, version 2.6.0, National Center for Biotechnology Information, Bethesda,
MD, USA) to construct a reference database to determine the closest sequences in the National
Center for Biotechnology Information database [53]. To determine the closest amoA identity matches,
we cross referenced each representative sequence against the Ribosomal Database Project (RDP) amoA
bacterial database [54]. The complete QIIME pipeline, including information on database construction,
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can be found at https://github.com/pattyjk/Wigginton_et_al_2018_J_Environ_Qual. Sequence data
from our study have been deposited in the Sequence Read Archive (Accession no.: SRP149713;
https://www.ncbi.nlm.nih.gov/sra).

We used the vegan package (version 2.5-6) [55] in RStudio (version 1.2.1335, R version 3.6.1) [56]
to rarefy samples and calculate beta diversity. We used the packages phyloseq (version 1.30.0) [57] and
ggplot2 (version 3.2.1) [58] to calculate and graph principal coordinate analyses (PCoA) and taxonomy
bar plots.

3. Results and Discussion

3.1. Species Richness and Diversity

3.1.1. amoA

The median number of unique OTUs of bacteria containing amoA across all dates and zones
was 16.5 in OWTS samples (Figure 1), nearly identical to that for all dates and zones in the WTP
(16.2). Richness for amoA in the WTP varied considerably among samples and was highest in the
anoxic/hypoxic zone in June (37.8 OTUs), with the lowest value (10.5 OTUs) in the anoxic/hypoxic zones
in October. The lowest value of amoA richness in the OWTS was 6.7 OTUs in the hypoxic/anoxic zone
in October, and the highest value (36.6 OTUs) occurred in the oxic zone in October. Brannon et al. [10]
found that the Fields Point WTP had higher specific abundances of amoA compared to advanced OWTS
in Jamestown, RI, USA. These results suggest an opposite pattern between abundance and diversity
and that nitrifying communities in the WTP exist in large populations with less diversity than OWTS
that form smaller, more diverse communities.
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The median value of Shannon’s diversity index (a measure of species richness and relative
abundance) for amoA was higher in OWTS (2.2) than for the WTP (1.6). We did not observe a clear
pattern in diversity in OWTS based on either season or zones. In contrast, amoA diversity at the WTP
was higher in June than October in both oxic and anoxic zones, suggesting a seasonal effect on diversity
that was not observed in OWTS (Figure 1). The tanks at the WTP are open to the air, and thus more
likely affected by weather variables, such as temperature and precipitation, compared to OWTS tanks,
which are installed underground. Others have observed lower amoA abundance and phylogenetic
diversity with decreasing temperature in NH4

+-rich wastewater in WTPs [59]. The similarity in amoA
richness and diversity between OWTS and WTP may result, at least in part, from the limited number
of taxa that are capable of ammonia oxidation [60].

We observed a high diversity of amoA bacteria in zones engineered to promote anoxic/hypoxic
conditions. The transfer of wastewater from aerated to hypoxic/anoxic components may promote
diversification of amoA communities in response to low oxygen, by selecting for taxa that are capable
of nitrifier denitrification, and/or by consuming O2 that is produced during anaerobic ammonium
oxidation [61,62].

3.1.2. nosZ

Across all dates and zones, the median nosZ richness was lower in the OWTS (87 OTUs) than at
the WTP (141 OTUs) (Figure 1). At the WTP, the lowest (47 OTUs) and highest (225 OTUs) observed
richness both occurred in the oxic zone in June. In the OWTS, the lowest observed richness (25 OTUs)
was in the oxic zone and the maximum observed richness (188 OTUs) was in the anoxic/hypoxic zone,
both during the June sampling event.

Like species richness, the Shannon’s diversity index for nosZ was consistently higher for the WTP
than the OWTS, which had median values of 3.0 and 4.7, respectively (Figure 1). The lowest WTP
diversity was 2.4 and the highest value was 5.5, both in the oxic zones during the June sampling event.
The lowest diversity value in the OWTS (0.05) was in the anoxic/hypoxic zone in October, and the
highest value was 4.4 in the anoxic/hypoxic zone in June. While we observed lower nosZ diversity
in OWTS than in the WTP, Brannon et al. [10] found that the WTP had lower specific abundances of
nosZ compared to advanced OWTS in Jamestown, RI, USA. The opposite patterns observed between
abundance and diversity suggests that N2O reducing communities in the WTP are made up of smaller,
highly diverse populations, while OWTS form large, less diverse communities.

The capacity, or size, of a WTP is positively related to microbial diversity [63,64]. Our results
are consistent with these findings, with higher diversity of nosZ at the WTP. This is in line with
the taxa- space relationship, a well-established ecological niche principle important in structuring
microbial communities [65] which, in this case, is related to the amount of niche space available
for denitrifiers in wastewater treatment. In addition to providing more niche space, the WTP has
inputs of microorganisms from thousands more inhabitants and from industrial waste streams [10],
making it more likely to have greater microbial diversity. Differences in diversity metrics among WTPs
with different inputs have been reported, with higher diversity in WTP treating domestic wastewater
compared to those treating industrial wastewater [20,21].

Taxa possessing nitrous oxide reductase were similarly diverse between oxic and hypoxic/anoxic
zones within a type of treatment, suggesting that nosZ communities within a treatment type are not
affected by the level of oxygen present. Indeed, strains of Pseudomonas, a genus often associated with
wastewater treatment and present in our samples (discussed below), can grow and express nosZ rapidly
in NO3

− growth media, even in the presence of high oxygen levels [66–68]. nosZ diversity is likely
not affected by the presence of oxygen because denitrifiers are facultative anaerobes, and some can
reduce oxidized N compounds under oxic conditions [69]. Additionally, Chen et al. [70] suggested that
some denitrifiers can simultaneously perform aerobic and anaerobic respiration in a single metabolic
pathway under dynamic oxygen conditions. Although we did not examine this possibility, a dual
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pathway reducing O2 and NO3
− would be advantageous for bacteria that live in these systems, which

have varying oxygen levels and a high NO3
− concentration.

3.2. Community Structure

Beta diversity patterns for amoA and nosZ showed clear clustering by treatment type, with OWTS
samples clustering separately from WTP samples (Figure 2). The chemical composition of influent—i.e.,
the type and concentration of substrates and inhibitors—drive community differences in WTPs [71],
and likely contribute to differences between treatment types for both genes.
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Figure 2. Principal coordinate analysis based on Bray–Curtis dissimilarity distances for (A) amoA and
(B) nosZ communities in a wastewater treatment plant (WTP) and in onsite wastewater treatment
systems (OWTS), both with biological nitrogen removal (BNR). Labels indicate whether sample was
from oxic (AER) or hypoxic/anoxic (AN) zone and system or tank number. For WTP: AER1 = activated
sludge; AER2 = re−aeration tank; AN1 = pre−anoxic tank; AN2 = post−anoxic tank. For OWTS: AER3
to AER13 = oxic zone; AN3 to AN13 = hypoxic/anoxic zone.

We observed tighter clustering patterns among WTP samples compared to samples collected
from OWTS. This is not unexpected, since we subsampled a single WTP vs. nine OWTS, which were
separate in space and affected by unique household inputs. It is surprising, however, that all the WTP
samples, even those collected from different tanks on different months, cluster more closely together
than many of the OWTS samples collected from the same system, on the same month, but in different
components (e.g., systems 04 and 07 in Figure 2). This is especially notable, considering the differences
in the scale of treatment between WTP and OWTS: BNR treatment zones at the WTP ranged in capacity
from 1.4 × 105 to 1.5 × 106 L, whereas the capacity of the largest OWTS component was less than
8.5 × 103 L. The high level of homogeneity in the WTP may be explained by the high flow and low
HRT in this type of treatment compared to the OWTS, which likely causes more mixing of species
between WTP zones than takes place between OWTS zones.

Four amoA samples from the anaerobic tanks were distinct from the main WTP cluster (Figure 2).
This, in conjunction with the findings of high amoA diversity in anoxic/hypoxic zones discussed above,
reinforces the idea that amoA may diversify in response to a low oxygen environment.
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3.3. Taxonomy

3.3.1. amoA

After the data were rarefied, we recovered a total of 168 unique amoA sequences from 45 samples
collected from the WTP and the nine OWTS. Of these, 72 strains could be matched (85% identity
match) to a species in the Ribosomal Database Project (RDP) amoA database [72]. The most ubiquitous
ammonia-oxidizing bacteria were in the genera Nitrosomonas and Nitrosospira. Two ammonia- oxidizing
species—Nitrosomonas oligotropha and an unidentified nitrifier (OTU 1096)— were present in both types
of treatment, in both seasons, and in the oxic and anoxic zones of both treatment types. Nitrosomonas
oligotropha is ubiquitous in WTPs [23,73]. Two other Nitrosomonas strains were also ubiquitous across
sampling dates and OWTS locations in both treatment types (Table 1). Fan et al. [31] found that
Nitrosomonas was among the top four genera detected in the entire microbial community of an activated
sludge WTP.

Nitrosospira—the most common nitrifying bacterium found in soil [74]—is likely introduced into
an OWTS from soil that enters the tank initially during installation, and possibly when the tank is
periodically opened for inspection. Nitrosomonas has a faster growth rate than Nitrosospira in WTPs [71],
which may explain why Nitrosospira makes up a higher proportion of the community in OWTS, which
have a much longer HRT than the WTP, which is selective for slow-growing organisms. Nitrosospira
strains had higher relative abundance in the OWTS than at the WTP, accounting for most of the
population in most OWTS samples (Figute 3). Similarly, Nitrosovibrio was better represented in OWTS
than in the WTP. Nitrospiria, which can co-oxidize ammonium and nitrite [25], was present in the
anoxic zones of two OWTS in June but was not present in the WTP (Figure 3).
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Table 1. Species present in at least 50% of samples. Genus, species, and strain of closest culture specimen based on sequencing of nosZ and amoA in onsite wastewater
treatment systems (OWTS) and a wastewater treatment plant (WTP) with biological nitrogen removal (BNR). The total number of samples analyzed for amoA was 25
for OWTS and 20 for WTP. The total number of samples analyzed for nosZ was 36 for OWTS and 18 for WTP. Data from June and October 2016 samples were combined
for this analysis.

Gene
Genus, Species and Strain of
Closest Cultured Specimen Id. Match (%)

System Type

Combined OWTS WTP

# Samples with
Gene

Relative
Abundance (%)

Mean (SD)

# Samples with
Gene

Relative
Abundance (%)

Mean (SD)

# Samples with
Gene

Relative
Abundance (%)

Mean (SD)

amoA Nitrosomonas oligotropha Nm75 97 45 30.2 (24.4) 25 41.1 (27.3) 20 16.5 (8.7)
Nitrosomonas sp. Is79A3 94 43 7.8 (5.7) 23 8.3 (6.9) 20 7.2 (4.2)

Nitrosomonas sp. JL21 86 26 0.4 (0.5) 20 0.5 (0.5) 6 0.1 (0.1)
Nitrosomonas sp. JL21 97 24 0.9 (1.0) 15 1.1 (1.0) 9 0.5 (0.6)

Nitrosomonas sp. Nm59 85 36 0.5 (0.9) 16 0.8 (1.1) 20 0.3 (0.3)
Nitrosomonas sp. Nm59 92 29 1.7 (1.2) 9 0.7 (0.6) 20 2.1 (1.2)
Nitrosomonas sp. Nm59 88 29 0.9 (0.7) 9 0.3 (0.3) 20 1.1 (0.6)
Nitrosomonas sp. PY1 90 27 0.4 (0.5) 11 0.6 (0.5) 16 0.2 (0.2)

Nitrosomonas sp. Nm84 88 28 1.0 (0.8) 8 0.8 (0.6) 20 1.1 (0.8)
Nitrosospira sp. L115 91 31 0.7 (0.9) 20 1.0 (1.0) 11 0.1 (0.1)

Nitrosospira sp. Wyke2 96 39 13.3 (18.4) 24 20.9 (20.4) 15 1.2 (1.2)
Nitrosovibrio sp. RY3C 99 26 0.5 (0.8) 19 0.6 (0.9) 7 0.1 (0.1)

Unclassified sp. (denovo 1096) - 44 38.0 (30.2) 24 15.7 (20.2) 20 64.7 (14.6)
nosZ Aeromonas media WS 99 40 12.7 (14.1) 22 12.7 (18.2) 18 12.7 (6.0)

Oligotropha carboxidovorans strain
C1S131/132.2 99 29 1.7 (1.3) 12 4.1.5 (1.5) 17 1.8 (1.1)

Pseudomonas sp. CC6-YY-74 99 47 23.7 (30.7) 30 36.0 (32.5) 17 2.0 (21.6)
Thauera phenylacetica strain TN9 90 29 5.5 16 9.4 (17.6) 13 0.8 (0.5)
Thauera phenylacetica strain TN9 92 37 5.0 (9.2) 19 4.6 (12.5) 18 5.4 (2.7)
Unclassified Alphaproteobacteria 89 29 3.2 (3.0) 14 4.2 (3.8) 15 2.2 (1.2)
Unclassified Alphaproteobacteria 85 27 1.0 (0.7) 11 1.2 (0.8) 16 0.9 (0.5)
Unclassified Alphaproteobacteria 79 26 2.5 (1.5) 8 2.3 (2.1) 18 2.7 (1.1)
Unclassified Betaproteobacteria 81 26 2.5 (3.3) 9 4.4 (5.0) 17 1.5 (1.0)
Unclassified Betaproteobacteria 83 26 2.4 (1.7) 9 1.0 (1.2) 17 3.2 (1.5)

Unclassified Alphaproteobacteria 78 25 8.2 (5.6) 7 5.8 (8.8) 18 9.1 (3.1)
Unclassified Betaproteobacteria 85 25 3.5 (4.4) 9 0.6 (0.4) 16 5.2 (4.7)
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Many OTUs abundant in all WTP samples did not match any amoA strains in the RDP database.
Most of these were present transiently or completely absent from the OWTS samples. Most sequences
do not match strains from any database [75]; however, it is interesting that two wastewater treatment
systems designed to promote the same microbial processes would have such different relative
proportions of identified and unidentified species represented among the most abundant taxa.
As suggested previously, these differences may be caused by the introduction of soil when OWTS are
installed and inspected, suggesting that soil is an important source of ammonia-oxidizing bacteria
for these systems. This would result in a larger number of identified strains in the OWTS because
a portion of their community comes from soil—an ecosystem that has been comparatively better
studied than wastewater. For example, a search of ‘amoA soil bacteria’ on the NCBI (National
Center for Biotechnology Information) nucleotide database returned 25,224 submissions, whereas
searching ‘amoA wastewater bacteria’ returned only 6320 submissions, suggesting that soil amoA
communities have been better studied than communities in wastewater. Although the role of diversity
and community composition is still being investigated [76], there is evidence that these affect many
microbial processes [77,78]. In a mesocosm microbial diversity experiment, Trivedi et al. [79] found
that amoA diversity was highly correlated with function. As such, we suggest that soil as an additional
source of amoA diversity may be important to maintaining NH4

+ oxidation function in the OWTS.

3.3.2. nosZ

In 50 samples from the WTP and OWTS, we identified 601 unique OTUs of nosZ from rarefied
data, of which 209 could be matched to a sequence on the NCBI database using a 90% identity similarity
threshold [72]. The WTP contained 327 OTUs, while the OWTS contained 421 unique sequences.
Although only one nosZ strain—Pseudomonas sp. CC6-YY-74 (Table 1)—was present in all OWTS,
we found five OTUs present across all WTP samples. Of these, Aeromonas media WS and Thauera
phenylacetica strain TN9 were also common in OWTS, and two unclassified Alphaproteobacteria were
absent or transient in many of the OWTS (Table 1). These differences are likely due to the differences in
wastewater sources discussed previously. The overlap in dominant strains could be caused by a small
group of ubiquitous, generalist wastewater denitrifiers.

Because there were many nosZ taxa with low relative abundances, we only included the 50 most
abundant taxa in bar plots to increase clarity and visibility (Figure 4). Aeromonas and Pseudomonas
were widespread N2O reducing genera in both types of treatment. Some OWTS completely lacked
one genus or the other, whereas Pseudomonas dominated other systems to the point of near exclusion
of all other genera (Figure 4). It is unsurprising that Aeromonas was present throughout both types
of treatment systems as it is ubiquitously found in water environments, has been detected in many
types of food, is a facultative anaerobe, and includes many strains that are human pathogens [80].
Pseudomonas sp. CC6-YY-74, the ubiquitous N2O reducer, has been cultured under aerobic conditions
and its complete genome described, which shows that it is capable of full denitrification as well as five
other energy-yielding N-transforming pathways [81]. This ability to use a variety of N compounds
for energy and growth likely gives this strain a competitive advantage in high N environments like
wastewater. Many of the most common N2O-reducing strains that we observed have been cultivated
aerobically (e.g., Aeromonas, Pseudomonas, Shinella), which agrees with our observation of similarities in
the nosZ communities of oxic and anoxic/hypoxic zones in the centralized and decentralized treatment
systems. Homogeneity in microbial community composition across zones and oxygen gradients was
also observed by Zhu et al. [20] at four WTPs in China.
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Thauera, Alicycliphilus, Oligotropha, and Rhodopsueudomonas were also important nosZ genera in
both types of treatment systems, although again Pseudomonas generally outnumbered these in OWTS
systems, especially system 04 (Figure 4 and Table 1). Bradyrhizobium, Sinorhizobium, Burkholderia, and
Paracoccus were associated more often with OWTS, whereas Pseudogulbenkiania, Rhodoferax, Shinella,
and Thiobacillus were more often associated with the WTP (Figure 4). Certain genera found in higher
relative abundances in OWTS are usually found in soil, including N-fixers like Bradyrhizobium and
Sinorhizobium. This suggests that the soil entering OWTS during inspection is important to inoculate
systems with denitrifying bacteria and, as we proposed with amoA, may be an important source of
functional redundancy in N2O reduction populations in OWTS. In their mesocosm diversity experiment,
Trivedi et al. [79] found that N2O flux was negatively correlated with nosZ diversity, suggesting that
communities with higher diversity are able to reduce higher amounts of N2O. Inoculation with soil
may thus provide an important source of nosZ diversity to maintain this function in OWTS.

Genera that were in higher relative abundances in the WTP generally had the ability to survive in
environments with lower C concentrations than those in the OWTS. For example, Thiobacillus, a genus
that includes facultative and obligate chemolithotrophs and facultative anaerobes [82], may be more
competitive in a WTP, where the organic C levels are lower (due to mixing with inputs with low C
concentration) relative to OWTS [1]. In contrast, a higher concentration of organic C in OWTS [1] may
favor heterotrophic over autotrophic denitrifiers. Other bacteria found preferentially in WTP include
the genus Rhodoferax, a purple non-sulfur bacterium that includes strains capable of phototrophy [83]
and oxidation of acetate [84], and Shinella zoogloeoides BC026, a strain commonly found in WTP that
can use pyridine—a common pollutant in industrial wastewater [85]—aerobically as its sole C, N,
and energy source [86].

As was the case for amoA, we observed a higher ratio of strains with a close match on the NCBI’s
database in the OWTS than the WTP for the most common species of nosZ (Figure 4), possibly because
soil organisms are more likely to be present in higher proportion in the OWTS, and many more soil
samples have been submitted to the NCBI database compared to WTP samples. A search of “nosZ soil”
on the NCBI nucleotide database returned 15,796 submissions, whereas searching “nosZ wastewater”
returned only 791 submissions, suggesting that soil nosZ communities have been better studied than
communities in wastewater.

4. Conclusions

There were major differences in ammonia-oxidizing and nitrous oxide-reducing community
composition and structure between centralized and decentralized BNR wastewater treatment systems.
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amoA richness and diversity were similar at the two treatment scales, but nosZ diversity and richness
were higher in the WTP than in the OWTS. Ordination analysis of beta diversity showed clear
differences in the amoA and nosZ communities between the WTP and the OWTS. Relative abundances
of Nitrosomonas and Nitrosospira were different between the WTP and the OWTS. The higher diversity
and closer clustering of beta diversity for nosZ in the WTP suggests that the larger scale of treatment
supports a wider variety of denitrifiers in sufficiently large numbers to maintain more heterogeneous
communities compared to OWTS. We also observed nosZ genera with more diverse metabolic strategies
in the WTP. Together, these factors may make the WTP more resilient to environmental changes such
as shifts in climate and influent properties. Like nosZ, amoA community composition was more similar
within a scale of treatment, but the community of WTP and OWTS had similar alpha diversity metrics,
likely because there is a limited number of nitrifying taxa.

The structure and composition of nosZ and amoA communities were similar between oxic and
hypoxic/anoxic zones in both types of treatment, suggesting that differences in oxygen concentration
within components are not the main drivers of microbial community composition. Although the
WTP and OWTS communities were distinct, a small number of ammonium-oxidizing and nitrous
oxide-reducing species were ubiquitous across all treatment types, sampling dates, and replicates.
Our results also suggest that the introduction of soil bacteria in the OWTS may drive factor differences
in amoA and nosZ communities between centralized and decentralized treatment systems. If soil is in
fact an important inoculum for N-transforming bacteria in OWTS, soil inputs during installation and
the two annual operation and maintenance visits may be important not only to mechanical function,
but also to the biological N-removal function of the systems.
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Appendix A

Table A1. Average and standard error of wastewater properties from pre-anoxic, aerated Integrated Fixed Film Activated Sludge (IFAS), post anoxic, and re-aeration
zones in the wastewater treatment plant and anoxic/hypoxic and oxic zones in Advantex, FAST, and SeptiTech (onsite wastewater treatment systems). Table and
methods for collection originally published in Brannon et al. [10].

System and
Zone/Compartment

Water Flow Rate
(MGD)

Water Temp.
(◦C)

DO
(mg/L) pH Total Inorganic N

(mg N/L)
Ammonium

(mg N/L)
Nitrate

(mg N/L)
BOD5
(mg/L)

WWTP 31.9 211 ± 5.0
Pre-Anoxic – a 0.3 ± 0.0 b 6.7 ± 0.0 b 7.2 ± 0.6 4.8 ± 0.6 0.3 ± 0.1 – a

Aerated IFAS 20.3 ± 0.8 2.8 ± 2.4 b 6.7 ± 0.0 b 3.3 ± 0.3 1.1 ± 0.6 2.0 ± 0.6 – a

Post Anoxic – a 1.6 ± 1.4 b 6.5 ± 0.1 b 2.1 ± 1.6 3.0 ± 1.8 0.2 ± 0.1 – a

Re-Aeration – a 0.5 ± 0.1 b 6.6 ± 0.0 b 0.5 ± 0.1 0.0 ± 0.0 0.5 ± 0.1 – a

Advantex 2.1 × 10−4

Anoxic/hypoxic 19.9 ± 0.2 0.2 ± 0.2 6.4 ± 0.1 15.9 ± 3.1 14.6 ± 3.0 1.3 ± 0.3 94.4 ± 76.9
Oxic 18.6 ± 0.4 1.8 ± 1.0 6.4 ± 0.1 15.7 ± 4.7 9.1 ± 4.4 6.6 ± 2.8 16.9 ± 12.2
FAST 9.4 × 10−5

Anoxic/hypoxic 20.3 ± 0.6 5.1 ± 1.3 7.2 ± 0.2 19.7 ± 9.2 8.4 ± 4.9 15.0 ± 8.4 0.0 ± 0.0
Oxic 18.5 ± 0.4 2.3 ± 0.9 7.0 ± 0.2 11.4 ± 2.1 1.7 ± 0.6 8.4 ± 1.8 6.0 ± 4.2

SeptiTech 1.2 × 10−4

Anoxic/hypoxic 21.4 ± 1.0 0.1 ± 0.1 7.2 ± 0.2 15.0 ± 5.0 11.5 ± 4.8 3.5 ± 0.7 10.3 ± 9.9
Oxic 22.1 ± 1.1 4.7 ± 1.4 7.1 ± 0.1 9.2 ± 1.9 3.1 ± 1.7 6.0 ± 1.9 3.7 ± 1.8

a Not determined; b Data for June only.
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Figure A1. Aerial view of one of the ten Integrated Fixed Film Activated Sludge (IFAS) tanks at the 
Field’s Point WTP. White area represents anoxic/hypoxic zones, grey area represents aerated zones, 
and black bars represent barriers. Water flows from left to right. Modified from Brannon et al. [10]. 

 
Figure A2. Schematic diagram of Advantex, FAST, and SeptiTech technology treatment trains 
showing sampling locations. P = pump; SP1 = anoxic component; SP2 = oxic component. Modified 
from Lancellotti et al. [44]. 
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black bars represent barriers. Water flows from left to right. Modified from Brannon et al. [10].
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Figure A2. Schematic diagram of Advantex, FAST, and SeptiTech technology treatment trains showing
sampling locations. P = pump; SP1 = anoxic component; SP2 = oxic component. Modified from
Lancellotti et al. [44].
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